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A Bi-GRU-attention neural 
network to identify motor units 
from high-density surface 
electromyographic signals in real 
time
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To utilize surface electromyographics (sEMG) for control purposes, it is necessary 
to perform real-time estimation of the neural drive to the muscles, which 
involves real-time decomposition of the EMG signals. In this paper, we propose a 
Bidirectional Gate Recurrent Unit (Bi-GRU) network with attention to perform online 
decomposition of high-density sEMG signals. The model can give different levels 
of attention to different parts of the sEMG signal according to their importance 
using the attention mechanism. The output of gradient convolutional kernel 
compensation (gCKC) algorithm was used as the training label, and simulated 
and experimental sEMG data were divided into windows with 120 sample points 
for model training, the sampling rate of sEMG signal is 2048 Hz. We test different 
attention mechanisms and find out the ones that could bring the highest F1-score 
of the model. The simulated sEMG signal is synthesized from Fuglevand method (J. 
Neurophysiol., 1993). For the decomposition of 10 Motor Units (MUs), the network 
trained on simulated data achieved an average F1-score of 0.974 (range from 0.96 
to 0.98), and the network trained on experimental data achieved an average F1-
score of 0.876 (range from 0.82 to 0.97). The average decomposition time for each 
window was 28 ms (range from 25.6  ms to 30.5 ms), which falls within the lower 
bound of the human electromechanical delay. The experimental results show the 
feasibility of using Bi-GRU-Attention network for the real-time decomposition 
of Motor Units. Compared to the gCKC algorithm, which is considered the gold 
standard in the medical field, this model sacrifices a small amount of accuracy but 
significantly improves computational speed by eliminating the need for calculating 
the cross-correlation matrix and performing iterative computations.
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1 Introduction

The electrical measures of signals in the human body that carry information regarding 
motor intention are predominantly comprised of Electroencephalogram (EEG) signals, 
electromyographic signals (EMG), and peripheral nerve signals. Among these, the collection 
of electromyographic signals is simpler and their processing is more convenient. Crucially, 
electromyographic signals can be collected even before actual force of exercise takes place 
(Hashemi et al., 2015). By using EMG to infer central control strategies, it is possible to 
comprehend the physiological processes that lead to muscle activity for generating strength, 
performing exercises, and facilitating various functions (Farina et al., 2004). EMG signals 
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serve as indicators of muscle activity initiation, allowing us to obtain 
the temporal relationship of one or multiple muscles during task 
execution. Furthermore, EMG signals can provide information on 
force contribution of the individual muscle or muscle group. Due to 
these characteristics of EMG, our ways of interacting with the world 
may become more enriched, and can also be useful for medical and 
health monitoring and diagnosis (De Luca, 1997).

The human central nervous system controls muscle strength by 
modulating the activity of motor units (MU), which are composed of 
motor neurons in the ventral horn of the spinal cord, along with the 
axons and muscle fibers innervated by them. According to the principles 
of EMG signal formation, the decomposition refers to extracting two key 
components from EMG signals: motor unit action potentials (MUAP) 
and the pulse trains of MU. Blind source separation can be employed in 
the medical field for health monitoring and diagnosis to infer the central 
control strategies of the human body (Negro et al., 2016), since pulse 
trains obtained from decomposing EMG signals can extract human body 
data, which means pulse trains can be  quantified and used for 
experimental analysis of motor neurons. S. P. Strong’s teams have 
successfully implemented the quantification of information from Pulse 
Trains using bits as the unit, thereby demonstrating that Pulse Trains 
carry a significant amount of information (Strong et al., 1998). The 
movement information transmitted by EMG signals can be extracted 
through their decomposition. The evaluation of MUAP can assist in 
clinical disease diagnosis based on morphological and biological 
characteristics, while studying MU pulse sequences can provide reference 
for diagnosing central nervous system dysfunction (Heckman and 
Enoka, 2004). Additionally, based on pulse trains, researchers can analyze 
the behavioral relationships between different MUs during muscle 
contraction, providing more effective research on the working 
characteristics both within and between muscles. When muscles 
contract, analyzing the overall signal information to determine the 
degree of contraction during exercise can provide a deeper understanding 
of the normal function of the neuromuscular system (Heckman and 
Enoka, 2004). Recently, there have been applications of utilizing Pulse 
Trains for electromyographic control, achieving the decoding of both 
discrete and continuous human movements. Chen’s team successfully 
employed Pulse Trains to recognize discrete gestures and achieve 
continuous prediction of wrist torque (Chen et al., 2020, 2023).

To utilize EMG for control purposes, it is necessary to perform 
real-time estimation of the neural drive to the muscles, which involves 
real-time decomposition of the EMG signals. For accurate motion 
intention prediction, the delay between samples must fall within a 
specific time range of 225 ± 50 ms (Del Vecchio et al., 2018). Several 
traditional blind source separation algorithms, including mature 
algorithms such as gradient convolution kernel compensation (gCKC) 
(Holobar and Zazula, 2007), compute innervation pulse trains (IPTs) 
using separation vectors to generate Pulse Trains. Online 
decomposition becomes feasible after calculating the separation vector 
that corresponds to MU. The gCKC algorithm achieves high accuracy 
in MU decomposition through iterative calculations. In the field of 
EMG decomposition, fast independent component analysis (fastICA) 
(Hyvarinen, 1999) has also made notable contributions due to its 
ability to converge quickly and not require the setting of step 
parameters. However, the iterative algorithm operation renders it 
unsuitable for meeting the demands of online decomposition.

Recently, neural network-based blind separation methods have 
emerged. For example, the IPT prediction, which is based on the gate 

recurrent unit network (GRU), exhibits higher robustness compared to 
the gCKC algorithm under low signal-to-noise ratio settings (Clarke 
et al., 2020). Furthermore, with a processing time of 67 ms per second for 
sEMG, the IPT prediction demonstrates great potential for online signal 
decomposition. Furthermore, the online prediction of Pulse Trains using 
deep convolutional neural networks (DCNN) (Wen et al., 2021) requires 
approximately 40 ms to predict every 120 sampling points when the 
EMG sampling rate is 2048 Hz, which is lower than the physical electrical 
delay range. However, lower delay is necessary to achieve synchronization 
between devices and users (Zhang et al., 2017).

In this paper, we propose an online decomposition method using 
a Bidirectional GRU, which achieves real-time multiple MU 
decomposition while meeting minimum delay requirements. We begin 
by using the gCKC algorithm to decompose EMG to obtain pulse 
trains, and then combine them with EMG signal segments as training 
data. Secondly, we use recurrent neural network (RNN) and some of 
its variants, attention mechanisms, data processing techniques, and 
different signal-to-noise ratios (SNRs) of EMGs to build the network 
and train our blind source separation models. Finally, we analyzed the 
model’s accuracy performance (i.e., precision, F1-score) and processing 
time (time required to decompose each sample) under these conditions.

2 Materials and methods

2.1 Research background and algorithmic 
foundations

2.1.1 Gradient convolution kernel compensation
The gCKC algorithm estimates the pulse information of MUs from 

EMG without calculating mixed matrices. An isometric contraction of 
a muscle is a contraction process in which the tension changes while 
the length of the muscle remains constant. HD-EMG can be modeled 
as a linear, time-invariant, convolutional MI-MO system. Assuming 
there are M EMG signal acquisition channels available, the EMG signal 
for the i-th channel can be represented as (Garcia et al., 2005):
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where hij is the MUAP of the j-th MU in the i-th channel, and has 
a length of L. s j is the pulse time series of the j-th MU:
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where δ .( )  is the Dirac impulse, and ψ j k( ) is the occurrence of 
the k-th MUAP of the j-th MU. During the experimental EMG signal 
acquisition process, noise is inevitably incorporated into the collected 
signal. Hence, the EMG signal can be represented as:

 y n x n n i Mi i i( ) = ( ) + ( ) = …ω , , ,1

where y ni ( ) is the EMG signal recorded during the acquisition 
process, and ωi n( ) is considered to be the Gaussian white noise with 
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a zero-mean value. In order to enhance the numerical conditions of 
the above model and improve the signal decomposition effect, delay 
expansion is necessary for each acquisition channel:
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After sorting out the above formula, we can get:

 y n Hs n n( ) = ( ) + ( )ω

where h is a mixed matrix, which can be represented as:
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where hij is the MUAP of the j-th MU in the i-th channel, which 
has a length of L.

According to the research of Holobar and Zazula (2007), the pulse 
trains for the j-th mu can be directly estimated from the extended 
EMG signal:
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T
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where c E s n y ns y jj , = ( ) ( )( )  is the cross-correlation signal 
between the extended pulse trains and the EMG signal, and 
C E y n y nyy

T= ( ) ( )( ) is the correlation matrix of the extended EMG 
signal. E .( )  is mathematical expectation.

After undergoing the aforementioned procedure, the EMG signal 
can be decomposed into pulse sequences of motor units. The formula 
indicates that only the cross-correlation vector and cross-correlation 
matrix of the extended signal need to be calculated, without the need 
to calculate the convolution matrix. By using the gradient descent 
method, the pulse train of MUs can be estimated directly from the 
EMG signal. This algorithm is called gradient Convolution Kernel 
Compensation (gCKC) algorithm.

2.1.2 Gate recurrent unit network
For RNN’s variants, the Gate Recurrent Unit Network is a notable 

gating mechanism that has shown rapid progress (Chung et al., 2014). 
Compared with traditional RNN, GRU can solve issues related to 
gradient and long-term memory. The GRUis a popular solution in the 
field of natural language processing (NLP) due to its ability to connect 
data both backward and forward. The GRU network finds applications 
in processing continuous time signals, including the EMG signal 
which is a continuous time signal collected in both time and space. 
The GRU addresses certain limitations of the Long Short-Term 
Memory network (LSTM) by integrating the “forgetting gate” and 
“output gate” into an “updating gate,” resulting in a reduction in 
training parameters. This leads to significant savings in training time 
and data requirements without significantly impacting the model’s 
predictive ability, as reported in the findings (Graves, 2012). Given its 

computational efficiency and time-saving advantages, GRU continues 
to be a subject of sustained interest among researchers (Figure 1).

For one gating unit of GRU (Figure 2A):

 z W x U h bt z t z t z= + +( )−σ 1

 r W x U h bt r t r t r= + +( )−σ 1
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where the input vector xt  and output vector ht are defined, as well 
as the update gate vector zt and reset gate vector rt  W, U and b 

FIGURE 1

The gCKC algorithm decomposes the mathematically represented 
EMG signal into multiple MUs’ pulse trains. For example, the 
schematic of one channel of EMG signal on the blue line in the figure 
demonstrates this. The gCKC operates on multiple channels of EMG 
signals, each with a sampling rate of 2048  Hz, and decomposes 
them into seven MU’s pulse trains. Pulse trains shows that the MU 
has a pulse at this sampling point with a red “x”.
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represent parameter matrices and vectors that require training. The 
update gate zt updates the memory of the model by combining the 
output of the previous unit ht−1 with the input of the current unit xt  
and controlling their weights. The reset gate rt  determines the 
combination of the input of the current unit xt  with the previous 
memory ht−1 by controlling the weight. Finally, the output vector of 
the current cell ht is calculated by synthesizing the memory passed 
from the update gate zt and reset gate rt  and the current input vector 
xt . This calculation enables the GRU to retain information from 
previous signals in the backward time.

To capture contextual information of the current unit, a 
Bidirectional Gate Recurrent Unit network (Bi-GRU) is utilized 
(Figure 2B). This network consists of two parallel GRUs that operate 
in both forward and backward directions along the time dimension. 
Each network processes the signal sequence independently, 
generating outputs that are then concatenated together. 
Consequently, the output of the Bi-GRU at each time step 
encompasses relevant contextual information pertaining to the 
current unit.

2.1.3 External attention
The attention mechanism was first introduced in 2014 (Bahdanau 

et al., 2014). Initially applied in natural language processing, similar to 
the GRU model, it has since undergone various developments and 
adaptations to cater to different fields. Typically, attention is integrated 
within the encoder-decoder framework, allowing for enhanced 
performance and effectiveness. When incorporated into the framework, 
this approach significantly improves the prediction model’s capability to 
capture relevant local information. Through our experiments with 
various attention mechanisms in the GRU model, we have observed an 
enhanced sensitivity of the model toward the EMG pulse component.

Self-attention is an attention mechanism that captures long-range 
dependencies by calculating the correlation between all positions 
within a single sample (Vaswani et al., 2017). However, this method 
incurs high computational complexity and overlooks the inter-sample 
relationship. To tackle these challenges, Guo et al. proposed a new 
attention mechanism called external attention (EA). It is composed of 
solely two linear layers and two normalization layers, which optimize 
both accuracy and prediction time of our model (Figure 3).

FIGURE 2

In (A), the internal structure of a GRU unit is shown. (B) Illustrates part of the structure of a bi-directional GRU network, where two ordinary GRU 
networks are used to process the input data in forward and reverse directions, and then integrate the outputs from both.
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where Mk and Mv  are learnable weight parameters. The 
relationship between different samples in the dataset can be established 
as each EMG window is generated under the same number and 
position of MU conditions. Therefore, it is crucial to include an 
attention mechanism in the model to establish the relationship 
between each window.

2.2 Data source and model building

2.2.1 Simulated EMG signal
The volumetric conductor commonly used in studies is typically 

represented as a three-layer model with a cylinder shape, consisting 
of skin, fat, muscle, and other tissues (Farina and Merletti, 2001). 
These layers exhibit different conductive properties, with skin and fat 
being considered isotropic, while muscle tissue is considered 
anisotropic. Muscle tissue plays a significant role in the volume 
conductor. Alternatively, employing a single-layer muscle structure 
can accurately reproduce the motor unit action potential (MUAP) 
waveform and improve computational efficiency. As a result, the 
surface electromyography (EMG) signal generated in this study 
primarily acts as a volume conductor composed of single-layer 
muscle tissue.

It is assumed that MU locations are randomly distributed, and the 
muscle fibers innervated by each MU are also randomly distributed 
within a circular region. The muscle fiber density was set at 20 fibers 
per square millimeter (20/mm2), and the propagation speed of the 
MUAP was set at 4.0 m/s. The initial pulse rate of MU was 8 pulses per 
second (pps), and the peak pulse rate was 35pps. During the 
experiment, the muscle contraction force will be maintained at three 
fixed values: 10, 30, and 50% of the maximal voluntary contraction 
(MVC), and only Gaussian white noise was considered during 
data acquisition.

The signal collection instrument used in this study consisted of a 
high-density surface electrode array measuring 13 * 5. Each electrode 

for signal collection had a fixed radius of 1 mm, and the distance 
between any two adjacent electrodes was set at 5 mm. The data 
presented in this paper were obtained using the approach originally 
proposed by Fuglevand et al. (1993).

2.2.2 Experimental EMG signal
We used the open-source data of Hug et al. (2020). The dataset 

includes EMG signals collected from the participant’s gastrocnemius 
muscle, as well as the decomposition results obtained from the gCKC 
algorithm. For the gastrocnemius muscle, the open-source data 
utilizes MATLAB files to record the decomposed EMG signals, binary 
Pulse Trains data of each successfully identified MU within the signal, 
force signals (not used in our experiment), sampling rate, IPT, pulse 
noise rates (PNRs) (Holobar et al., 2014), and other information. The 
Pulse Trains of each MU were manually edited and optimized. In the 
experiment, a total of 5 participants completed three types of 
contractions at 10, 30, and 50% of MVC. The data will be used as the 
data source for the experiment. The gastrocnemius medialis muscle 
was covered with a two-dimensional adhesive grid containing 64 
electrodes (13 × 5 electrodes with one electrode absent in a corner, 
gold-coated, inter-electrode distance: 8 mm). EMG signals were 
recorded in unipolar mode, filtered with a bandpass ranging from 10 
to 900 Hz, and digitized at a sampling rate of 2048 Hz.

2.2.3 Data processing and model prediction 
method

First, the gCKC algorithm is used to decompose the sEMG signals. 
Prior to decomposition, the signals are subjected to band-pass filtering 
and whitening, ranging from 10 Hz to 500 Hz. This decomposition 
yields pulse trains, which are essential for training the model. Next, 
the EMG signal is normalized to scale the data within a specified 
range. This normalization process helps accelerate the training process 
and improves the effectiveness of the model objectively. After 
normalization, the high-density EMG signal is divided into windows 
based on the sliding window principle (as shown in Figure 4). The 
window division is performed using the same channel number (which 
depends on the signal itself) and the same number of sampling points 
‘w’ as the training data. The parameter ‘s’ in Figure 4 corresponds to 
the interval of samples at the beginning of each window. The optimal 
values for the aforementioned parameters will be  analyzed and 
discussed in the results section.

In this experiment, the method used to identify pulses is by 
analyzing the sEMG information obtained from ‘w’ sampling points 
within the window. Specifically, the goal is to detect whether there is 
a pulse present at the ‘s’ sampling points located in the center of the 
window. For each MU, if a pulse is detected within the ‘s’ sampling 
points of the EMG signal, the label of the window is assigned as 1, 
indicating the presence of a pulse. Conversely, if no pulse is detected 
within those ‘s’ sampling points, the label is assigned as 0, indicating 
the absence of a pulse. To ensure that pulses are not missed within the 
‘s’ sampling points, the size range of ‘s’ is carefully chosen, ranging 
from 5 to 40. The impact of different ‘s’ sizes will be discussed and 
analyzed in the results section.

The decomposition results of gCKC provide information about 
the state of each MU pulse within the specified time range of the 
window. According to the decomposition results of gCKC, if a pulse 
is detected within the sampling point range ‘s’ at the center of the 
window, its label is specified as 1, indicating the presence of a pulse. 

FIGURE 3

Figure shows the internal structure of external attention. The external 
attention mechanism calculates the correlation between input 
elements and assigns weights to each element. This allows the 
model to selectively focus on the most relevant elements. The 
mechanism is applicable to a wide range of tasks, including natural 
language processing, computer vision, and speech recognition.

https://doi.org/10.3389/fnins.2024.1306054
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lin et al. 10.3389/fnins.2024.1306054

Frontiers in Neuroscience 06 frontiersin.org

On the contrary, if no pulse is detected, it will be  specified as 0, 
indicating no pulse.

2.2.4 Model structure
For the provided training data and tags, we proposed two network 

structures: single-output GRU network (SO-GRU) and multi-output 
GRU network (MO-GRU).

SO-GRU predicts pulse trains for a particular MU (which can 
be specified prior to training), while MO-GRU can predict pulse trains 
for multiple MUs at the same time.

In summary, the main difference between SO-GRU and 
MO-GRU is that, in a task, it decomposes one or multiple 
MUs simultaneously.

For the model’s implementation, both structures depicted share 
numerous similarities (Figure 5A). Firstly, the input data comes in the 
form of a matrix of size w s∗ . Upon passing through the GRU layer, 
the data transforms into a matrix of size w∗ 256. Some parameters of 
the GRU layer: hidden layers 128, feature size 64, 2 layers. Secondly, 
the attention layer modifies the data content while retaining the 
original formatting. Additionally, subsequent processing through the 
full connection layer results in the data being transformed into a 128*1 
matrix. After applying batch standardization and the full connection 
layer, the data is smoothed into an n ∗1 matrix, where n represents the 
number of MU to be decomposed. This value may vary based on 
changes made by the user to the network structure. Finally, as the 
blind source separation problem addressed by this model is a multi-
label classification problem, we utilize a sigmoid activation function 
for the output.

2.2.5 Training and testing strategy
On a personal computer with a CPU of AMD Radeon 6,800 h, 

a GPU of Nvidia RTX 3070Ti, and 16GB of memory, we utilized 
the Pytorch framework and its library to conduct model training. 
We categorized the entire EMG window and its corresponding tags 
into three groups, with the first two groups serving as the training 
datasets and the last group used for testing (Figure 5B). This step 
is critical to ensure that during the model testing process, certain 
data remains invisible to the model, leading to more accurate 
results. All following experiments will be conducted following this 
principle. During model training, the early stopping method is 
implemented. This entails terminating the training process and 
preserving the current model when the loss value of the test dataset 
either drops below a certain threshold or starts to increase 
(Figure 6).

For the trained model, we  utilize two metrics to evaluate its 
performance: prediction accuracy and prediction time cost.

We employ two metrics to evaluate prediction accuracy: precision 
and F1-score:

 
Precision TP

TP FP
=

+

 
Recall TP

TP FN
=

+

 
F score Precision Recall

Precision Recall
1

2
− =

∗
+

where TP is the number of windows that correctly predict the 
pulse, FP is the number of windows that are falsely predicted to have 
pulse, and FN is the number of windows that have pulse but are 
missed by the model. Precision and recall, respectively, measure the 
proportion of TP of the predicted pulse and the actual pulse. F1-score 
combines the two measures, which is more persuasive than accuracy.

FIGURE 4

(A) Shows the windowed interception of HD-EMG signals for 
training data acquisition. An intercept with a length of ‘w�  is 
performed after every ‘s�  samples from a given sampling point, and 
each window overlaps. The solid box represents the first window 
(frame1) taken from the EMG, and the dashed box represents the 
second window (frame2) taken after shifting s samples. The dark 
red translucent box represents the range in which the first window 
can recognize pulse trains, and the light red translucent box 
represents the range in which the second window can recognize 
pulse. The discussion on the values of this range will be discussed 
in the Results section. The extraction method of training labels is 
shown in (B), where the presence or absence of pulse issuance (0 
or 1) of a particular MU within the center ‘s�  sampling points of 
each window is used as the training label according to the window 
interception method. (B) Shows the pulse trains obtained by the 
gCKC algorithm of the 7th MU. The red ‘x’s form the pulse trains of 
this MU, and each red ‘x’ represents a pulse recognized at this 
sampling point by the gCKC algorithm. The pulse inside the dark 
red transparent box indicates that the pulse can be recognized by 
the model in the frame1, and the pulse inside the light red 
transparent box indicates that the pulse can be recognized by the 
model in the frame2.
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As for predicting the time cost, we measure it by calculating the 
amount of time it takes to predict a sample. This process is executed 
using the relevant code in the integrated development environment.

In the following model training, we  conducted ablation 
experiments on RNN and its variants modules, attention mechanism 
modules, MO and SO structures, SNR, and data processing methods.

FIGURE 5

(A) Illustrates the experimental flow and the network model structure of this paper. The gCKC algorithm is used to decompose the HD-sEMG signal for 
the purpose of obtaining the pulse sequence. This pulse sequence along with the HD-sEMG signal is utilized as the data and label, respectively, during 
model training. (B) Depicts a participant executing three muscle contractions during a single signal acquisition. The training data was obtained from the 
initial two contractions of the EMG signals, with the final one being used as the test data.
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3 Results

In the experimental data set, there were 5 participants in the 
experiment, and each participant provided the results of 10 MUs (a 
total of 50). While in the simulated data set, six MUs were decomposed 
each time, for a total of 5 times. The variance line of each experiment 
represents the degree of dispersion of the decomposition results of all 
MUs. For each MU, a F1-score above 0.6 will be accepted and those 
below will be disregarded unless further specified. The quantity of 
MUs and their PNRs, decomposed by the gCKC algorithm, together 
with their corresponding PNRs in both experimental and simulated 
data sets, are presented in Table  1. Due to the inability to obtain 
absolutely true and correct pulse trains from experimental data, 
we will uniformly use pulse trains obtained by the widely recognized 
gCKC algorithm as the gold standard for model decomposition 
performance evaluation. In the following experiment, we will use 
T-test for significance analysis, with the threshold set to 0.05.

3.1 Comparison of effects between 
recurrent neural networks

This section aims to evaluate the influence of different RNN 
modules on the predictive performance of the model. The RNN 
modules under investigation include GRU, LSTM, RNN, and 
GRU + EA. The experimental conditions for this evaluation are as 
follows: w =120, step size of s = 20, and training in the MO-GRU. The 
SNR of the simulated data is 20.

The result indicates that all recurrent neural networks exhibit high 
accuracy (F1 score = 0.95 ± 0.01) in the simulated data set. However, 
in the experimental data set, GRU-external attention demonstrates the 
highest accuracy (average F1 score = 0.86) among all the networks. 
Conversely, LSTM performs inferiorly in this regard (F1 score = 0.76). 
In the experimental dataset, all networks except for LSTM were able 
to successfully decompose a good number of MUs (30–49 out of 50). 
Regarding prediction speed, RNN performed the fastest (0.01 s/
sample), followed by GRU and its attention version (0.015 ± 0.001 s/
sample), and the slowest was LSTM (0.02 s/sample). Analyzing the 
p-values, GRU + EA has a significant advantage.

3.2 Comparison of effects between 
attention mechanism

Various tests on recurrent neural networks showed that GRU 
achieved high accuracy and efficiency as shown in Figure  7. 
Subsequently, we examined how the addition of different types of 
attention affected GRU’s performance. We  tested the effects of 

FIGURE 6

(A) Describes the performance of each recurrent neural module in the network on an experimental dataset, whereas (B) illustrates their performance 
on a simulated dataset. Any mu with an F1-score below 0.6 is disregarded.

TABLE 1 The table displays the decomposition of MUs for gCKC across 
the two datasets.

Data set MU counts PNR

Experimental data 50 37 ± 1

Simulated data 30 23 ± 1

Only MUs with a PNR greater than 20 will qualify for training the model.
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Effective Channel Attention (ECA) (Wang et  al., 2020), Selective 
Kernel Attention (SKA) (Li et  al., 2019), Squeeze and Excitation 
Attention (SEA) (Hu et  al., 2018), Convolutional Block Attention 
Module (CBAM) (Woo et al., 2018), Self-Attention (SA) (Shaw et al., 
2018), Multi-faceted attention-based Signed network Embedding 
framework (MUSE) (Yan et al., 2023), and External Attention (EA) 
(Bahdanau et  al., 2014) on model prediction performance. The 
experiment was conducted on the MO-GRU model where the training 
data set had a window size of w =120  and a step size of s = 20. The 
SNR of the simulated data is 20.

Multiple combinations of attention and GRU were tested. External 
attention has the best advantage (average F1-score = 0.87, 0.015 s/
sample), followed by CBAM attention (average F1-score = 0.78, 
0.015 s/sample). The results indicate that External attention provided 
the greatest advantage with an F1-score of 0.87 and a sample 
prediction time of 0.015 s. However, the other attention decomposition 
effects were unsatisfactory, did not meet accuracy requirements, or 
incurred a long prediction time cost. Analyzing the p-values, 
GRU + EA has a significant advantage.

3.3 Comparison of effects between 
So-GRU and MO-GRU

After GRU external attention is the first choice in recurrent neural 
networks, we evaluated the performance of two network structures, 
SO-GRU and MO-GRU, as shown in Figure 8. This experiment will 
be  conducted with simulation and experimental training data, 
utilizing a window size of w =120 and a step size of s = 20. The SNR 
of the simulated data is 20.

SO-GRU only outputs one MU’s decomposition result at a time, 
while MO-GRU can output five MU’s decomposition results 
simultaneously. Despite SO-GRU outperforming MO-GRU in both 
experimental data sets (average F1-score = 0.89 vs. 0.86) and simulated 
data sets (average F1-score = 0.86 vs. 0.98) concerning F1-score, its 
decomposition time costs are nearly five times those of MO-GRU 
(0.15 s vs. 0.03 s) when 10 MUs are decomposed. In the experimental 

data, analyzing the p-values, SO has a significant advantage in the 
F1-score.

3.4 Comparison of effects of signal noise 
rate

After choosing the external attention variant of MO-GRU, 
we introduce Gaussian white noise to the simulated data to evaluate 
the model’s robustness to noise. This simulation will be conducted 
with a simulated training data window size w =120 and the step size 
s = 20, and the six MU will be decomposed.

The experiment indicates that the average F1-score remains 
relatively stable (0.985 to 0.96) as the SNR decreases from 20 to 0 
(Figure 9).

3.5 Comparison of effects of window size 
and step size

In the external attention version of MO-GRU, various window 
sizes and step sizes are arranged and combined to determine the 
optimal combination for achieving decomposition effects (as shown 
in Figure 10). This section focuses on conducting experiments using 
both simulated data with a SNR of 20 and experimental data. 
Moreover, all decomposed MUs are included in the statistics, 
regardless of their successful decomposition (F1-score > 0.6).

The effectiveness and efficiency of MU decomposition show 
significant variability with changes in window and step size. 
Generally, a higher F1-score is observed with a step size of 20. Despite 
a longer prediction time per sample, the F1-score is highest with a 
window size of 120. As the window size decreases, the decomposition 
effect also worsens, indicating a reduction in the number of MU 
decomposed and accuracy. However, the prediction sample time 
becomes faster. As the step size increases, the decomposition effect 
initially improves, reaching its peak at 20, but the accuracy drops 
rapidly at 40.

FIGURE 7

The figure shows the impact of each attention mechanism module on the network.
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4 Discussion

Thus far, all experiments have concluded, revealing several 
interesting results.

First, we compared the functionalities of GRU, LSTM, and RNN 
modules in the network and determined that GRU yielded the best 
results. Our discussion revealed that the fast prediction speed of RNN 
is counteracted by their lower accuracy, which can be attributed to 

their relatively simple network structure that requires fewer training 
parameters. Additionally, compared to the other two recurrent 
networks, there is currently no effective method to prevent gradient 
disappearance or explosion during model training in RNN. Therefore, 
RNN is not towel-suited for capturing long-term dependence, and 
the training parameters may struggle to fit the EMG signal training 
dataset well. Although LSTM models exhibit high accuracy, their 
prediction speed is slower than other models due to their more 

FIGURE 8

(A) and (B) show the MU decomposition of the real data set and the simulated data set in the MO and SO network structure.

FIGURE 9

In the simulated data set, Gaussian white noise with a mean value of 0 is added to the signal to generate data with different SNR.
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complex network structure. In contrast to RNN, LSTM models 
introduce gating mechanisms, such as input gate, forgetting gate, and 
output gate, which contribute to improve performance. Compared to 
RNN, GRU partially solve the gradient vanishing problem. However, 
they impose a more significant computational burden on training 
and prediction times. GRU is essentially a simpler variation of 
LSTM. By utilizing the update and reset gates, the LSTM’s gating 
mechanism becomes more streamlined, there by accelerating the 
convergence and prediction of the training model. Moreover, the 
accuracy is comparable to that of the LSTM, thereby making it ideal 
for our relatively small EMG training dataset, typically lasting for tens 
of seconds. Therefore, due to the GRU module’s high accuracy and 
quick decomposition speed, we  choose to include it in our 
proposed network.

Subsequently, we conducted experiments to evaluate the impact 
of attention in our proposed network. We compared the performance 
of attention and non-attention models to illustrate the effectiveness of 
our proposed network. As detailed in the research background and 
related work section, external attention employs two one-dimensional 
convolutions to implement the memory unit, which aligns with the 
one-dimensional data output of our GRU unit. Additionally, this 
matches with the HD-EMG signal data set (two-dimensional data: 
number of channels * length). However, certain attention mechanisms 
with limited efficacy require two-dimensional convolution in their 
attention processes, whereas our EMG signal dataset employs a 
two-dimensional representation that necessitates dimensionality 

expansion operations, ultimately resulting in suboptimal experimental 
outcomes. Consequently, we incorporate external attention, which 
significantly enhances network accuracy with little effect on 
decomposition time.

Two network structures, SO-GRU and MO-GRU, were compared 
for their performance. SO-GRU showed higher average accuracy. This 
could be attributed to SO-GRU having only one MU decomposition 
task per model, where each model corresponds to MU one by one. 
Parameters in the model specialize in a single MU, thus improving the 
decomposition accuracy of each MU model. On the contrary, the 
MO-GRU model decomposes multiple MUs at once, resulting in 
lower decomposition accuracy due to the specialization of parameters 
for multiple units. For practical application, we suggest employing the 
SO-GRU network for precise identification of MU pulse if time is not 
a constraint. Conversely, for real-time prediction of multiple MUs, 
we advise using the MO-GRU network.

In the simulated dataset, the EMG signal with Gaussian noise 
added was deployed as both the training and test sets to evaluate the 
model’s capacity to accommodate noise. Results indicate a gradual 
decrease in F1-score as SNR decreases from 20 to 0, though the 
decrease range is insignificant (0.98 to 0.96). After discussing the issue, 
these findings suggest that the model has higher sensitivity in 
detecting the pulse directly from untreated EMG. Additionally, the 
model generates pulse trains instead of other regression values, 
resulting in minimal impact of noise on the model. Therefore, the 
model is somewhat robust to noise.

FIGURE 10

(A) Shows the performance of the model decomposition using varying window sizes and step sizes in the experimental dataset. (B) Shows the 
performance in the simulated dataset. The dots of different colors represent the mean values of all subjects at this MVC level. In (B), the decomposition 
results of each MU are satisfactory, so no error annotation is performed.
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The model’s performance was tested using various window sizes 
(w) and step sizes (s), revealing that accuracy is highest when w and s 
are, respectively, 120 and 20. Pulse prediction requires additional 
sample points (w) around the focal points of s sample points in order 
to more precisely decompose MU. Thus, at the window size level, 
performance improves with larger w; this increases sample points the 
model can use, accuracy of pulse prediction within s sample points 
and the prediction time cost. Concerning step size level, a performance 
peak is reached when s is between 5 to 20, followed by a sharp decrease 
when s varies from 20 to 40. The reason for the lower accuracy rate 
may be due to the fact that when s is too small, even though the 
window moves with a small step and there is more data available, the 
prediction range s is also small, resulting in more stringent prediction 
conditions. Conversely, when s is too large, although the prediction 
conditions are relatively broad, the window moving step is too large, 
leading to less available training data. Due to the limited amount of 
data sets, the data has been underfitted resulting in accuracy not 
meeting the requirements. After a comprehensive consideration, it is 
recommended that the intermediate value s = 20 is an ideal option.

In summary, based on the test results, the recommended 
combination is w =120  and s = 20, taking into account both the 
accuracy and time cost of real-time task decomposition by MU. If time 
cost is not considered, specifically, real-time decomposition, we may 
increase the window size w to enhance accuracy. If you have varying 
amounts of training datasets, you may adjust the step size s accordingly 
to enhance the accuracy of decomposition or reduce the training time 
cost. Then, one advantage of this experiment is that using a small 
amount of data to train the model can achieve satisfactory accuracy. 
This experiment trained the model using EMG and its pulse trains 
with a collection time of 25 ± 10 s at a sampling rate of 2048 Hz. Finally, 
the network structure of the experiment in this article is relatively 
simple and easy to implement. We believe that the reasons behind the 
good performance in terms of accuracy and prediction speed of the 
model may stem from several factors: the ability of the GRU model to 
capture contextual relationships, the long-range dependency patterns 
captured by the EA mechanism, and the relatively simple network 
structure. Compared to the gCKC algorithm, which is considered the 
gold standard in the medical field, this model sacrifices a small 
amount of accuracy but significantly improves computational speed 
by eliminating the need for calculating the cross-correlation matrix 
and performing iterative computations. As a result, real-time 
decomposition of EMG signals becomes feasible. But due to the 
limitations of the model’s ability, this model does not have robustness 

for the MU decomposition task of dynamically changing MVC 
muscles. So, we  still need to conduct research on this in our 
future work.
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