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Social activities are likely to cause effects or reactivity in the brains of the people 
involved in collaborative social situations. This study assesses a new method, 
Tigramite, for time domain analysis of directed causality between the prefrontal 
cortex (PFC) of persons in such situations. An experimental situation using 
hyperscanning EEG was applied while individuals led and followed each other 
in finger-tapping rhythms. This structured task has a long duration and a high 
likelihood of inter-brain causal reactions in the prefrontal cortices. Tigramite is 
a graph-based causal discovery method to identify directed causal relationships 
in observational time series. Tigramite was used to analyze directed causal 
connections within and between the PFC. Significantly directed causality within 
and between brains could be detected during the social interactions. This is the 
first empirical evidence the Tigramite can reveal inter- and intra-brain-directed 
causal effects in hyperscanning EEG time series. The findings are promising 
for further studies of causality in neural networks during social activities using 
Tigramite on EEG in the time domain.
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1 Introduction

Social activities are a key part of life. These activities, whatever they are, have an element 
of causing effects or reactions in other people involved. Social neuroscience traditionally 
focused on one brain at the time to understand the social side of the humans but is recently 
employing hyperscanning technology to include at least two persons in social interactions 
(Babiloni and Astolfi, 2014; Pan et al., 2022). More and more, the technology has made it 
possible for two-person, or more, neuro science measuring neuronal reactivity during social 
behavior (Hari and Kujala, 2009; Dumas, 2011). This approach opens up to further understand 
how individuals influence each other during bi-, or multi-directional information exchange 
(Hasson and Frith, 2016).

Social interactions between individuals entail the activity of one person and the prediction 
of what the other person will do, followed by the other’s action and a correction of the original 
subjective prediction (Frith and Frith, 2010; Vesper et al., 2010; Takai et al., 2023). In predicting 
and synchronizing with a partner this two-person activity has internal (intra) and external 
(inter) brain components. For obvious reasons, the inter-brain components have no factual 
neural connections.
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Social behavior is often expressed as motoric activity in moving 
together in synch with one another. Preparation for motoric 
synchronization with another person’s expected actions followed by 
correction of what happened has been described as an internal 
forward model for motoric behavior, combining a predictive 
forward model with an inverse model that refines goal-directed 
action (Kawato, 1999; Ganesh et al., 2014). This internal model was 
developed in relation to movements but can be generalized to what 
is called predictive coding of the brain concerning all sensory 
modalities (Friston and Kiebel, 2009). The cognitive element of 
predictive coding of the brain is assumed to be situated in the pre 
frontal cortex (PFC) (Tanaka et al., 2020). Predicting behavior has 
also shown that the PFC is active in processing external information 
(Kawato, 1999; Karnath, 2001; Frith and Frith, 2010; Rosazza and 
Minati, 2011; Abreu et al., 2012). Interactive steps combining the 
preparation, prediction and adaptation could continue to take turns 
and eventually amount to continuous adaptation or synchronization 
of the involved individuals. Responses and adaptations could thus 
be based on the cognitive predictions and subsequent responses to 
the partner’s actions (Tanaka et al., 2020). The PFC, together with 
the temporal parietal junction, is also described as a part of the 
mutual attention system (Gvirts and Perlmutter, 2020). It is 
perceived that the higher the inter neural synchronicity in the social 
attentions systems, the higher the tuning in between the 
participants. Coupling of this system between individuals may help 
increase in tuning with one another for communal interaction goals 
(Anders et al., 2011; Gvirts and Perlmutter, 2020). Hyperscanning 
brain imaging studies have shown frontal–frontal synchrony during 
such human affiliation (Hu et al., 2017; Reindl et al., 2018; Schwartz 
et al., 2022). Factors that facilitate persons to neurally synchronize 
are face-to-face settings so that the partaking individuals can see 
each other and interact (Gvirts and Perlmutter, 2020). Another 
factor is that the social activity evokes engagement in the 
participants. Joint, social activities activate areas in the PFC, 
especially activities that are not competitive. The nature of the 
interacting partner also influences the synchronization. Friendly 
cooperation favor the activity in the mutual social attention systems 
(Gvirts and Perlmutter, 2020).

Music and rhythms have emerged as promising methods to find 
ecologically valid experimental situations for hyperscanning 
concurrent brain imaging of at least two participants during social 
behaviors (D’Ausilio et al., 2015; de Reus et al., 2021). Rhythms, mostly 
tapping, have been widely used to investigate interactive tasks (Repp, 
2005; Repp and Su, 2013). A setup that allows participants to mutually 
collaborate is to alternate between leading and following in finger-
tapping rhythms (Silfwerbrand et  al., 2023). Hyperscanning is 
necessary to capture the entire dynamics of the combined systems, 
such as when two or more individuals simultaneously are participating 
in an experiment (Czeszumski et al., 2020). A setting that offers face-
to-face communication is with hyperscanning EEG, when the 
participants are able to sit and interact with each other in the same 
room, rendering an ecologically valid situation for significant 
interaction of the mutual social attention systems of the brains (Gvirts 
and Perlmutter, 2020). In such a setting activation of the PFC in the 
mutual social attention system could be expected based on shared 
intentionality and mutual goals.

Analyses of synchronous brain activity are typically using the 
time domain for correlation analyses, or frequency domain 

estimating synchronous activity (Astolfi et al., 2010; Dumas et al., 
2010; Schippers et  al., 2010; Babiloni and Astolfi, 2014). While 
frequency based connectivity estimation is commonly used for 
neuroelectrical hyperscanning, temporal correlation and Granger 
causality is usually applied on heamodynamic hyperscanning, such 
as fMRI and fNIRS. EEG has low spatial resolution, but high time 
resolution. Hence, a time domain analysis of hyperscanning EEG 
time series could give relevant estimations of causal connectivity 
between individuals. A newly developed PCMCI algorithm for 
detecting causal links in geophysical data has been used on fMRI 
(Runge, 2018a; Runge et al., 2019b; Saetia et al., 2021). This is a 
combination of the Peter and Clark (PC) algorithm for finding 
influencing data to every time point and an algorithm for momentary 
conditional independence (MCI) (Mäkelä et al., 2022). Applying the 
PCMCI algorithm on EEG data for causal connectivity could show 
if synchronous activation of two mutually interacting individuals 
also indicate directed causality.

Hyperscanning in useful in accessing both intra- and inter-brain 
connectivity. Causal connectivity is directed connectivity in which a 
sender of information causes a reaction at the receiver end of the 
connection. Directed connectivity of brain areas is commonly 
analyzed as functional neuronal connectivity (Friston et al., 2013). 
Functional neuronal connectivity refers to the statistical dependence 
or common information of neuronal systems, measured in 
physiological responses from one point to another (Schmälzle et al., 
2017). This is commonly analyzed using Granger causality (Granger, 
1969; Seth et al., 2015). Functional connectivity tests whether there 
exists a dependency between two or more time series. Granger 
causality is testing if there is a statistical dependency of a time point 
with measured activity in the past (Friston et al., 2013; Seth et al., 
2015) So, Granger causality gives directional causal relationship if the 
past values of one time series (A) has information to describe future 
values of another time series (B) better than the past values of B does 
by itself.

A complementary approach to Granger causality for finding 
causality in time series data is Tigramite. Tigramite applies the PCMCI 
algorithm and combines finding directly influencing data points to 
every time point using the Peter and Clark (PC) algorithm with 
calculating the momentary conditional independence (MCI). It also 
gives the direction of causal connections between time series, but 
accepts non-linear data sets and data with large number of variables 
compared to the number of data points (high dimensional data) 
(Runge et al., 2019b). An initial test of correlation is made before 
applying PCMCI, to decide the number of time steps to include in the 
analysis. The correlation of activity at each time point to all previous 
time points is assessed. The time point representing the point of 
decaying correlations will be  used in the PCMCI algorithm. This 
means that the PCMCI algorithm will describe the causal connections 
of, say three, time steps preceding each time point. The first step (PC) 
of the algorithm is aimed at finding a model with the smallest number 
of connections that represent the causality of the time series within 
the chosen time frame. The second step (MCI) is controlling for false 
positives in the causal network resulting from the first step (Runge 
et al., 2019b). This two-step approach maximizes the detection of 
causality and minimizes the number of false positives (Runge, 2018b). 
This method, which is graph-based, considers indirect links and 
common drivers of links and has a high detection of actual causality 
while minimizing false positives (Runge et al., 2019a).
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The PCMCI algorithm is here applied to a hyperscanning EEG 
time series of the PFC of three pairs interacting through finger 
tapping. This set up allows for assessing causal neural reactivity of 
the social attentions systems expressed as activation of the PFC 
during the cooperative social activity. The PCMCI may be  the 
appropriate choice here since it is applied at the time series data 
resulting from the PFC reactivity of the individuals involved, rather 
than using frequency analysis (Krich et  al., 2020; Mäkelä et  al., 
2022). The setting facilitates mutual social attention with letting two 
people face each other sitting on chairs with small a table between 
them. They are engaged in the collaborative task of taking turns in 
leading each other in finger tapping simple rhythms. The 
hyperscanning EEG system lets them to sit relaxed, creating an 
ecologically valid social situation.

This study aims to show if PCMCI, the graph-based causal 
discovery method, can be applied for time domain causal analysis of 
hyperscanning EEG data.

2 Materials and methods

To test the suggested PCMCI algorithm the most relevant part of 
a data set of hyperscanning EEG was applied. The complete data set is 
described in a forthcoming article.

2.1 Participants

Eight right-handed persons, one female, [mean age 31.7 years 
(SD±8.1)] participated in the study. All participants reported being 
healthy, without formal musical education and no documented 
professional leadership expertise. Participants were a convenience 
sample recruited from a technology university in Tokyo. Each 
participant volunteered and gave their written consent to participate 
in the study. All procedures were in accordance with protocols 
approved by the local institutional review board (dnr. 2,019,002). 
Processing of the data in Sweden was approved by the Swedish Ethical 
Review Authority (dnr. 2021-05481-01). The data from one participant 
pair was excluded due to noise (as assessed by visual inspection). After 
the exclusion of the data, six participants (one female) remained 
for analysis.

2.2 Questionnaires

After the experiment, the participants rated their experience of 
leading and of following on a scale from 1 (poorly) to 5 (successfully).

2.3 Setup

The participants sat facing each other with a small table between 
them. They were equipped with EEG caps of 64 BioSemi® electrodes 
(BioSemi instrumentation). The right hand was on the table where 
they tapped the rhythms with the right index finger, the left hand 
resting on their thigh. The movement of the right index finger was 
recorded with motion caption system sensors, Optitrack 
(NaturalPoint, Inc).

2.4 Tapping together

Each participant received an audio file with an easy-to-learn 
rhythm to remember by heart the day before the experiment. The 
rhythms were similar, yet unique, per participant. During the study, 
the pairs were tapping their respective rhythms with each other taking 
turns to be the leader. Figure 1A depicts a schematic representation of 
a 6 s rhythm that was repeated five times per task. The tasks were to 
lead in tapping the pre-learned rhythm, tap alone in one’s pre-learned 
rhythm, follow in the other’s rhythm and rest (do nothing). There were 
two session consisting of four blocks with four tasks. Instructions of 
what to do were delivered vocally as the study unfolded.

2.5 Synchronicity in tapping

For all participants, double taps (taps interspaced with <0.2 s) and 
extreme outliers (inter-tap intervals >2 s) were excluded from the 
analysis. Both double taps and extreme outliers were rare, in most 
sessions there were none. For each task, the string of taps of the leader 
was used as a model for the correct rhythm. The taps of the follower 
were then matched to this rhythm and the relative difference between 
each tap was calculated. Thus, synchronicity was defined as the time 
difference between the tap of the leader and follower, i.e., the relative 
adaptation of the follower to the leader’s tapping rhythm. The typical 
mean reaction time from hearing a sound to finger tapping was 0.16 s 
(Kosinski, 2010; Woods et al., 2015). Figure 1B shows a follower’s 
temporal synchronicity with the leader, depicted by the blue line. The 
leaders tapping sets the baseline, represented by the x-axis.

2.6 EEG data acquisition

Two 64-channel BioSemi® systems were interconnected via an 
LSL (Lab Streaming Layer) for synchronization. The EEG data were 
collected continuously during the tapping sessions with a sampling 
rate of 4,096 Hz.

2.7 Data selection for causal analysis

To focus on activity and reactivity in the PFC within and between 
participants, data from the three electrodes representing the PFC were 
used. These were F3 (Brodmann area, BA 9 in the left hemisphere), F4 
(BA 9 in the right hemisphere) and FZ (BA 32).

2.8 EEG data first-level processing

EEGLAB (Delorme and Makeig, 2004) and MoBILAB (Mobile 
Brain/Body Imaging Lab) (Ojeda et al., 2014), an EEG plugin for 
synchronized in-data, were used for data preprocessing. Both software 
systems ran on Matlab 2018b (Mathworks, Inc). For the location of the 
EEG electrodes, BESA® (Brain Electrode Source Analysis, GmbH) 
channel positions were used. The reference was the average of the 64 
active electrodes. Preprocessing followed the EEGLAB documentation, 
starting with examining the data for outliers, gliding and extreme 
channels (Delorme and Makeig, 2004). Few passages per task were 
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removed in this process. A high-pass filter of 1 Hz was used to remove 
slow drifts from the data. No low-pass filter was applied. The data were 
resampled to 100 Hz and event times for “lead” and “follow” were 
registered. As a last preprocessing step, independent component 
analysis (ICA) “runica” was applied to each dataset to extract 
statistically independent components (IC). The IC that by EEGLAB 
were labeled muscle, eye and line components of at least 90% accuracy 
were removed from the set. About 15 IC per task were removed in this 
step. Due to some lasting movement and muscle related activity as the 
64 channels were recalculated, runica was rerun and the data were 
repruned using the same rules, following the EEGLAB documentation 
(Delorme and Makeig, 2004). In the second round minimizing noise, 
about 5 ICs were removed per task. After preprocessing, the three 
electrodes representing PFC, F3, Fz and F4, were extracted for the 
second level analysis.

2.9 PCMCI analysis

Preprocessed EEG data that had been removed of noise and 
artifacts and separated into time series per activity of interest, were 
analyzed paired-wise for directed causality. The open-source Jupyter 
Notebook for Tigramite was used for the causal analysis (Runge et al., 
2019b). Software used were Python 3.8.5, by Python Software 
Foundation and Jupyter (Kluyver et al., 2016). This two-step analysis 
of Tigramite has been shown to have high detection power and low 
false positives compared to other tools (e.g., Granger causality) for 
connectivity analysis (Runge et al., 2019a). This approach comes with 
a set of assumptions. Basic assumptions for the time series used are 
that they are stationary, conditionally independent and without 
missing values. Stationarity assumes that the statistical properties for 
the EEG timed series, such as the mean and variance, do not change 
over the time of each task. The data should not be too volatile for the 
period of interest. The independence assumption is needed for the test 
of conditional independence and implies that all the information of 
one time point has of another time point can be present in a third time 
point. This third time point can hold causal information or be  a 
mediator in the causal path between the first and second time points. 
In an EEG time series it is plausible that some time series that are 
partially independent such that a causality path is involving more than 
one time point. This indirect relation can be assessed in the second 

step of PCMCI. No missing values are also assumed for the time 
series, so that all values are represented in the EEG time series with no 
false or null values.

There are also three main assumptions for causal relations in this 
graph-based analysis of measured time series: causal sufficiency, 
causal Markov condition and faithfulness (Runge, 2018a). Causal 
sufficiency assumes that no other unobservable variable changes these 
variables directly or indirectly. Causal sufficiency is required because 
it is impossible to ensure that all variables are measured in an EEG 
data collection. The causal Markov condition implies that, when the 
value of a node’s predecessor is known, no other variables become 
relevant for predicting the state of the current node. This can 
be assumed for EEG time series since the data collected is assumed to 
represent the relevant brain activity of the situation of interest. The 
main assumption, faithfulness, guarantees that the current graph 
holds all conditional independence relations implied by the Markov 
condition (Spirtes et al., 2000; Glymour et al., 2019). This can also 
be  assumed for EEG time series data, since the data collected 
represents the relevant brain activity of the situation that is under 
analysis. Causal interpretation also assumes stability, to ensure that the 
observed conditional independencies in the data accurately reflect the 
underlying causal structure, not some artifacts or coincidental 
cancelations. In EEG time series it is of importance to preprocess the 
data so that the resulting time series actually represents the neuronal 
activity of interest and not noise or some coincidental activations.

The first step of analysis, before applying the PCMCI algorithm, 
is a correlation test to find out the number of time steps to include in 
the PCMCI. For datasets such as EEG, with assumed linear 
interdependencies, the partial correlation method of ParCorr for 
conditional independence test is used (Runge, 2018b). Connections 
between brain areas in EEG data series can be assumed linear, even 
though anatomical structures can differ between individuals (Friston 
et al., 2013). The correlation test shows how many time steps before 
each time point of activity in the EEG data are influencing, or 
correlating with, at a data point. This results in a graph showing the 
decaying of the correlations. Tau, the number of time points included 
in the analysis, is the point in time where the correlations are closing 
zero. This time point, tau, will be  used in applying the PCMCI 
algorithm so that it describes the causal connections of tau time steps 
in the time series. The first step (PC) of the algorithm is using the 
Akaike Information Criterion (AIC) to find the model with the 

FIGURE 1

Panel (A): A schematic representation of a rhythm. Large bars indicate a tap and small bars indicate silence. The rhythms lasted about 6  s and were 
repeated 5 times during each task. Panel (B): A representation of the relative synchronicity in tapping. The leader’s tapping is the baseline. It is here 
represented by the x-axis. The follower is tapping along with the leader, and their difference in tap timing is shown in blue.
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smallest number of connections which represent the directed causality 
of the time series within tau time steps. Momentary Conditional 
Independence (MCI), the second step of this algorithm, is controlling 
for indirect causal connections and false positives in the resulting 
causal network. This final step assesses indirect causation and detects 
false positives for every time point. It tests, at a chosen p-level (FDR), 
if a set of time points removes the association between two other time 
points detecting false positives (Runge, 2018a). See Figure 2 for a 
schematic representation of these steps.

3 Results

Two situations are analyzed in this study. Connectivity is 
measured between the three EEG electrodes (F4, Fz and F3) per brain. 
In addition, the connectivity between the same electrodes in two 
communicating brains is measured in the inter-brain analysis.

3.1 Tapping synchronicity and questionnaires

The mean relative synchronicity between leaders and followers 
was 0.0065 s (SD = 0.021 s). The participants reported comfort levels 
leading (mean = 3.3) and following (mean = 3.2).

3.2 Causal analysis

Visual inspection of the time series data imply that they are 
stationary and without missing values. To choose the maximum time 
lag (tau), or how many time steps to include, in the causal analysis, 
partial correlation (ParCorr) of the included time series was 
calculated. Two time series at the time were measured, one from a 
leader and one from a follower. The lagged dependencies between the 
two time series were overall very small and within individuals they 
were decaying after around 5 time steps. Thus, tau of 5 was applied for 
the PCMCI calculations. The EEG time series were of 12,400 data 
points. They were conditionally independent sufficiently for the 
independence test of Tigramite. The PC algorithm was applied aiming 
to remove all irrelevant conditions for causality, with an alpha 
parameter that was optimized to 0.05 by PCMCI using the AIC. The 
following MCI algorithm attempted to remove lasting false positive 
links. For the MCI the p-value was set to 0.05 (corrected for multiple 
testing by controlling the false discovery rate (FDR) using the 
Benjamini-Hochberg algorithm). The resulting PCMCI statistic can 
be interpreted as the causal link from one node to another within a 
network. Nodes earlier in time, can influence, or causate, a node at a 
time point. In Figure  3 an example of the result the two setups 
analyzed here is shown, one setup is for connectivity within one brain 
and one is for connectivity between two brains.

FIGURE 2

A schematic summary of the steps to apply PCMCI to EEG time series data. Indata is time series data separated into the activities of interest. In this case 
pair-wise activities were assessed for correlations, matching leader time series EEG data from one person with the following time series EEG data from 
the other person and vice versa. After the correlation test tau is chosen and in the third step a p-level (FDR) is chosen. The final result comes in a 
process graph and a time series graph of tau steps with values for the correlations between the activities entered in to the PCMCI algorithm.
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3.3 Within-subject causal relations

The significant intra-brain causal relation in all directions is recorded 
between all electrodes with tau = 5 and an FDR alpha of 0.05. The 
absolute values ranged between 0 and 1 (mean = 0.28, SD = 0.20). In 
Figure 3 shows a graph of the causal relations between the three EEG 
electrodes representing the PFC. LF4, LFZ and LF3 represent the 
electrodes on the leader and FF3, FFZ and FF4 are the electrodes on the 
follower. The color of the nodes, the self-MCI, refer to causal relations 
with the same electrode and between nodes-MCI refers to causal 
relations between electrodes. Relations with arrows depict causal 
directions. Relation numbers indicate the number of steps back that the 
relations originate. With tau = 5, the relations are traced back up to 5 time 
steps per electrode (Figure 3 shows an example graph of causal relations).

3.4 Between-subjects’ causal relations

Significant inter-brain relations are recorded for pairs time series 
with tau = 5 and FDR p = 0.05. For one pair there was significant 
connection only when one of them was leading, not when the other 
one was. The PCMCI values ranged from absolute 0.015 to 0.025 
(mean = 0.036, SD = 0.017). The connections between subjects are 
presented as arrows between the leaders and followers in Figure 3. The 
relations are directed from leader to follower or vice versa. The total 
number of causal relations from leader to follower were 21 (mean per 
person was 3.5, SD = 2.2) and 13 from follower to leader (mean = 2.2, 
SD = 2.7). See Appendix A for all values.

4 Discussion

Significant directed causal connectivity of the PFC was shown 
between all pairs during the social interaction of collaborative in 
finger tapping rhythms together. There was also significant directed 
causal connectivity within the PFCs of all participants, indicating that 
the PFC was active for all during this social activity. The causal 
connectivity between the brain areas representing social 
connectedness, attention toward other people and cognitive predicting 
of other’s activities indicates that using PCMCI can be efficient in 
reporting directed causality in hyperscanning EEG experiments.

This experimental hyperscanning EEG study measures causal 
effects using the Tigramite graph-based causal discovery method of 
PCMCI (Runge et al., 2019b). Causal effects are measured within and 
between regions of the PFC expected to be active during socially 
engaging activities and a collaborative setting (Repp and Su, 2013; Hu 
et al., 2017; Gvirts and Perlmutter, 2020; Kim, 2020). The relative 
temporal synchronicity between leader and follower was close, 
indicating that it was fairly easy to both lead and follow, whereas the 
relatively high variance shows that there were differences in timing, 
which can be due to the time it takes for the follower to initially learn 
the rhythm and then continuously adapt to the leader’s tempo. This 
could represent any socially engaging situation where adaptation, or 
synchronization, is ongoing. The questionnaires indicated fairly high-
rated degrees of success for both roles. This implies that the situation 
was engaging to a degree and that there was collaboration to reach a 
common goal (tap the rhythm) was present. These findings suggest 
participants were mutually socially attentive, that they were tuning in 

FIGURE 3

PCMCI was calculated both within persons and between pairs of leader-follower. The result is shown here as nodes and connections, with stronger 
colors for stronger correlations. Each person’s brain is represented by a triad of EEG-electrodes: F4, Fz and F3. Here is an example of two persons, P1 
and P2, forming a pair. In panel A P1 is the leader and P2 is the follower, and in panel B P2 is the leader and P1 is the follower. The triad of the leader has 
the letter L in front of the EEG-electrode names and the triad of the follower has the letter F in the same place. The connections within a triad of EEG-
electrodes reflect the PCMCI correlations within a brain. The connections between triads represent PCMCI correlations between the pair. The numbers 
indicate the time steps of the existing correlations, starting with the one that had the strongest correlation. For example, “4,5,1,2,3” when P2 was leader 
there were 5 correlations from L Fz to L F3 within the brain. The strongest correlation was from 4 time steps before the time point of interest, this is 
here shown as a blue arrow from L Fz to L F3. Other correlations existed, with lower and falling values at 5, 1, 2 and 3 time steps leading up to the time 
point of interest.
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on and predicting the others actions (Friston and Kiebel, 2009; Gvirts 
and Perlmutter, 2020; Tanaka et al., 2020; Pan et al., 2022).

The inter-brain causal effect does not show hard-wired 
physiological information but could reflect how the brains not only 
synchronize, but causate each other, in their activities. Predictive 
coding and mutual social attention have previously been related to 
synchronized brain activity in the PFC (Frith and Frith, 2010; Sacheli 
et al., 2013; Koban et al., 2019; Gvirts and Perlmutter, 2020). Here, 
directed casual activity during engaging social collaboration is also 
shown. Predictive coding of the two participants may also include 
predicting the other’s actions as a part of the continuous directed 
causal effect detected in the PFC of both leader and follower (Den 
Ouden et al., 2005; Kim, 2020). This between-brain causal effect could 
reflect the synchronicity or adaptation to the other’s activity. 
Interpreting the specific value of the causality and whether it is 
relevant to raise the issue of higher or lower causality in EEG data is a 
question for future studies (Granger, 1969; Babiloni et al., 2007; Runge 
et  al., 2019b; Cometa et  al., 2021). For this study, the existing 
significant directed causal effect within and in both directions between 
leader and follower is interpreted as a continuous mutual causation.

The causal effect can be interpreted as influencing the state of 
another entity (Granger, 1969; Cometa et al., 2021). The causality has 
directions representing the direction of this influence between entities 
(Schippers et  al., 2010; Friston et  al., 2013; Cometa et  al., 2021). 
Measuring such causality in neuroimaging data has been attempted 
by different methods. In EEG data Granger causality have most often 
been applied for causal connectivity (Dumas et al., 2010; Kawasaki 
et  al., 2013; Babiloni and Astolfi, 2014; Czeszumski et  al., 2020). 
Granger causality test whether one time series is preceding and 
predicting another, based on that it contains past values that can help 
predict the other time series (Seth et al., 2015). Granger causality does 
not account for indirect links or common drivers of causations like 
PCMCI, which may be relevant in neuronal networks (Runge et al., 
2019b; Saetia et al., 2021). PCMCI uses the causal Markov condition 
and faithfulness assumption, which is a crucial base for graphs 
marking directions for causal relationships (Lauritzen and Richardson, 
2002). PCMCI can account for confounding factors by testing the 
conditional independence given other observed variables. It also 
results in a graph that is useful for visualizing and understanding 
complex interactions in the data (Runge, 2018a).

There may be other drivers of the causality than described in any 
dataset trying to depict complex real-world data, such as neuronal 
reactivity (Runge et al., 2019b). Causality with other drivers than what 
was measured in these time series, direct or indirect, would mean that 
more causal reactions occur than shown here (Runge et al., 2019b). 
False positives in the result would give slightly more reactions than 
present in the dataset (Runge, 2018a). Such complementary drivers 
would not change the interpretation of the result much because this 
method has comparatively high detection power and a low number of 
false positives (Runge et al., 2019a; Saetia et al., 2021).

To set up a socially engaging situation in an experimental setting 
can be a challenge. Here two people were introduced and sat facing 
each other across a table. Both wearing EEG caps of 64 channels that 
were connected to a computer. They could move around, but were 
asked to keep as still as possible for the best possible quality of the 
EEG signals. This environment is possibly not inducing engagement, 
still all participants engaged in the finger tapping together with the 
person opposite the table. This scenario came close to a possibly 
engaging social situation of mutual engagement.

A limitation of the dataset is the low number of participants. 
There was also a variation of a causal effect between participant pairs, 
and it is not evident how our findings generalize to a broader 
population. However, because all pairs had significantly directed 
causality within and between brains makes it likely that our results are 
robust. Further studies should recruit a larger sample to ensure the 
generalizability of the result.

5 Conclusion

This study is an empirical support that hyperscanned EEG can 
show both inter- and intra-brain causal effects using the graph-
based causal discovery method of Tigramite. Significant directed 
causal effect within and between the PFC was demonstrated 
during a collaborative social task. Despite the small sample size, 
all be it with significant causal results in all tests, the results are 
promising for future causality hyperscanning EEG studies 
using PCMCI.
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