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Previous studies have successfully applied a lightweight recurrent neural network 
(RNN) called Echo State Network (ESN) for EEG-based emotion recognition. 
These studies use intrinsic plasticity (IP) and synaptic plasticity (SP) to tune the 
hidden reservoir layer of ESN, yet they require extra training procedures and 
are often computationally complex. Recent neuroscientific research reveals 
that the brain is modular, consisting of internally dense and externally sparse 
subnetworks. Furthermore, it has been proved that this modular topology 
facilitates information processing efficiency in both biological and artificial 
neural networks (ANNs). Motivated by these findings, we propose Modular Echo 
State Network (M-ESN), where the hidden layer of ESN is directly initialized to 
a more efficient modular structure. In this paper, we  first describe our novel 
implementation method, which enables us to find the optimal module numbers, 
local and global connectivity. Then, the M-ESN is benchmarked on the DEAP 
dataset. Lastly, we explain why network modularity improves model performance. 
We demonstrate that modular organization leads to a more diverse distribution 
of node degrees, which increases network heterogeneity and subsequently 
improves classification accuracy. On the emotion arousal, valence, and stress/
calm classification tasks, our M-ESN outperforms regular ESN by 5.44, 5.90, and 
5.42%, respectively, while this difference when comparing with adaptation rules 
tuned ESNs are 0.77, 5.49, and 0.95%. Notably, our results are obtained using 
M-ESN with a much smaller reservoir size and simpler training process.
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1 Introduction

Emotions play an essential role in the human decision-making process (Picard, 1997). 
Automated recognition of emotions has broad applications in improving human-computer 
interactions (Atkinson and Campos, 2016), facilitating the diagnosis and treatment of affective 
disorders (Cai et  al., 2020), and helping content providers enhance user experiences. 
Traditionally, emotional recognition relies on non-physiological cues such as facial expressions, 
speech, and behavior. However, subjects can inhibit these reactions, thus causing inaccurate 
classification results (Mauss and Robinson, 2009). Emotion recognition based on physiological 
activities such as EEG signals can circumvent this limitation.

Nonetheless, EEG is a complex signal that often requires advanced computational 
models to decode. Recently, a great number of machine learning and deep learning 
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FIGURE 1

(A) Network without community structures. (B) Network with 
community structure.

techniques have been applied to interpret EEG signals for emotion 
recognition (Li et al., 2022). Zheng and Lu (2015) utilized deep 
belief network and support vector machine to classify positive, 
negative, and neutral emotions. RNN frameworks, such as Long 
Short-Term Memory (Alhagry et al., 2017) and Spatial–Temporal 
RNN (Zhang et al., 2018), are also widely employed as the RNN 
structures are natural fits for sequential data like EEG signals. 
Convolutional neural networks (CNNs) (Lin et  al., 2017; Chen 
et al., 2019) and hybrid architectures (Li et al., 2016) also obtained 
remarkable results. However, several challenges remain: (1) 
CNN-based architectures, despite their exemplary performance in 
detecting spatial information, their feed-forward design makes it 
less efficient in leveraging complex long-distance temporal patterns. 
(2) On the other hand, RNN-based models trade off their time and 
space complexity to mitigate the vanishing gradient problems. 
Therefore, it is challenging to implement them on wearable devices 
where computational resources are limited.

A special category of RNN called Echo State Network (ESN) 
(Jaeger, 2001a,b) offers a promising solution to the above-mentioned 
shortcomings. ESN contains a reservoir layer that simulates brain 
synaptic connections using a randomly connected network (see 
Figure 1A). The random connections non-linearly project the input 
into the internal states of the reservoir, making ESN particularly 
powerful on many time-series prediction and classification tasks. 
However, the reservoir layer is generally untrained due to the 
limitation of backpropagation on circular connections; only the last 
layer (i.e., the readout layer) is trained on the input data. This 
configuration allows ESN to exploit long-distance dependencies while 
maintaining exceptional computational simplicity, yet it also makes 
ESN performance particularly vulnerable to random initialization. In 
previous studies using ESN to decode emotional information in EEG 
signals, neural adaptation rules such as intrinsic plasticity (IP) 
(Schrauwen et  al., 2008) and synapses plasticity (SP) (Oja, 1982; 
Castellani et al., 1999) were used to alleviate this deficiency. IP rule 
maximizes the information entropy in the reservoir by adjusting the 
activation function of the reservoir, while SP rules update the 
connections weights to make reservoir dynamics more stable.

Existing attempts using ESN for EEG-based emotion recognition 
are 2-fold. The first kind adopts ESN as EEG feature selectors 
(Koprinkova-Hristova et  al., 2015; Bozhkov et  al., 2016). In this 
setting, an IP-tuned ESN takes EEG signals to generate a lower-
dimensional representation, while a clustering algorithm was applied 
to the n-leading lower-dimensional features to classify emotions. 
Bozhkov et al. (2017) showed that IP-tuned ESNs outperform regular 
ESNs because they can yield more separable features in the hyper-
plane. On the other hand, the second type adopts ESN directly as 
classifiers (Fourati et al., 2017), in which ESNs predict emotion labels 
in an end-to-end manner. Several adaptation rules such as IP, anti-Oja, 
and BCM rule were employed on ESN (Fourati et al., 2020b) for better 
network robustness. An ESN with leaky integrators and multiple 
reservoir layers called Leaky DeepESN-IP (Fourati et al., 2020a) was 
also investigated to mitigate the impacts of inter-subject variability.

Nonetheless, we argue that these ESN methods can be further 
improved. ESN resembles the biological brain using a random 
network. Since biological brains are far from being entirely random 
(Bullmore and Sporns, 2009; Bullmore and Sporns, 2012; Tripathy 
et al., 2013), this over-simplification may hamper ESN performance. 

Moreover, even though adaptation rules are readily available, their 
algorithm and training procedures are complex. In an effort to resolve 
the above limitations, there are several pioneering works that attempt 
to initialize ESN to a predefined topology. Deng and Zhang (2007) 
proposed scale-free highly clustered ESN, an ESN with neurons 
distributed in a scale-free structure. Similarly, Li et al. (2016) generated 
a multi-clustered structure by first placing pioneering nodes in a 
three-dimensional space, then adding new nodes and connecting 
them to their closest neighbor based on their Euclidean distance. 
Rodriguez et al. (2021) initialized ESN to a two-module structure for 
optimal information diffusion. They demonstrated that for ESN using 
step-activation functions, there exists an optimal level of modularity 
that will maximize the model performance on the memory capacity 
task and the recall task.

The main advantage of ESN model is its simple structure, and 
there is no need to train the weights inside the reservoir. However, 
the general ESN network mainly adopts a random structure, which 
is not a structure with optimal performance. In order to further 
improve the performance of ESN, the weights inside the reservoir 
have been trained in some studies, including synaptic plasticity as 
well as intrinsic plasticity methods. Although these methods can 
improve the performance of ESN, they also increase the complexity 
of training. Modularity is a prevalent structure in brain neural 
networks, which is the result of the evolution and optimization of 
brain neural networks; therefore, this study directly draws on the 
modular structure of brain networks, which promotes the 
performance of ESN, while the design is relatively simple.

Motivated by several recent findings indicating brain 
modularity improves cognitive abilities (Crossley et  al., 2014; 
Bertolero et  al., 2018), in this proposed work, we  continue to 
explore the possibility of adopting modular structure in 
ESN. Differing from the previous study (Rodriguez et al., 2021), 
which uses a single parameter to optimize the modular structure, 
we  propose a novel triple-parameter optimization method for 
modular ESN. Our method allows flexible control over the module 
number, intra-module connectivity, and inter-module connectivity. 
We present a comprehensive experimental analysis of how each of 
these parameters impacts network performance. The proposed 
Modular Echo State Network (M-ESN) demonstrates significant 
performance improvement on the DEAP benchmark for EEG 
emotion classification without any neural adaptation procedure. In 
summary, our major contributions are as follows:
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 • We propose a bio-inspired lightweight framework for EEG 
classification, namely M-ESN. We  present a novel triple-
parameter method for defining and optimizing the 
modular topology.

 • On the DEAP benchmark, our proposed M-ESN with 600 
neurons outperformed the neuron-adaptation-rule-tuned ESN 
with 1,500 neurons by 0.77, 5.49, and 0.95% on the arousal, 
valence, and stress/calm classification tasks.

 • We provide explanations for the modularity enhancing ESN 
performance from several perspectives. We  found that the 
increasing modularity will induce changes in network topology. 
We  show that these topological changes increase network 
heterogeneity and thereby improve the information 
processing efficiency.

2 Related works

2.1 Modularity in biological neural network

Modular structure, also referred to as community structure, 
describes networks in which neurons are more interconnected within 
their own cluster and less connected to neurons in other clusters (see 
Figure 1B). Modular structure is found in the neuronal system of 
many species, ranging from nematode C. elegans to mammals (Kim 
and Kaiser, 2014), suggesting it may confer genetic advantages.

This structure is also confirmed by well-establishing neuroscientific 
evidence (Sporns et al., 2005; Meunier et al., 2010; Sporns and Betzel, 
2016). Structural evidence shows neurons within the same anatomical 
region in human brains are densely connected by synapses, while long-
distancing white matter tracts sparsely connect these segregated 
regions to enable interregional information transfer (Avena-
Koenigsberger et al., 2017). Moreover, the functional modeling of the 
human brain, which characterizes neuronal dynamics, also appears to 
be modular (Zhou et al., 2006). Finally, various anatomical regions 
typically have diverse gene expressions (Krienen et al., 2015), indicating 
brain is evolved in a modular manner to support function specialization 
(Bassett et al., 2010; Taylor et al., 2017; Figure 1A).

2.2 Modularity promotes network 
efficiency

Emerging neuroscientific findings suggest modular network 
promotes network efficiency. Crossley et al. (2014) investigated the 
modularity in brain functional coactivation networks, in which they 
concluded that brain modules promote cognitive specialization. 
Bertolero et al. (2018) offered indirect evidence that brain modularity 
enhances cognitive abilities. They investigated the role of hub structure, 
which is ubiquitous in modular networks (Bullmore and Sporns, 2009), 
on cognitive ability. They indicated that individuals with more diversely 
connected hubs perform universally better on several cognitive tasks. 
Lastly, several studies have reported that modular structure promotes 
the reuse of recurring network patterns (Kashtan and Alon, 2005) and 
network adaptability (Clune et al., 2013).

To summarize, existing literature mainly attributes modular 
topology to (1) leveraging the brain wiring costs and the efficacy of 

the information propagation (Betzel et  al., 2017); (2) providing 
functional versatility and adaptability (Bassett et al., 2011); and (3) 
enabling structural flexibility that allows the neural system remain 
unaffected by local modifications (Kim and Kaiser, 2014). Motivated 
by these findings, we adopt the modular structure in ESN to improve 
the model performance.

2.3 EEG-based emotion recognition using 
hybrid CNN and LSTM classification

Electroencephalography (EEG)-based emotion classification is 
an important research area in emotion recognition, with a significant 
challenge being the individual differences and temporal variability 
in EEG recordings. Shen et  al. (2020) proposed a novel four-
dimensional convolutional recurrent neural network method to 
address this issue, effectively integrating frequency, spatial, and 
temporal information to overcome the interference caused by 
individual and temporal variability, thereby significantly improving 
the accuracy of emotion recognition. However, this method may 
face issues of high model training complexity and computational 
costs. Zhang et  al. (2020) explored the potential of emotion 
recognition using multiple deep learning architectures, and validated 
the effectiveness of the CNN-LSTM hybrid model in processing EEG 
signals. This model successfully leveraged the advantages of CNN in 
feature extraction and the ability of LSTM in handling long-term 
dependencies in time-series data, but it may also lead to overfitting, 
especially with limited data. Additionally, Zamani and Wulansari 
(2021) and Samavat et  al. (2022) presented models based on 
1D-CNN, RNN, and a multi-input hybrid model based on CNN and 
Bi-LSTM, focusing on the analysis of specific frequency and 
temporal features. They enhanced the performance of emotion 
recognition by capturing temporal information more 
comprehensively through bi-directional LSTM, despite the high 
complexity in model structure design and the need for a large 
amount of annotated data for training. As for the hybrid emotion 
model proposed by Patlar Akbulut (2022), the utilization of transfer 
learning with large-scale sensor signals further improved the 
accuracy of emotion classification, highlighting the advantages of 
multimodal data and transfer learning in overcoming subject 
differences and data scarcity issues. Cimtay and Ekmekcioglu (2020) 
focused on the utilization of pre-trained CNN models, exploring the 
potential of cross-subject and cross-dataset emotion recognition, 
thus avoiding the resource consumption of training models from 
scratch. However, pre-trained models may face challenges in transfer 
efficiency and fine-tuning precision.

3 Methods

3.1 Dataset

We used the famous DEAP benchmark (Koelstra et al., 2011) on 
our model to provide fair comparison results with other existing 
methods. The DEAP dataset is collected when 16 male and 16 female 
participants watching a collection of 40 music videos. While the 
subjects are watching video clips, 32 channels of EEG signals and eight 
channels of peripheral signals are collected at 512 Hz and 
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down-sampled to 128 Hz. Only the first 32 channels, i.e., the EEG 
channels, are used in our study. Each video clip lasts 63 s. The first 3 s 
of pre-trail baseline are removed for all trails. Therefore, each trail has 
a size of 60 × 128 × 32 (seconds × sampling rate × channels). The data 
labels are obtained by prompting participants to complete the self-
assessment manikins (Bradley and Lang, 1998) to rate their level of 
emotional valence, arousal, dominance, and liking after each video 
clip. A total of 32 × 40 (participants × video clips) trails and 
corresponding labels are included in the dataset.

Establishing evidence has shown that EEG activity is rhythmic 
(Zheng and Lu, 2015). Such rhythmic patterns are most 
demonstrable in five frequency sub-bands, which are delta (1–4 Hz), 
theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma 
(30–45 Hz). Since the DEAP dataset applied a 4–45 Hz band-pass 
filter after collecting the signals, the delta band is not included in 
our study.

3.2 Data preprocessing

A great body of literature has employed a feature extraction 
procedure (Subasi, 2007; Liu and Sourina, 2013; Zheng et al., 2017; 
Fourati et al., 2020b) for EEG signals before classification to improve 
EEG classification performance. In accordance with previous research 
(Fourati et al., 2020b), we used the power features of EEG signals for 
classification, which compute the energy of sub-bands over the energy 
of the entire frequency band. Our data preprocessing method consists 
of two procedures:

 • Data cropping: first, to generate a sufficiently large dataset, 
we apply a non-overlapping sliding window for all trails to crop 
the original EEG samples into smaller data segments. For 
different classification tasks, we use different lengths of the sliding 
window. The selection of sliding window size will be explained in 
detail in section 4.

 • Extract frequency bands features: then, the Fast Fourier 
Transform (FFT) was employed to transform data segments into 
frequency band features. L2-Normalization is applied to each 
data segment to reduce the inter-subject variability of EEG 
signals and prevent overfitting. After data segments were 
transformed into frequency sub-bands, the energy of each 
sub-bands is computed using Eq. 1. While a and b are the higher 
and lower bond of the current frequency band, F k( ) is the 
normalized frequency band signal. The extracted feature R ω( ) 
(Eq. 2) is obtained by dividing sub-band energy by the total band 
energy. For each channel, we  extract four features from four 
frequency bands. In this manner, each data segment with 32 
channels is transformed into a feature vector with 4 32 128× =  
data points.
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3.3 Memory capacity

Memory capacity (MC) refers to the network’s ability to store and 
retrieve past information. It serves as a measure of the echo state 
network’s capability to store and reconstruct past information. 
According to the work of Jaeger (2001a,b), memory capacity (Eq. 3) is 
defined as the maximum possible retrospective of an independently 
and identically distributed input sequence. Specifically, memory 
capacity is measured by assessing the correlation between the network 
output and previous input. For an echo state network with N units and 
identity activation function, the upper bound of its memory 
capacity is N.

The formula for memory capacity is as follows:
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Here, MC  represents memory capacity, cov indicates the 
covariance of two time series, var  denotes variance, u t k−( ) is the 
input shown k steps before the current input, and 
y t w x t u t kk k

out( ) = ( ) = −( )


 is its reconstruction at the network 
output, where wk

out  is the weight vector of the k-th output unit.

3.4 M-ESN

3.4.1 ESN backbone
We use ESN with leaky integrator neurons as the model backbone 

(Jaeger, 2001a,b). In contrast to our proposed M-ESN, it is referred to as 
basic ESN in the rest of this paper. A basic ESN has three layers: input 
layer, reservoir, and output layer (Figure 2). The connection weights 
between the input layer and reservoir, within the reservoir, and between 
reservoir and readout layer, are denoted by WIR, WRC, and WRO, 
respectively (Figure 2). WIR, WRC, are randomly generated, while WRC is 
scaled such that its spectral radius (i.e., the largest absolute eigenvalue of 
WRC) ρ WRC( ) ≤1. This operation is suggested by Lukosevicius and 
Jaeger (2009) to guard the Echo State Property (ESP) so that information 
from prior states will be asymptotically washed out. The internal states of 
the reservoir using Eq. 4 are updated as follows:

 x t x f W u W xt IR t RC t+( ) = −( ) + +( )1 1 α α act  (4)

FIGURE 2

Basic ESN without community structure.
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Where xt  and xt+1 denotes the reservoir states at the time t  and 
t +1. fact .( )  denotes the activation function of the reservoir layer, 
which usually is a hyperbolic tangent function, and α ∈[ ]01,  is the leak 
rate that controls the update speed of the reservoir. xt  and its 
corresponding label ytarget at time t  are stacked into Xrc and Ytarget. 
The readout weights are calculated through ridge regression using 
Eq. 5, where Ι is an identity matrix and λ is the regularization term 
introduced to prevent overfitting.

 
W Y X X XRO target rc

T
rc rc

T= +( )−λΙ
1

 
(5)

Finally, the predicted classes are obtained using Eq. 6 as follows:

 y t W x tpred RO( ) = ( ) (6)

3.4.2 Modular structure
Our M-ESN improves basic ESN (Figure 2) by replacing its random 

reservoir layer with a modular network (Figure 3C). Existing literature 
introduced a single parameter method (Nematzadeh et al., 2014) to 
modularize an ESN with two communities (Rodriguez et al., 2021). 
Under this setting, edges are generated according to a pre-defined global 
connection density D. Then, ∝ fractions of edges bridge nodes within 
the same community and 1−( )µ  fractions of them connect nodes 
across communities (see Figure 1B). Since the number of modules 
remains fixed and the inter-community connectivity is dependent on 
the intra-community connectivity ∝, their proposed ESN is optimal in 
a one-dimensional parameter space. In other words, the ESN is 
optimized with respect to intra-community connectivity ∝.However, as 
the modular structure is collectively determined by the number of 
modules, intra-and inter-community connectivity, it may be insufficient 
to use only one parameter. Thus, we propose in this study to optimize 
M-ESN with a more comprehensive approach. We use P1 to govern the 
intra-community density and P2 to govern global connectivity. P1 is the 

probability of arbitrary two nodes being connected within the same 
community, while P2 governs the likelihood of a link exists between two 
nodes in different communities. We set P2 less than or equal to P1 as 
inter-community connections are often sparser than intra-community 
connections. When P1 equals P2, the reservoir is equivalent to a random 
network. The modularity M  controls the module counts within 
reservoir. These three parameters together allow more flexible control 
over modularity and global connectivity, such that our M-ESN is 
optimized in three-dimensional parameter space (M , P1, and P2). A 
complete generation process of M-ESN is described in Figures 3A–C.

3.4.3 ESN parameters
We use the M-ESN with 600 neurons to perform the experiments. 

In the previous step, an adjacency matrix based on P1, P2, and M  will 
be  generated. Then, connections were added according to that 
adjacency matrix. We use bidirectional connections such that each 
connection has a corresponding inverse connection. The weights of 
these inverse connection pairs are randomly assigned according to a 
normal distribution within range (0, 1), with approximately 50% of 
these pairs are in opposite sign. We use a tanh activation function for 
the reservoir layer. The input weights WIR are uniformly distributed, 
with values scaled to (−0.1, 0.1), such that the neural dynamics will 
be more distinguishable by the activation function.

Finally, implementing a modular structure requires the network 
topology and connection weights to remain unchanged during the 
course of the training. Consequently, adaptation rules are not 
included in this study.

4 Experiment

We test M-ESN on three tasks, that is, to discriminate emotional 
valence, arousal, and stress/calm. The DEAP dataset describes emotional 
status in the following four domains: valence, arousal, dominance, and 
liking. Each of the four domains is represented by a numerical rating 

FIGURE 3

(A) N internal neurons are first generated and randomly assigned to M clusters. (B) Then, intra-community connections are added according to P1. 
(C) Cross community connections are added according to P2 and the reservoir layer is connected to the input layer and the output layer. (D) The flow 
chart of a complete experiment process. In Phase I, the optimal parameters are searched in the given parameter space. In Phase II, the optimized 
M-ESN is trained and tested.
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from 1 to 9. In accordance with prior research (Fourati et al., 2020b), 
we classify numerical values > 5 as high arousal/valence (HA/HV) and 
those ″ 5 as low arousal/valence (LA/LV). The calm and stress label is 
defined collectively by numeric valence and arousal levels, where a signal 
is classified as stress if valence ″ 3 and arousal ≥ 5, and as calm if 
4 6″ ″valence  and arousal < 4.As discussed in section 3.2, each 60-s 
trail is sliced into data segments using sliding windows. For the arousal 
and valence classification task, the sliding window is set to 6 s. However, 
only 2,790 data segments have a stress/calm labels when using the 6 s 
sliding window. Thus, a smaller sliding window (t = 2 s) is used for stress/
calm discrimination task to generate a larger dataset (n = 8,370). Our 
method contains two steps. In the first step, we fix the spectral radius and 
leakage rate of M-ESN to search for optimal combinations of modules 
count, local and global connection density on the valence discrimination 
task. In the second stage, the optimized modular structure is set fixed. 
We tune the ESN using the leakage rate for different classification tasks. 
A complete procedure is demonstrated in Figure 3D.

4.1 M-ESN optimization

It is well-established that ESN performance is determined by the 
reservoir topology (Zhang et al., 2011). For M-ESN, the reservoir 
topology is governed by P1, P2, and M . Hence, in the first phase of the 

experiment, we  fix the spectral radius of M-ESN to 0.85 and the 
leakage rate α  to 0.25, as they work best on basic ESN. Then, we search 
for the parameters that optimize M-ESN in the three-dimensional 
discrete parameter space (M , P1, P2). The ESN is assessed on the 
valence discrimination task. The pseudo-code of this process is 
described in Algorithm 1.

We perform 5-fold cross-validation to reduce the bias introduced 
by the random train-test split. This 5-fold cross-validation process is 
conducted by: (1) splitting the dataset into five non-overlapping 
partitions; (2) leaving one partition out as the test set without 
repetition and using the remaining four partitions to train the model; 
and (3) repeating the previous two steps five times and averaging the 
accuracies. Given that ESN performance is constantly haunted by the 
random initialization of the reservoir layer, we repeat 5-fold validation 
three times and average the accuracies. For each P1 value, we plot the 
model performance with respect to M values and P2 values in a 2D 
contour diagram as depicted in Figure  4 to test all parameter 
combinations iteratively. We plot the 2D diagram using M as y-axis 
and P2 as x-axis. The highest classification accuracy at each P1 value is 
displayed in Table 1. The model is optimized when P1=0.05, P2=0.02, 
and M =6.

The structure and weights of modular reservoir of ESN remain 
unchanged during training, on the one hand, because this modularized 
reservoir is optimally designed with optimal classification accuracy, 
on the other hand, because the reservoir is an RNN structure, its 
weights are not trained, avoiding the problems of gradient vanishing 
and gradient explosion, reducing the training complexity of the ESN, 
and making the ESN simpler to implement, which is also an inherent 
advantage of ESN.

Algorithm 1: M-ESN Optimization.
Input: Modules count M ; Intra-community connectivity P1; 
Inter-community connectivity P2; DEAP dataset.
Output: Optimal combinations of P1, P2, and M .
1: Let data =normalize (data).
2: for P1 = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 do
3:   for M  = 1, 2, 3, 4, 5, 6, 8, 10 do
4:     for P P P P2 1 1 1

1

5

2

5
= …, ,  do

5:      Acc = MESN(M , P1, P2)
6:      if Acc’ < Accthen
7:        Acc’, M ’, P1’, P2’ = Acc, M , P1, P2.
8:     end for
9:   end for
10: end for
11: return M ’, P1’, P2’
12: end

4.2 Classification results

Once the optimal parameters are found, we fix the three modular 
parameters and fine-tune the M-ESN on different leaking rates for 
three classification tasks. The optimal leaking rate for valence, arousal, 
and stress/calm classification are 0.25, 0.3, and 0.25, respectively. Then, 
we train the M-ESN using the optimal parameter combinations to 

FIGURE 4

2D accuracy diagram with respect to M  and P2 at various P1 value. 
The classification accuracies are at its highest value when 
P1  =  0.05, P2  =  0.02, and M   =  6.

TABLE 1 Highest valence classification accuracy at each P1 value.

P1 0.05 0.1 0.15 0.2 0.25 0.3

Acc 0.6526 0.6416 0.6358 0.6352 0.6276 0.6255
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predict test set labels. We plot the confusion matrix with the predicted 
classes and their actual labels to calculate the precision, sensitivity, 
specificity, accuracy, and F1-score (Figure 5). As demonstrated in 
Table 2, after the modular structure is introduced, we observe an 
increment in almost all metrics.

In Table 3, we compared our results with ESN-IP, ESN-anti-Oja, and 
ESN-BCM presented by Fourati et  al. (2020b). In their work, they 
provided results trained with raw signals and extracted features. Both 
kinds of input are trained with three different training schemes. To ensure 
a fair comparison, we only selected their results trained with frequency 
band features using the offline mode, which are consistent with our 
approach. Notably, our results are obtained using M-ESN with the size of 
600, while their ESNs have 1,500 internal neurons. In all three tasks, our 
M-ESN outperforms the plasticity-rules-tuned ESNs with a considerable 
improvement. This result suggests that the modular structure may provide 
structural advantages for network performance.

Our results provide several insights. First, as shown in Table 1, the 
highest prediction accuracy at each P1 value decreases monotonically 
as P1 increases. This pattern aligns with previous studies that suggest 
reservoir sparsity has a significant impact on ESN performance 
(Zhang et al., 2011). Since the maximum value of P2 equals P1, a lower 
P1 will have a lower maximum P2, resulting in a sparser reservoir.

Second, a protruding pattern in our result (Figure 4) is that there 
appears to be a huge “jump” in its classification accuracy when the 
number of modules increases from 1 to 2 (Figure 4). As P1, P2, spectral 
radius, and the leaking rate remain unchanged, we conclude that the 
introduction of modular structure is responsible for this improvement. 
Moreover, the best performing M-ESNs have better scores than the 
best performing basic ESN on almost all evaluation metrics (Table 2).

Furthermore, as depicted in Figure  4, classification accuracy 
decreases as intercommunity connectivity increases. When P P2 1= , 
the modular structure disappears as inter-community connectivity 
equals intra-community connectivity. This further support that 
modular structure contributes to the improved classification accuracy.

4.3 Memory capacity

The classification performance of ESNs heavily depends on the 
encoding capability of the reservoir. In order to provide an explanation 
for the modular optimization design results shown in Figure  4, 
we further searched for the optimal values of the module parameters 
based on the reservoir’s memory capacity as the optimization 
criterion. As shown in Figure 6, it can be observed that the reservoir 
achieves the maximum memory capacity when P1 = 0.05, P2 = 0.04, 
and M  = 5. This optimization result is in close agreement with the 
results obtained using classification accuracy as the optimization 

criterion in Figure 4. The discrepancies between the two results can 
be attributed to certain random factors. Furthermore, when using 
classification accuracy as the optimization criterion, the weights of the 
output layer also influence the classification accuracy.

Figure  6 demonstrates that the values of M , P1, and P2 have 
significant impacts on the memory capacity of ESNs. Firstly, overall, 
a smaller value of the intra-module connection probability P1 leads 
to a larger memory capacity, indicating that a sparser intra-module 
connectivity promotes the enhancement of memory capacity. 
Secondly, with an increasing number of modules (M ), the memory 
capacity initially increases and then decreases, implying that too 
many or too few modules are not conducive to memory capacity, and 
there exists an optimal number of modules. A larger number of 
modules may result in longer information propagation paths, 
thereby increasing the signal propagation delay during memory 
processes and reducing the memory capacity. Additionally, an 
increasing inter-module connection probability P2 also demonstrates 
an initial increase and then decrease in memory capacity. This 
phenomenon may be attributed to the fact that when P2 is small, its 
increase benefits information transfer between different modules, 
while excessively large values of P2 weaken the modular 
characteristics, potentially decreasing the network’s memory 
capacity. In conclusion, the modularization parameters affect the 
memory capacity in the same way as the classification accuracy.

4.4 Network heterogeneity

However, it is still unclear why modular architecture improves 
network performance. To explain the working mechanism of 
modular structure in M-ESN, we examine the microscopic changes 
induced by modular topology, i.e., how modular structure affects 
neuronal degrees and connection strengths. We  found that the 
modular structure alters the number of in-degree connections for 
individual neurons. Figure 7 compares the distribution of in-degree 
connections between a basic ESN and an M-ESN. It appears to be a 
significant change before and after introducing modular structure. 
The in-degree connection of most neurons in basic ESN falls between 
(15, 45), while most neurons in M-ESN have in-degree connection 
closely distributed around zero.

In Table  4, quantitative results reflect more detailed insights. 
Although both the variance and the mean of neuron degrees for M-ESN 
are smaller than basic ESN, the Standard Deviation (SD) over the mean 
for the M-ESN is significantly larger. Dividing SD by mean is referred 
to as Coefficient of Variation (CV), which is commonly employed to 
measure the network heterogeneity in previous literature (Ju et al., 2013; 
Litwin-Kumar et al., 2017). Comparing to the CV of 5.48 for basic ESN, 
M-ESN has a CV of 304.17, suggesting M-ESN becomes much more 
heterogeneous after adopting the community structure.

This increased network heterogeneity provides several benefits. 
First, in the field of neuroscience, it is well-established that neurons in 
brain are far from being homogeneous (Bullmore and Sporns, 2012; 
Tripathy et  al., 2013). A more heterogeneous network can better 
simulate biological neural networks. Second, neurons in homogenous 
networks will yield similar features as they have similar connection 
weights and degrees. A more heterogeneous network, however, can 
provide richer features so that they can be more discernable in the 
hyperspace (Zeldenrust et  al., 2021). Similarly, as M-ESN is more 

FIGURE 5

Confusion matrices.
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heterogeneous, its internal states will be more discernable by ridge 
regression in the readout layer. This finding is consistent with numerous 
studies in neuroscience and network science that suggest heterogeneous 
networks enhance cognitive abilities in brains and model performance 
in ANNs (Bullmore and Sporns, 2012; Volo and Destexhe., 2021; 
Zeldenrust et al., 2021).

In addition, a mean in-degree connection close to zero (0.0032) 
suggests that the majority of neurons within M-ESN have only 1 or 
2 incoming connections. A larger CV and variance, however, imply 
that there are a few neurons that have more than average connection 
numbers. This network structure with many sparsely connected 
neurons and a few densely connected cores forms a hub structure. 
While previous neuroscientific finding (Bertolero et  al., 2018) 
suggests the hub structure facilitates cognitive abilities in human 
brains, our research extends their studies and proves that hub 
structure also aids in the efficiency of M-ESN.

Lastly, our finding offers complimentary insights into previous 
literature (Rodriguez et al., 2021). They indicate increasing modularity 
will lead to decreasing network performance on ESN using non-step-like 
activation functions. In our result, however, when modular structure is 
introduced in our tanh activated M-ESN, we  observed a substantial 
increase in accuracy. We believe this divergence may be task-relevant. 
Rodriguez et al., 2021 researched a modularized ESN on memory capacity 
tasks, in which task the model performance is highly dependent on the 
level of information diffusion within the reservoir. When using step-like 
activation functions, community structures serve as containers that 
reduce noise and promote signal. However, since information diffusion 
will always occur when using non-step-like activation functions, 
increasing modularity cannot improve the memory capacity in their case. 
In contrast, we utilized M-ESN for classification tasks, which are highly 
sensitive to small temporal changes. Non-step-like activation functions 
broadcast such small changes to the entire reservoir. Consequently, in our 
experiments, community structures may serve to provide more diverse 
representations of the original signals, making them more discernable in 
the hyperspace.

5 Discussion and conclusion

A recent study (Kasabov, 2014) proposed a new SNN 
architecture, called NeuCube, based on a 3D evolving SNN learning 

TABLE 2 Comparing ESN and M-ESN on three emotion recognition tasks with optimal parameters in terms of precision, sensitivity, specificity, accuracy, 
and F1-score.

Precision Sensitivity Specificity Accuracy F1-score

Valence ESN 0.639 0.611 0.467 0.594 0.624

M-ESN 0.686 0.687 0.503 0.653 0.686

Arousal ESN 0.640 0.581 0.431 0.571 0.608

M-ESN 0.677 0.666 0.488 0.625 0.671

Stress/Calm ESN 0.672 0.638 0.464 0.646 0.652

M-ESN 0.726 0.689 0.458 0.700 0.706

P1 = 0.05, P2 = 0.02, and M = 6.

TABLE 3 Comparison of M-ESN classification accuracies with baseline models.

Model Input signals ESN size LA/HA accuracy LV/HV accuracy Stress/Calm

ESN-anti-Oja Features 1,500 0.5977 0.5977 0.6545

ESN-BCM Features 1,500 0.6172 0.5742 0.6545

ESN-IP Features 1,500 0.6121 0.5352 0.6906

M-ESN Features 600 0.6249 0.6526 0.7001

Bold notably, our results are obtained using M-ESN with the size of 600, while their ESNs have 1500 internal neurons. In all three tasks, our M-ESN outperforms the plasticity-rules-tuned 
ESNs with a considerable improvement. This result suggests that the modular structure may provide structural advantages for network performance.

FIGURE 6

Memory capacity heat map with respect to M  and P2 at various P1 
value.
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from Spatio-and spectro-temporal brain data (STBD) and creates 
connections between clusters of neurons that manifest chains of 
neuronal activity. In the present study, the design of modular 
reservoir structure is also inspired the spatial structure information 
of the brain network, and we will consider more deeply how to 
introduce the spatial information into the design of the reservoir in 
our future research.

FORCE training (Depasquale et al., 2018) is a common method 
for training ESN, which can train the weights within the reservoir 
network, as well as the weights of the input and output layers. In this 
study, drawing on the fact that the connection structure of brain 
neural networks is modular, the reservoir adopts a modular structure, 
and its connection structure and weights are determined during 
initialization, and remain unchanged during training, so modular 
reservoir retains the advantages of simple training of reservoir 
computation, and also has a good performance of information 
processing. FORCE training can be considered in future research to 
train the weights of the reservoir and used in EEG classification tasks.

In this study, inspired by brain science, we obtained a remarkable 
improvement in the classification accuracy by adopting the modular 
structure in ESN for EEG emotion classification. Our work 
demonstrated the feasibility and superiority of replicating biologically 
observed structures on RNN to improve model performance. The 
main reason why the modular ESN performs better than the regular 
ESN is that its structure is optimized. The reservoir of the regular 
ESN adopts a randomly connected structure, and the modular ESN 
adopts the modular structural features of the brain neural network, 
which improves the performance of the ESN in the EEG classification 
task. We  offered explanations of modularity enhance network 
performance and reported that neurons become more heterogeneous 
as the network becomes more modular. The performance 
enhancement of the modular ESN lies in the stronger structural 
heterogeneity, and larger coding capacity of the modular reservoir.

The advantage of ESN is that the model size is relatively small 
and has good performance. The increase of the reservoir size does 
not necessarily improve the performance of the ESN, too large a 
reservoir size will saturate the performance of the ESN, and even 
sometimes lead to overfitting of the ESN. The reservoir of ESN 
adopts a modularized structure, and the weights inside the reservoir 
are not trained, which greatly reduces the complexity of ESN 
training, and the design is relatively simple. Compared to the 
random reservoir of regular ESN, the modularized reservoir has 
higher structural heterogeneity and larger coding capacity, thus 
enhancing improvement of the ESN performance. Future studies 
could potentially adopt different intra-community connectivity in 
different communities or seek to reproduce more complex 
brain structures.
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TABLE 4 Mean, variance, SD, and SD/mean of basic ESN and M-ESN.

Mean Variance SD SD/Mean
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