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Introduction: Glioblastoma (GBM) is a highly aggressive malignant tumor of
the central nervous system that displays varying molecular and morphological
profiles, leading to challenging prognostic assessments. Stratifying GBM patients
according to overall survival (OS) from H&E-stained whole slide images (WSI)
using advanced computational methods is challenging, but with direct clinical
implications.

Methods: This work is focusing on GBM (IDH-wildtype, CNS WHO Gr.4) cases,
identified from the TCGA-GBM and TCGA-LGG collections after considering
the 2021 WHO classification criteria. The proposed approach starts with patch
extraction in each WSI, followed by comprehensive patch-level curation to
discard artifactual content, i.e., glass reflections, pen markings, dust on the slide,
and tissue tearing. Each patch is then computationally described as a feature
vector defined by a pre-trained VGG16 convolutional neural network. Principal
component analysis provides a feature representation of reduced dimensionality,
further facilitating identification of distinct groups of morphology patterns, via
unsupervised k-means clustering.

Results: The optimal number of clusters, according to cluster reproducibility
and separability, is automatically determined based on the rand index and
silhouette coe�cient, respectively. Our proposed approach achieved prognostic
stratification accuracy of 83.33% on a multi-institutional independent unseen
hold-out test set with sensitivity and specificity of 83.33%.

Discussion: We hypothesize that the quantification of these clusters of
morphology patterns, reflect the tumor’s spatial heterogeneity and yield
prognostic relevant information to distinguish between short and long survivors
using a decision tree classifier. The interpretability analysis of the obtained results
can contribute to furthering and quantifying our understanding of GBM and
potentially improving our diagnostic and prognostic predictions.
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1 Introduction

Glioblastoma (GBM) is the most common malignant adult

brain tumor with poor prognosis and heterogeneous morphology

and molecular profiles (Verhaak et al., 2010; Brennan et al.,

2013; Sottoriva et al., 2013). Specifically, there have been no

substantial improvements in patient prognosis since 2005, with

the median overall survival (OS) of GBM patients after standard-

of-care treatment being 15 months and four months otherwise

(Baid et al., 2020). Although GBM is the most common

malignant adult primary brain tumor, it is characterized as a

“rare” disease based on its incidence rate (i.e., 3/100,000 people),

which is substantially lower than the rare disease definition,

i.e., <10/100,000 people (Griggs et al., 2009). This makes it

challenging to find large and diverse data for developing machine

learning diagnostic and prognostic models for GBM patients.

Histopathologic evaluation of GBM tissue sections cut onto

glass slides has always been the routine front-line assessment

to provide essential information for disease diagnosis, treatment,

and management. Even though the evaluation of histopathology

slides by expert pathologists remains the gold standard for disease

diagnosis and prognosis, such visual assessment is subjective and

subject to interobserver variability. Recent technological gains

have led to the routine scanning of conventional glass slides

to high-quality digitized tissue sections - also known as whole

slide images (WSI). WSIs present tumor morphology in very

detailed, gigapixel resolution, which is extremely useful in cancer

studies, enabling computational analysis and remote assessment

by experts. Automatic computational analysis of WSI is a rapidly

expanding field in medical image analysis, which can alleviate

pathologists’ workloads and help reduce the chance of diagnostic

errors (Janowczyk and Madabhushi, 2016; Aeffner et al., 2019;

Niazi et al., 2019; Baheti et al., 2023c). The broader use of WSI

has, in turn, resulted in substantial developments in computational

analysis of histopathology imaging, particularly for gaining novel

insights from population-based studies.

There are several studies on prognostic stratification of GBM

patients from radiology imaging (Macyszyn et al., 2015; Rathore

et al., 2018b; Bakas et al., 2020; Beig et al., 2021). Based on the

findings of these studies, we note a limit on the performance of

these prognostic predictions that could be potentially addressed by

computational analysis ofWSI. However, computational analysis of

WSIs for prognostic stratification of GBM patients face three major

challenges. Firstly, WSIs usually describe image files of large storage

requirements (measured in several gigabytes for a single WSI), as

well as with spatial resolution in the range of 100, 0002 pixels. This

large size of WSIs at their native spatial resolution makes handling

and processing the entire image computationally demanding, in

terms of both memory footprint and processing power. The typical

workaround involves the tiling of the entire image into smaller

patches, which raise major adverse effects and considerations for

effective processing (Reina et al., 2020). Secondly, the inherent

heterogeneity of GBM tumors has been well-accepted (Sottoriva

et al., 2013), with their histologic composition being of varying

morphological structures. Therefore, relying on a single WSI of the

tumor may not accurately represent the morphological landscape

of the complete tumor, potentially leading to incomplete or biased

assessments (i.e., sampling error). To address this issue, multiple

tissue sections might be considered for an analysis overcoming this

sampling error, as well as toward better capturing the heterogeneity

of GBMs, albeit this causes an exacerbation of the computational

requirements challenge. Thirdly, the computational analysis of

WSIs in the literature can be categorized into two approaches:

i) patch-based, and ii) WSI-based. Due to the aforementioned

challenges associated with handling the entire WSI, patch-based

methods, focusing on specific annotated regions of interests (ROIs)

marked by pathologists (Barker et al., 2016; Zhu et al., 2016; Cheng

et al., 2018; Mobadersany et al., 2018), have formed the typical

convention in the computational pathology field. Beyond the task

of prognostic stratification, the field of computational pathology is

limited by the need for pixel-level annotations of WSIs that are

essential for detection and segmentation tasks. Such annotations

are of limited availability as they are tedious and time-consuming,

even for the expert pathologist, and hence hinder the application of

supervised machine learning methods that rely on labeled data for

model training.

Weakly supervised methods for WSI classification have

seen advancements, incorporating multiple instance learning

(Kather et al., 2019; Baheti et al., 2023a,b,d; Innani et al.,

2023). However, many current approaches in the computational

analysis of histopathology images heavily depend on hand-crafted

imaging features extracted from a limited set of manually-

labeled WSI patches. This limitation hinders their ability to

capture the heterogeneous morphology of GBM effectively

(Zhu et al., 2017). Additionally, understanding the features

driving computational predictive decisions is crucial for potential

data-driven enhancements in human expert assessments.

Our approach utilizes an unsupervised clustering to identify

distinct morphological patterns across WSI. The features

extracted through this unsupervised approach capture intrinsic

characteristics of tissue patterns, contributing to a more profound

comprehension of morphological variations and structures

within GBM. Unlike supervised approaches that rely on existing

knowledge, unsupervised approaches can uncover new insights

and knowledge by allowing data to directly inform the decision-

making process. Importantly, the unsupervised method avoids

any potential unconscious bias introduced by manual annotations,

ensuring a more objective analysis of GBM morphology. The

outcome of our approach lay the groundwork for furthering

our current knowledge and enabling us to leverage data-driven

identified morphological patterns for an improved assessment and

novel insights.

Even though many computational studies attempt to develop

a prognostic stratification model for GBM, their focus has not

been on furthering our disease understanding, including the largest

to-date (> 6, 300 GBM cases) computational imaging study of

GBM (Pati et al., 2022). Our analysis builds on the hypothesis

that quantifying morphology patterns of GBM in WSI can yield

biomarkers of prognostic relevance, while considering the lack

of manual annotations and hence focusing on an unsupervised

analysis. The computationally identified morphology patterns that

drive the prognostic decisions of the resulting computational

model in each patient’s WSI were assessed and confirmed to be in

agreement with the expert neuropathologist.
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2 Materials and methods

2.1 Data

The proposed work is evaluated on the publicly available

TCGA-GBM (Scarpace et al., 2016) and TCGA-LGG (Pedano et al.,

2016) data collections, which are available through The Cancer

Imaging Archive (TCIA) (Clark et al., 2013).

2.1.1 Data reclassification
Since the CNS tumors of these data collections have

been classified according to older WHO criteria, our expert

neuropathologist (MPN) has reclassified these two complete data

collections to identify and group together all GBM (IDH-wildtype,

CNS WHO Gr.4) cases, according to the 2021 WHO classification

of CNS tumors (Louis et al., 2021) (Figure 1). Based on the

2021 WHO CNS classification criteria, histologically low-grade

astrocytomas from TCGA-LGG with molecular features of GBM

are identified and also included in this study’s cohort. Furthermore,

few cases from TCGA-GBM have been excluded from being

characterized GBM since their molecular profiles do not match

the latest WHO-defined GBM entity of IDH-wildtype, CNS

Gr.4. The molecular features assessed were IDH mutation, TERT

promoter mutation, combined gain of chromosome 7 and loss of

chromosome 10, codeletion of chromosomal arms 1p and 19q,

pan-glioma RNA expression cluster, IDH-specific RNA expression

cluster, pan-glioma DNA methylation cluster, supervised DNA

methylation cluster, and random forest Sturm cluster.

2.1.2 WSI selection and labeling
The TCGA-GBM and TCGA-LGG data collections include

both formalin-fixed paraffin-embedded (FFPE) and frozen tissue

section slides. Taking into consideration that frozen slides include

hydration artifacts due to freezing, the complete analysis in this

study was conducted on the available FFPE slides. Multiple FFPE

Hematoxylin & Eosin (H&E)-stained WSIs were available per

patient (ranging from 1 to 15), acquired from different parts of the

resected tumor and scanned at a magnification level of either 20X

or 40X. A single WSI from each available GBM patient case of the

reclassified TCGA-GBM and TCGA-LGG collections is therefore

utilized to maintain uniformity across the data assessed for each

tumor. Furthermore, solid tumors may have a mixture of tissue

architectures and structures, resulting in an inherent heterogeneity

across the available multiple WSIs per patient. Hence, our expert

neuropathologist (MPN) selected the exact WSI according to the

apparent tumor proportion and appearance representative across

allWSI of each patient, following processes conventionally involved

in routine clinical practice. These cases are included irrespective of

their scanning magnification level (20X or 40X).

A data-driven approach was initially used to detect paired

cut-off values of the short- and long-survival patient groups.

Specifically, these paired values were based on equal quartiles from

the median OS, with the intention of mitigating class imbalance

issues that could potentially affect negatively the donwstream

model performance. The final cut-off values of ≤ 9 months and

≥ 13 months for short and long survivors, respectively, were

determined following coordination with our clinical experts and

while accounting for clinical significance and action. Patients with

OS between these cut-off values were excluded, in order to avoid

indeterminate cases near the cut-off boundaries. We excluded

patients with survival exceeding 1,400 days (approximately 4

years—i.e., extreme outliers) and those with less than 15 days

(around 2 weeks) to eliminate outliers. Further consideration of

equal quartiles from median resulted in exclusion of 40 cases,

leaving us with 188 cases for our study. This resulted in the short

and long survivor classes having 94 cases each. 80% of the data (n =

152) is used for experimentation and model training, while 20% of

the data (n = 36) is reserved as a hold-out unseen test set. The

overall experimentation is performed in a 10-fold cross-validation

configuration over the 80% of the complete data (n = 152) by

further dividing them randomly and proportionally in training

(80%), validation (10%), and testing (10%) sets. Then, once the

experimentation concluded on the optimal parameter setting, the

final model was trained on the 80% of the complete data (n = 152)

and its quantitative performance evaluation was conducted on the

hold-out unseen test set and reported in Section 3.

2.2 Approach

Our approach is based on utilizing the entire WSI of each

patient, and not by extracting a subset of patches from an

annotated region (as typically done in the literature), nor by

randomly selecting a fixed number of patches from a WSI to

obtain the patient-level prognostic decision (Bejnordi et al., 2017;

Mobadersany et al., 2018). This should allow for capturing the

heterogeneous GBM morphology apparent in the complete WSI,

in our attempt to capture all patterns of potential prognostic

relevance. Figure 2 depicts the building blocks of our engineering

approach, the complete details of which are given in the

subsections below.

2.2.1 Patch and feature extraction
Segmentation of the tissue section from the slide background

is the first step in our approach. This is achieved by converting

the second magnification level of the WSI pyramid into the Hue-

Saturation-Value (HSV) colorspace and thresholding the WSI’s

saturation channel. Patches of size 256 × 256 are extracted from

the segmented foreground tissue region at the 10X magnification

level. Patches containing more than 60% background are discarded

at this stage. Further comprehensive patch-level image curation

excludes patches containing artifacts, such as glass reflections, pen

markings, tissue folding, and black lines on the slide. The three

steps of complete comprehensive curation are illustrated in Figure 2

(“Comprehensive patch curation”), with example artifact patches

that each step removes.

Firstly, the algorithm discards the patches containing

substantial white background or black regions if the percentage

of such pixels within the Red-Green-Blue (RGB) colorspace is

high (> 60%). However, this step does not eliminate patches

containing glass reflections, debris, or scanning artifacts. The

algorithm eliminates such patches if the percentage of low-valued
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FIGURE 1

Schematic representation of the re-classification of the original TCGA-GBM and TCGA-LGG data collections, per WHO 2021 classification schema
(Louis et al., 2021). “Filtering” describes the application of the additional specific inclusion criteria for the present study, such as cases with available
overall survival (OS) information.

pixels in the saturation channel and high-valued pixels in the

intensity channel of the HSV colorspace is > 90%. Finally, the

remaining patches with pen markings are removed by converting

into a Hematoxylin-Eosin-DAB (HED) colorspace by stain

deconvolution (Ruifrok et al., 2001) and checking if the associated

intensity in the Eosin channel is > 90%. All the selected thresholds

are determined empirically by extensive experimentation on

the given dataset to ensure that the algorithm only removes

artifacts and preserves all tissue-occupied areas within the selected

patches. Given another dataset, these thresholds could differ, and

hence further experimentation is recommended for considering

other data.

Following patch extraction, we use a convolutional neural

network (CNN) for fully automated regional feature extraction

from the WSI. Specifically, the CNN used was a VGG16

architecture pre-trained on ImageNet (Russakovsky et al., 2015)

as it has been reported in the literature to capture related tissue

patterns (Bychkov et al., 2018; Yao et al., 2019). The convolutional

feature maps from the last block of the convolutional layer are

extracted, and a global average pooling layer is applied on these

feature maps to convert each 256 × 256 patch into a 512-

dimensional feature vector. The benefit of representing the WSI

into a matrix of features is lower computational cost and faster

convergence during training.

2.2.2 Dimensionality reduction
Dimensionality reduction of the extracted feature vectors is

essential to avoid their potential overfitting to the assessed patient

population. Specifically, principal component analysis (PCA)

(Wold et al., 1987) is used to represent the extracted features in a

lower dimensional space and improve our model’s generalizability.

PCA is a widely used approach for the dimensionality reduction

of significant features by transforming a more extensive set of

variables into a smaller one, which still contains most of the

variability/information from the more extensive original collection.

PCA reduces the number of dataset variables while preserving as

much information as possible. As PCA is sensitive to the scale

of input features, features are pre-processed by removing the

mean and scaling to unit variance (i.e., z-scoring). As smaller

feature vectors are easier to explore and analyze for machine

learning algorithms, these reduced dimensional features are used

for further processing.

2.2.3 Unsupervised clustering
Subsequently, these feature vectors of lower dimensionality

undergo a feature-based clustering approach [K-means (Hartigan

and Wong, 1979)] to identify distinct groups/clusters of

morphological patterns. Unlike supervised learning approaches,

patch-level labels are unavailable in the unsupervised method of

this study, making it a relatively more complex task to perform

and evaluate. The objective is to discover patterns in the data

following a data-driven approach, e.g., determining if there are

any subgroups for which the collective characteristics of individual

feature vectors have certain similarities. The K-means clustering

requires a predefined number of clusters. However, since we

want to let the data drive the decision about the (K) number of

tissue phenotypes, we select the optimal number of clusters (K)

by evaluating the goodness of clustering for different numbers of

clusters (K = 2 to 10). The decision factor for the optimal number

of clusters is estimated based on statistical analysis using both

the rand index and the silhouette coefficient, quantifying cluster

reproducibility and separability, respectively.

Rand Index

Rand index (RI) (Rand, 1971) is a measure to evaluate the

reproducibility of clustering by finding the similarity of results

between two different permutations. Similarity is computed by

considering all sample pairs and counting pairs assigned in the

same or different clusters. The RI can range from [0, 1]. The

drawback of RI is that it assumes that the ground-truth cluster

labels are available and uses them to compare the different

permutations. As labels are not available in our case, we calculate

the RI by comparing outputs of two different permutations with

each other (performed with different random seeds) rather than a

comparison with the ground truth.

Silhouette coefficient and elbow method

The silhouette coefficient is another approach used to

determine the optimal number of clusters in data by evaluating

the separability between clusters. It is a measure of how similar

a feature is within its own cluster (cohesion) compared to the

other clusters (separation) and ranges between [-1, 1]. According

to the silhouette coefficient, a good clustering algorithm expects
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FIGURE 2

Schematic representation of the complete proposed methodological workflow.

a high silhouette score, indicating slight within-cluster variance

and significant between-cluster variance. The optimal number of

clusters (K) is automated based on the elbow method, where the

silhouette score is computed and plotted for a different number of

clusters. The selection of K is at the point where the silhouette score

drops suddenly.

Determining the number of PCA components (by retaining

different amounts of variance), as well as the number of clusters,

are hyperparameters and are decided by empirical experimentation.

We first performed numerous experiments by varying PCs of

the input CNN features and determined the optimal number of

clusters (K) for further analysis. After K has been fixed, additional

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2024.1304191
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Baheti et al. 10.3389/fnins.2024.1304191

TABLE 1 Rand index observed for di�erent number of clusters and PCA

components.

Cluster PCs = 10 PCs = 32 PCs = 64

Variance 35% 50% 60%

2 0.9979 0.9981 0.9988

3 0.9895 0.9966 0.9971

4 0.9975 0.9988 0.9988

5 0.9969 0.9973 0.9975

6 0.9958 0.9970 0.9981

7 0.9947 0.9957 0.9971

8 0.9937 0.9895 0.9910

9 0.9897 0.9951 0.9979

10 0.9887 0.9988 0.9976

experiments are performed by retaining range of PCA components

to analyze the effect of variance of PCA on classification accuracy.

The K-means clustering algorithm was thus employed to identify

the underlying morphological tissue phenotypes in WSI based on

the extracted features.

2.2.4 Classifier
After identifying the number of groups/clusters with unique

morphological tissue patterns present in the WSIs, the tumor’s

spatial heterogeneity is captured by quantifying the proportion of

each of the various identified morphological patterns within each

patient’s WSI. Such representation of a WSI conceptually provides

a probability distribution of different tissue phenotypes and allows

its description in a compact and meaningful way. Their association

to prognostic stratification is explored by a decision tree (DT)

classifier (Quinlan, 1986). The input features to the DT classifier

were the k-means clustering output. Note that k-means was applied

to the lower-dimensional feature vectors that were extracted from

all WSI patches. Specifically, the probability distribution of each

identified morphological pattern within a patient’s WSI was used

as an input feature. To optimize the DT’s performance, we have

conducted a grid search tuning of the associated hyperparameters,

comprising depth, minimum sample leaves, minimum samples

split, and criterion to measure the quality of a split. The previous

steps such as patch extraction, feature extraction, PCA, and K-

means clustering are carried out sequentially and independently

for the training and the testing sets. Finally, the machine learning

classifier is trained and quantitatively evaluated within each fold

of the cross-validation schema. This sequential approach has been

cautiously designed to prevent any potential information leakage

and maintain the integrity of the reported performance evaluation.

3 Results

The k-means clustering algorithm (Hartigan and Wong, 1979)

is inherently non-deterministic, and the initial selection of cluster

centers can significantly influence the final clustering outcome.

FIGURE 3

Silhouette scores with varying PCs.

FIGURE 4

Silhouette scores for K ∈ [2, 20].

To correctly analyze the performance, clusters are manually

and qualitatively inspected to determine whether the results

are meaningful. To determine the optimal number of clusters

quantitatively, we employ two key metrics: i) the rand index

(Rathore et al., 2018a) and ii) the silhouette score (Shahapure

and Nicholas, 2020), using the elbow method technique for

different values (K ∈ {2, 10}). For rand index based metrics,

we systematically vary the number of clusters (K) from 2 to

10 and execute K-means clustering on the reduced-dimensional

CNN features for 1000 permutations, each with a distinct seed

for initialization. To assess clustering stability and repeatability, we

calculate the average rand index across these 1,000 permutations,

together with different number of principal components (PCs)

and the observed retained variance (Table 1). We observe that

the Rand index is consistently close to 1 for all the performed

experiments and permutations, despite the varying number of

clusters and PCs. Such behavior is indicative of reproducible

clustering (even after dimensionality reduction), and that even

though GBM regions are histologically distinct they are also

consistently captured across patients and grouped together by our

unsupervised clustering algorithm.

Subsequently, we computed silhouette scores across a range of

number of clusters (K ∈ {2, 10}), while retaining the same number

of PCs as in the rand index, and the obtained results are shown
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in Supplementary Table 1. These scores are further visualized in

Figure 3, revealing an ‘elbow’ point at K = 3 when 32 and 64

PCs are retained. In the case of 10 PCs, the initial elbow appears at

K = 2, and as we proceed, another elbow emerges at K = 7, where

plots with varying PCs counts converge. The “elbow” indicated at

K=3, shows an inverse trend for 10 PCs compared to 32 and 64

PCs, whereas elbow patterns are consistent for K = 7. Opting for

K=7 ensures consistency and captures the complex morphological

patterns of GBM, toward enhancing clinical interpretability

and introducing meaningful insights to a neuropathologist. The

rationale behind limiting the explained variance by PCA to 60%

was to reduce the dimensionality of the data and hence facilitate

optimal cluster separability. In our exploration of retaining higher

percentages of explained variance (70%, 80%, 85% and 90%) a high

number of PCs were used that led to inferior cluster separability

due to increased complexity. The exact values of the obtained

silhouette scores, indicative of the cluster separability, are shown

in Supplementary Table 1 and visually represented in Figure 3.

Observation of Figure 3, indicates that higher percentage of

variance leads to less abrupt/sharp elbows. Despite these variations,

the stability and robustness of the selected number of clusters

(K = 7) were consistent across different percentages of explained

variance. Limiting PCA to 60% was considered a trade-off

between variance and maintaining meaningful cluster separability.

Additional analyses for assessing silhouette scores for clusters

counts varying from 11 to 20 as represented in Figure 4 revealed

no additional visible elbows. As a result, these observations

strengthens the selection of K = 7 for our study.

The unsupervised clustering algorithm categorized each

of these patches to a specific cluster based on its reduced

dimensionality features where each cluster represents a unique

morphology pattern. The patch distribution of various WSI in K

clusters was not uniform, and some patients exhibited a dominance

of a particular cluster, indicating a predominant morphological

pattern within that WSI. This resulting distribution of clustering

patterns are then used as inputs for the DT classifier. With the

number of clusters determined, we conduct similar experiments

using different numbers of PCs to achieve a retained variance

ranging from 35% to 90% and the outcomes are detailed in Table 2,

showcasing the fluctuating landscape of test accuracy, sensitivity,

and specificity across different component counts. Sensitivity and

specificity in this context indicate confidence in correctly predicting

long and short survivors, respectively. Notably, as the number of

components exceeds 50% of the retained variance, a decrease in

sensitivity is observed while specificity remains stable. Additionally,

this variation in the number of PCs was conducted as a sensitivity

analysis to assess its impact on prognostic stratification while

evaluating the performance of the machine learning classifiers.

The DT classifier reveals the nuanced impact of component

selection on model performance, highlighting its ability to navigate

the complex feature space generated by PCA andmaintain balanced

performance. Table 2 presents the results, demonstrating that the

model achieves its highest accuracy of 83.33% when retaining 50%

variance by reducing the dimensions to 32. This configuration also

yields a sensitivity and specificity of 83.33%. However, sensitivity

decreases as the number of components increases, illustrating the

effectiveness of capturing meaningful patterns within the clustered

data. Considering the observed drop in sensitivity with theDecision

TABLE 2 Results of classification on the independent hold-out test set

with decision tree classifier for K = 7.

#PCs
(Variance)

Accuracy Sensitivity Specificity

10 (35%) 0.7778 0.7778 0.7778

32 (50%) 0.8333 0.8333 0.8333

64 (60%) 0.6944 0.5556 0.8333

116 (70%) 0.6666 0.5556 0.7778

189 (80%) 0.7222 0.5 0.9444

236 (85%) 0.6667 0.5 0.8333

293 (90%) 0.6944 0.5 0.8889

The first column indicates number of PCs with the percentage of the retained variance

mentioned within brackets.

Tree (DT) model, we further explored Random Forest (RF) and

XGBoost as alternative classifiers. Supplementary Table 2 includes

detailed results of sensitivity, specificity, and accuracy for all

three classifiers. After coordination with clinical experts, we aim

to offer a method that correctly predicts either short or long-

term survivors, to be clinically useful. Our decision to choose

the DT over the other classifiers is based on consistently high

specificity, i.e., high confidence in predicting long survivors, and

hence a triaging mechanism. The highest specificity of 94.44% is

observed when 80% of the input data variance was retained after

dimensionality reduction. These findings underscore the critical

role of selecting the appropriate number of components to optimize

model performance, providing valuable insights for practitioners

seeking to enhance real-world applications.

4 Discussion

In this study, we introduce an innovative engineering approach

to distill holistic information from WSIs by grouping together

similar phenotypical characteristics and prognostically stratify

patients diagnosed with glioblastoma (GBM, IDH-wildtype, CNS

WHO Gr.4). Our method harnesses the power of AI to

enhance prognostic stratification by following an unsupervised

computational paradigm as it does not require any manual

annotations (or human intervention), and leverages deep learning

for feature extraction and traditional machine learning approaches

for the assessment and analysis of these features. The proposed

analysis intended to delve deeper and further our understanding of

this disease, shedding light on distinct morphological patterns that

can aid in automated prognostic patient stratification. Prognostic

stratification through WSIs represents a burgeoning field at the

crossroads of medical imaging and machine learning. WSIs offer

valuable insights into a patient’s tissue sample, encompassing its

histological features, morphology, physiology, and biology (Aeffner

et al., 2019). A crucial step in our study was the reclassification

of TCGA-GBM (Scarpace et al., 2016) and TCGA-LGG (Pedano

et al., 2016) datasets, aligning them with the 2021 WHO CNS

classification criteria (Louis et al., 2021). This alignment ensures

the clinical relevance of our results, aligning them with the most

up-to-date standards.
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FIGURE 5

Visualization of morphological tissue patterns for seven clusters, with their interpretation.

Even though more complex CNN architectures are available

in the literature, compared to the VGG architecture (Simonyan

and Zisserman, 2015) (selected here), they generate an even higher

dimensional feature vector which imposes an inherent risk of

overfitting due to their high dimensional feature space. The choice

between a strong CNN and a simpler architecture depends on

the specific goals of the task. A strong CNN might be more

appropriate if the goal is to preserve a higher fidelity of the apparent

WSI details. However, the critical caveat remains that there is no

guarantee of the features learned by the encoder being optimal for

the second-level machine learning block’s goal, as these blocks are

decoupled. Since we focus on retaining only key features for our

downstream task (i.e., classification), a simpler architecture was

considered sufficient. More complex architectures might capture

fine-grained features that, when compressed, could potentially

be lost or aggregated into less distinctive components. On the

other hand, simpler architectures might extract more generalized

features that could be more robust to compression and identifying

underlying patterns when coupled with a clustering approach.

The optimal number of K choosen according to results

(i.e., K = 7) enables human expert uncover novel insights.

Each of the seven clusters of distinct morphological patterns

is given in Figure 5, where each cluster represents different

characteristics of the tissue morphology. The first cluster contains

atypical cells with spindled morphology. In contrast, the second

cluster comprises subgroups with distinct attributes like infiltrative

atypical cells with eosinophilic cytoplasm and pale, low cellularity,

necrotic or macrophage-rich areas. High cellularity areas of

the tumor with subsets of cells showing clearings, such as

vacuoles or perinuclear haloes, are captured in the third cluster.

The fourth cluster demonstrates the densest cellular areas with

conspicuous vascularity. The fifth cluster captures tissue patches

containing large-caliber vessels, often with signs of cauterization.

Tissue edges, often with hemorrhage, are represented in the

sixth cluster. The last cluster captures regions of glioma with

intermediate cellularity between the second and third clusters.

Neuropathological assessment in understanding these patterns,

their proportions, and the relationship between them, can
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FIGURE 6

An example of misclassified case which is actually long survivor but predicted as short survivor.

contribute to better characterizing the underlying tissue and

potentially assist in improved diagnosing and classifying various

conditions. Noting that the sequence of the presented clusters is

irrelevant, analysis of these morphological patterns can contribute

in identifying the vital histologic regions in the WSI that hold

prognostic value.

We conducted a deeper assessment of the misclassified cases

from the unseen hold out testing set, where specificity of 94.44%

is observed when 80% PCA variance is retained. It revealed

that this was the result of a single case misclassified as a short

survivor, when the ground truth indicated this case as a long

survivor, further highlighting the complexities of GBM prognosis.

Visual neuropathologic assessment of the associatedWSI (Figure 6)

revealed high-grade histological features, including densely cellular

infiltration, high mitotic activity, pseudopalisading necrosis,

and abnormal vessels, that are consistent with an aggressive

glioma with an unfavorable prognosis. Abundant pseudopalisading

necrosis and abnormal vessels were present, including areas with

microvascular proliferation. This case underscores the intricate

nature of glioma prognosis and reveals where further model

refinement is necessary. In addition, the conclusion may be

reached that histological patterns are not always sufficient to

predict outcomes (Burger and Green, 1987; Homma et al., 2006),

given the known importance of molecular features of the tumor

and the clinical details of each patient on clinical outcome. In

any case, this misclassified case emphasizes the significance of

collaborative expertise to refine and validate such predictions for

accurate clinical decision-making. It also paves the way to future

investigations aimed toward a deeper morphologic pattern analysis

within each WSI.

A limiting aspect of our study lies in the inherent constraint

of deriving our results based on a single (albeit the most

representative) WSI per patient, especially in the context of

the well-recognized heterogeneity of glioblastoma tumors. A

single WSI per patient was selected based on the tissue

selection process followed during true clinical practice, where

a single tissue section is assessed according to the apparent

tumor proportion and capturing representative appearance of the

essential morphological features for accurate diagnosis. However,

given that AI methods are data-driven and considering the

generalization of our results in setting where other groups

might not have the clinical capacity to select single WSI per

patient according to this process, future research endeavors

should focus on methodological development accommodating the
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utilization of multiple WSIs per patient. Such methodological

innovation should account for the challenges associated with

analyzing and integrating information from multiple WSIs, or

even multiple magnification levels of the same WSI, offering a

more comprehensive morphological profile of heterogeneous tissue

samples associated with glioblastoma.

Further future directions include the exploration of multi-

modal data, as well as incorporation of patient management and

treatment course history that become crucial for differentiating

mortality risk among patients with similar histology with greater

precision and further subgrouping of tumors (Huang et al., 2020;

Azam et al., 2022). Moreover, predictive models based on a

single modality provide a limited view of disease heterogeneity

and may not offer sufficient information to stratify patients

(Soenksen et al., 2022). A holistic approach to patient prognosis

should involve the integration of complementary information

from heterogeneous data sources, including WSIs, molecular

profiles, clinical data, and longitudinal radiology imaging (Lipkova

et al., 2022). Qualitative analysis using only imaging data

may prove insufficient, emphasizing the necessity of combining

heterogeneous data streams for a comprehensive understanding of

diseases, coupled with mechanisms of attention indicating drivers

of algorithmic decisions (Baheti et al., 2023c). In the future,

our focus will shift toward an integrated analysis of multiple

modalities, aiming for a better understanding of the disease and

prognosis. Additionally, a prospective evaluation on external multi-

site data will be undertaken to ensure applicability in clinical

workflows.

Intepretable machine learning plays a pivotal role in clinical

settings, and our findings underscore the path forward in

harnessing advanced models to create actionable, transparent,

reproducible, and trustworthy clinical tools (Pati et al., 2023; Plass

et al., 2023). Our interpretability analysis of diverse morphologic

patterns within distinct histologic sub-regions of GBM may

unveil further correlations with short and long survivors. This

exploration offers a deeper insight into the intricate interplay

between histologic features and clinical outcomes. Such insights

can provide invaluable additional prognostic information to

clinical neuropathologists during microscopic assessments,

ultimately refining prognostication and potentially influencing

clinical decision-making, thereby enhancing patient outcomes.

Moreover, this newfound prognostic insight can guide the

treating team toward promising avenues of research, furthering

our understanding of GBM, improving their subgrouping

and classification, potentially paving the way for innovative

treatment approaches.
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