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Introduction: Multiple sclerosis (MS), a chronic inflammatory immune-mediated

disease of the central nervous system (CNS), is a common condition in young

adults, but it can also affect children. The aim of this study was to construct

radiomic models of lesions based on magnetic resonance imaging (MRI, T2-

weighted-Fluid-Attenuated Inversion Recovery), to understand the correlation

between extracted radiomic features, brain and lesion volumetry, demographic,

clinical and laboratorial data.

Methods: The neuroimaging data extracted from eleven scans of pediatric MS

patients were analyzed. A total of 60 radiomic features based on MR T2-FLAIR

images were extracted and used to calculate gray level co-occurrence matrix

(GLCM). The principal component analysis and ROC analysis were performed to

select the radiomic features, respectively. The realized classification task by the

logistic regression models was performed according to these radiomic features.

Results: Ten most relevant features were selected from data extracted. The

logistic regression applied to T2-FLAIR radiomic features revealed significant

predictor for multiple sclerosis (MS) lesion detection. Only the variable “contrast”

was statistically significant, indicating that only this variable played a significant

role in the model. This approach enhances the classification of lesions

from normal tissue.

Discussion and conclusion: Our exploratory results suggest that the radiomic

models based on MR imaging (T2-FLAIR) may have a potential contribution to

characterization of brain tissues and classification of lesions in pediatric MS.

KEYWORDS

multiple sclerosis, pediatric age, neuroimaging, neuroinflammation, radiomics,
magnetic resonance imaging, characterization and classification of lesions
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1 Introduction

Multiple sclerosis (MS) is a chronic neurological disease that
mainly affects adults, but which can also manifest itself in children,
although it is less common in this age group (Kornbluh and
Kahn, 2023). This disease is an immune-mediated condition, being
characterized by inflammation and destruction of myelin, the
protective layer that surrounds nerve fibers in the central nervous
system (CNS) (Teleanu et al., 2023). When MS occurs in children
and adolescents (i.e., before 18 years of age), diagnostic challenges
are unique, but every expression of the disease in this age group
is also unique, as it can affect physical and cognitive development
at a crucial time in their lives, the impact on functional prognosis
being very important (Teleanu et al., 2023). This condition is
thus known as pediatric-onset MS (POMS). It has some distinct
characteristics and a different course, compared to adults (one
of the most important aspects to mention is the fact that almost
all children and adolescents with the diagnosis progress through
relapses and remissions) (Alroughani and Boyko, 2018).

In addition to all the importance it has for diagnosis,
magnetic resonance imaging (MRI) has allowed the performance of
quantitative analysis of white matter and gray matter lesions, being
a fundamental imaging modality in clinical research (Harrison
et al., 2016). The characteristics of lesions in MS are quite
heterogeneous (both in clinical and neuroradiological terms), with
different stages of evolution that are related to acute and chronic
neuroinflammation processes (active and inactive) (Lucchinetti
et al., 2000; Harrison et al., 2016). This heterogeneity makes
radiomics the ideal tool to extract and characterize MS lesions,
generating tools that could be useful in the eventual automation
of differential diagnosis with other types of lesions of the brain
parenchyma. Several efforts have been made to apply radiomics
in Neurology, namely in the study of tumors, ischemic stroke,
thrombosis characterization, identification of high-risk carotid
plaques, prediction of malignant middle cerebral artery infarction,
intracranial hemorrhage, and intracranial aneurysm (Sotoudeh
et al., 2021).

In the field of primary demyelinating disorders, such
as MS, where acute or chronic inflammation and reactive
astrogliosis may be found, the following diseases have already been
studied using radiomics: neuromyelitis optica spectrum disorders
(NMOSD), Marburg-type MS, Balo’s concentric sclerosis, as well
as acute disseminated encephalomyelitis (ADEM) (Höftberger and
Lassmann, 2017). The results obtained were encouraging and this
has been seen as a field of clear interest for radiomics research, since
it allows the extraction of a large amount of information invisible
to human eye, through the definition of regions of interest (ROI),
which later allow the development of different models, that can be
used as predictors of disease course (Sotoudeh et al., 2021).

In this study, a quantitative and radiomic characterization of
POMS lesions was performed, also involving brain tissue around
them (transitional brain tissue) and brain tissue without lesions.
Volumetric analysis of the brain and lesions were also performed.
A radiomics model based on T2-weighted-Fluid-Attenuated
Inversion Recovery (T2-FLAIR) images was constructed for the
classification of brain tissue in POMS patients scans. Correlations
were also analyzed between demographic, clinical, laboratory
and radiomics data.

TABLE 1 Demographic, clinical and laboratorial characteristics.

n Mean

Age at diagnostic (years) 11 15.6 (± 0.9)

Patient age (years) 11 17.07 (± 1.6)

EDSS score 10 1.7 (± 0.8)

M F

Gender (M/F) 4 (36.4%) 7 (63.6%)

Positive Negative

Oligoclonal bands 7 (63.6%) 1 (9.1%)

EDSS, Expanded Disability Status Scale; Data presented as mean (± standard deviation).

2 Materials and methods

2.1 Patients

Eleven patients diagnosed with POMS (mean age
17.07 ± 1.6 years; 4 males and 7 females) were included in
this study, with an age at diagnosis of 15.6 (± 0.9) years. They
were searched and randomly extracted from the database of the
Pediatric Demyelinating Diseases consultation in our center.
All of them (and their parents) signed an informed consent
document to participate in this study, which was previously
approved by the local Ethics Committee (Centro Hospitalar e
Universitário de Coimbra).

A Neurological examination was performed on all participants
and the Expanded Disability Status Scale (Lublin et al., 2014)
(EDSS score) was used to assess the degree of disability associated
with the disease (mean ± SD = 1.7 ± 0.8). Oligoclonal bands
in cerebrospinal fluid (CSF) were detected in 7 patients (63.6%)
and were absent in 1 (9.1%) (3 patients were not initially
evaluated in our hospital, and information regarding the CSF
study was not available). These immunoglobulin G (IgG) bands,
detected by isoelectric focusing, indicate intrathecal synthesis of
immunoglobulins and may even be useful for differential diagnosis
(Deisenhammer et al., 2019; Cabrera, 2022). Demographic, clinical,
and laboratorial data of patients included in the study are
summarized in Table 1.

2.2 MRI scanning and protocol

In this study, neuroimaging data acquisition was conducted
using 1.5 tesla clinical scanners. Brain imaging data were
obtained through the utilization of FLAIR sequences on
three distinct MR systems: Philips Achieva (TR = 11,000 ms;
TE = 140 ms; TI = 2,800 ms; 24 slices with voxel size
0.4 mm × 0.4 mm × 5.9 mm), GE Signa HDxt (TR = 9,502 ms;
TE = 123.66 ms; TI = 2,250 ms; 22 slices with voxel size
0.4 mm× 0.4 mm× 5.9 mm), and Siemens Espree (TR = 8,000 ms;
TE = 113 ms; TI = 2,500 ms; 24 slices with voxel size
0.4 mm × 0.4 mm × 5.8 mm). These acquisitions were
performed to enhance the understanding of neuroanatomical
features and to facilitate comprehensive analyses within the
scope of this research. The clinical brain MR acquisition
protocol performed included at least T1-weighted images
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(T1-WI), T2-weighted images (T2-WI) and T2-weighted-
Fluid-Attenuated Inversion Recovery (T2-FLAIR) sequences.
Comparison of pre- and post-gadolinium (Gd) in T1-WI
was used to observe and determine contrast-enhancing of
sclerotic lesions.

2.3 Segmentation and volumetric
analysis

Neuroimaging data were preprocessed using 3DSlicer software,
version 5.2.11 (Fedorov et al., 2012), and the extension HD-BET,2

a brain extraction algorithm (skull stripping) based on artificial
neural networks—this allows a robust analysis even in the presence
of neuropathological changes or tissue changes related to patient’s
treatment (Isensee et al., 2019). Whole-brain volumetric analysis
was performed using a segment statistic tool after brain extraction
to quantify the volume of the segment in mm3.

The segmentation of the MS lesions was performed using the
3D Slicer semi-automatic segmentation tool (Fedorov et al., 2012),
and the relevant parameter options to adjust the delineation of
the margins of the regions of interest were based on T2-FLAIR
images.

All semi-automatically generated segmentations underwent a
thorough validation procedure. Visual inspection, conducted by a
minimum of three researchers, was an integral part of this process
to ensure the accuracy and reliability of the segmentation outcomes
(Figure 1). This meticulous validation approach was particularly
feasible given the modest sample size of 11 participants, allowing
for comprehensive visual checks on all segmentation results and
bolstering the confidence in the correctness of the segmentation
procedures.

In addition to lesion segmentation, detailed segmentation of
regions surrounding the lesions, extending up to approximately
1 mm, was performed when feasible. The segmentation process,
carried out using the 3D Slicer semi-automatic tool and guided by
T2-FLAIR images, was executed with precision to avoid including
gray matter. Volumes of interest were carefully drawn in the
contralateral brain region, enabling the study of unaffected tissue.
This comprehensive approach not only facilitated the examination
of MS lesions, but also provided valuable insights into the transition
zone and contralateral white matter, enhancing the depth of this
neuroimaging analysis.

After segmentation, the models module (Fedorov et al., 2012)
was used to provide three-dimensional data, which was later used
to calculate the volume in mm3 of each MS lesion (selecting the
“quantification” option and “segment statistics” thereafter). The
relationship between brain volume and lesion volume, normalized
by lesion size:

Difference volume =
Brain volume− Total lesion volume

Total lesion volume

, was calculated to determine the difference between volumes.

1 https://www.slicer.org/

2 www.neuroai-hd.org

2.4 Radiomics features extraction and
analysis

The segmentation used to determine lesions’ volume was used
to create the 3D model to extract radiomics features, using the
SlicerRadiomics3 extension (Pyradiomics library) (van Griethuysen
et al., 2017). Pyradiomics is an open-source Python package that
was used to calculate a total of 60 radiomics features, organized
into the following classes: first-order statistics (19 features), shape-
based (17 features), gray-level co-occurrence matrix (GLCM) (24
features) (Lin et al., 2023). In addition to the lesions, regions of
interest were also designed to study brain tissue in the transition
zone (between the non-lesioned tissue and around each MS lesion),
and in contralateral white matter zones without evidence of brain
lesions (the results from these ROIs will be referred to as “Normal”).

The methods employed in this study followed the radiomics
approach as proposed by Gillies et al. (2016). The analysis of
medical images primarily focused on extracting first-order features
and features derived from the gray level co-occurrence matrix
(GLCM) (Mayerhoefer et al., 2020). For first-order features,
we computed fundamental statistics, including mean, median,
standard deviation, minimum, and maximum. These parameters
provide a comprehensive understanding of the overall distribution
of voxel intensities in the studied medical images. Simultaneously,
GLCM-based features were utilized to capture more detailed spatial
patterns by exploring relationships between the intensity levels of
voxel pairs. In this study, the selected radiomic features allowed
to highlight texture changes, considering the metrics they provide:
“Entropy” represents the randomness in the image values, and it
is responsible for measuring the average amount of information
needed to encode the values of the image; “SumEntropy” is
defined as a sum of the differences in intensity values measured
in the neighborhood; “Contrast” is known to be a measure
of spatial intensity change; “Autocorrelation” is the metric that
represents the magnitude of fineness, allowing the measurement of
texture roughness; “ClusterProminence” is known as a measure of
skewness and also of asymmetry of the GLCM; “ClusterTendency”
feature is responsible for measuring voxel clusters with similar
gray level values; and “Variance” is the mean value of the square
distances of each intensity value of the mean value. In this study,
GLCM was only used to perform the texture analysis, already used
in neuroimaging (Dhruv et al., 2019; Korda et al., 2021; Gengeç
Benli and Andaç, 2023).

The mean was calculated for all radiomic features extracted
from lesions, transitional tissue, and tissue without presence of
lesions on T2/FLAIR images. The various characteristics were then
subjected to a receiver operating characteristic (ROC) analysis, to
identify those with the greatest power to discriminate between the
three types of tissue (lesion, transition and normal), considering an
area under the curve (AUC) greater than 85% and p-value < 0.05.
The Youden index was calculated, which simultaneously considers
sensitivity and specificity, allowing to find the ideal cut-off
point that maximizes discrimination capacity. These surviving
characteristics were then used for construction of the classification
model through logistic regression (Dieckhaus et al., 2022).

3 https://github.com/aim-harvard/slicerradiomics
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FIGURE 1

Example patient: segmentation of multiple sclerosis (MS) lesions using 3D Slicer’s semi-automatic tool was guided by T2-FLAIR images. All
semi-automated segmentations underwent rigorous validation, including visual inspection by a minimum of three researchers, ensuring accurate
and reliable outcomes.

2.5 Statistical analysis

Statistical analyses for demographic, clinical, and radiomics
data comparison were performed using the Statistical Package for
Social Sciences (IBM Corp., Released 2022. IBM SPSS Statistics
for Windows, Version 29.0. Armonk, NY: IBM Corp.). Non-
parametric tests were used given the small size of the sample,
though the ANOVA was retained due to its robustness to
small sample sizes and ease of interpretation. The Chi-square
(χ2) test was used for comparison of categorical variables,
whereas the Mann-Whitney test was used for the comparison
of quantitative data. Finally, Spearman’s coefficient was used for
studying correlations between demographic, clinical, laboratory
values, and radiomic features. The repeated measures ANOVA
analysis was conducted to identify significant differences between
Lesion, Transition, and Normal tissue groups within subjects. The
analysis is useful for highlighting potential statistically significant
variations in radiomic patterns, emphasizing the potential clinical
relevance of these findings. Statistical significance was considered
for p < 0.05.

Principal component analysis (PCA) is crucial for
dimensionality reduction, providing an in-depth understanding of
intrinsic patterns in complex datasets, such as those encountered
in radiomic studies. In this research, 60 radiomic features were
initially identified, establishing the foundation for subsequent
analyses. The implementation of PCA, in conjunction with ROC
curve analyses, refined this initial set to a more restricted and
informative group of 10 characteristics. This meticulous selection
process highlights the most discriminative features, enhancing the
interpretation of radiomic data with precision and relevance.

It is important to emphasize that the choice of PCA as an
analytical method offers significant advantages. By transforming

the original variables into a new set of variables called principal
components, PCA provides a more compact and interpretable
representation of the data. Each principal component is a
weighted linear combination of the original features, representing
latent patterns in radiomic characteristics that best explain the
variation in the data.

To determine the optimal level of dimensionality reduction
while retaining significant information, the cumulative percentage
of variance explained by the principal components was considered.
It was identified that the first three principal components
collectively explained 77.6% of the total variance, with individual
contributions of 50.3, 20.5, and 6.9%, respectively. This percentage
served as the chosen threshold, as it effectively captured a
substantial portion of the dataset’s variability while minimizing
information loss.

3 Results

3.1 Volumetry analysis

The results of the volumetric analysis are shown in Table 2. The
volume values (cm3) minimum (Min), maximum (Max), mean,
and standard deviation are given for brain volume, total lesion
volume, and normalized volume.

3.2 Tissue group analysis

The results reveal that the analyzed radiomic features provide
valuable insights into the differences among lesions, transitional
tissues, and normal tissues. These findings (Table 3) highlight the
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TABLE 2 Volumetry analysis results.

Min Max Mean SD

Brain volume 1,216.63 1,709.17 1,480.81 155.90

Total volume
Lesion

0.27 10.88 2.84 3.40

Normalized
volume

127.01 5,557.79 1,459.95 1,548.48

Volumetric analysis results, showcasing the minimum (Min), maximum (Max), mean,
and standard deviation (SD) values for brain volume, total Lesion volume, and
Normalized volume.

clinical relevance of radiomic features as potential markers to assist
in the identification and characterization of pathological tissues,
with p-values indicating statistical significance and robust eta-
squared (η2) values (ranging from 0.390 to 0.631), emphasizing the
clinical magnitude of the observed variations.

3.3 Correlations between the volumetry,
EDSS score and laboratory data

Table 4 presents Spearman’s correlation coefficients (Rs) for the
volumetric data. Brain volume (−0.658, P < 0.01) and normalized
volume (−0.638, P < 0.01) were negatively correlated with EDSS
score; total volume lesion (0.547, P < 0.01) was positively correlated
with EDSS.

A significant negative correlation with CSF oligoclonal bands
for total lesion volume (−0.577, P < 0.01) was also observed, as well
as a significant positive correlation for normalized volume (0.577,
P < 0.01) with the same variable.

3.4 Radiomics analysis results

Of the 60 extracted radiomic features, a number of 10 features
remained after the principal component and ROC analyses. Data
for each of the selected radiomic features are shown in Table 5.

In the PCA conducted with 8 components, our objective was to
identify the most effective radiomic features for discerning lesions
from normal tissue (see Figure 2). Notably, we observed that
the first three principal components, characterized by eigenvalues
of 50.3, 20.5, and 6.9%, collectively explained 77.6% of the
variance. These eigenvalues underscore the significance of these
three components in representing data, especially in the context of
studying radiomic characteristics for lesion identification.

Furthermore, the consistently high values of commonalities for
the variables, all exceeding 0.9, signify that a substantial portion of
the variance in the original variables, specifically those related to
radiomic features, is retained within these main components. This
outcome supports the effectiveness of dimensionality reduction in
the context of investigating radiomic characteristics.

The principal component analysis outcomes highlight the
discernible structure in the data, emphasizing that the first three
principal components, with their notable eigenvalues, play a
fundamental role in explaining the observed variability, crucial for
understanding and identifying lesions relative to normal tissue.

Based on the values of the area under the ROC curve (AUC),
the most relevant radiomics features for the classification task

were identified. Of the 60 features, 10 features were evidenced
with AUCs above 85%, demonstrating the ability to discriminate
between classes of interest. The results of the ROC analysis show
high sensitivity and specificity in the classification, as evidenced in
Table 6.

Considering the radiomic features extracted from T2-
FLAIR images, a logistic regression was performed to build
the classification model and identify the best predictors for MS
lesions identification. Nevertheless, the selected variables, namely
“InterquartileRange” and “RobustMeanAbsoluteDeviation,”
yielded unsatisfactory results in the logistic regression due to
extreme odds ratios, indicating a less robust model. For this reason,
logistic regressions were conducted for each radiomic variable
individually, revealing that the variable “contrast” allows for a
statistically significant regression, as indicated by the following
model: the obtained logistic model is statistically significant,
[χ2(1) = 10.278; p < 0.001, R2Negelkerke = 0.498], (OR = 0.580;
p < 0.005).

4 Discussion results

In this exploratory study, which was conducted using a small
sample of POMS patients, as a proof of concept, 10 radiomic
features (five first order and five GLCM) were selected from
three ROIs: MS lesions, tissue around lesions, and contralateral
white matter without the presence of lesions (considered
normal brain tissue).

Statistically significant correlations were found between
volumetric data and EDSS score. These results agree with a
volumetric study performed with twenty-five MS patients, in
which conventional spin echo (CSE) and fast fluid attenuated
inversion recovery (fFLAIR) sequences were used, that also showed
a significant correlation between total lesion volume and EDSS
score (Gawne-Cain et al., 1998). Furthermore, Pontillo et al. (2021)
showed that predictive models based on features extracted from
MRI data have a correlation with clinical disability observed in MS
patients.

When considering the possible relationship between total
volume of lesions measured by MRI (T2-FLAIR) and the presence
of CSF oligoclonal bands, a statistically significant negative
correlation was observed; nevertheless, the normalized volume
showed a significant positive correlation with that laboratory
variable. Recent studies show that patients that test positive for the
presence of oligoclonal bands may have a decrease in the volume
of the amygdala (Zhao et al., 2020). This study also reports more
important microstructural damage in the perilesional normal-
appearing white matter (Zhao et al., 2020), which corroborates
the interest in investigating, from a radiomic point of view, the
perilesional region, which in this study was defined as transitional.
In fact, the concept of “smoldering MS” has been debated within
the scientific community, which refers to the existence of markers
of diffuse inflammatory activity in the brain, far beyond the
focal demyelinating lesions that classically characterize the disease
(Giovannoni et al., 2022). In this aspect, the perilesional region
has been of great interest, as it can, in theory, provide information
regarding the activity of the disease and, in this sense, contribute
to helping define the timing for an eventual therapeutic adjustment
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TABLE 3 Radiomic features analysis with repeated measures ANOVA.

Radiomic features
(GLCM)

Z-value
(between
groups)

Effect size (η 2) Tissue group P-value

Entropy 21.102 0.585 Lesion Transition < 0.001

Normal < 0.001

Interquartile range 25.644 0.631 Lesion Transition < 0.001

Normal < 0.001

Mean absolute deviation 22.936 0.605 Lesion Transition < 0.001

Normal < 0.001

Robust mean absolute deviation 23.595 0.611 Lesion Transition < 0.001

Normal < 0.001

Sum entropy 24.262 0.618 Lesion Transition < 0.001

Normal < 0.001

Autocorrelation 11.062 0.424 Lesion Transition < 0.001

Normal < 0.001

Contrast 9.590 0.390 Lesion Transition < 0.001

Normal 0.006

Cluster prominence 4.812 0.243 Lesion Transition 0.038

Normal 0.032

Variance 13.047 0.465 Lesion Transition < 0.001

Normal < 0.001

Cluster tendency 13.064 0.466 Lesion Transition < 0.001

Normal < 0.001

Results of a repeated measures analysis of variance (ANOVA) for various radiomic features (GLCM) across different tissue groups, including lesions and transition zones versus normal tissue.
The Z-values (between groups), effect sizes (η2), and p-values are reported for each radiomic feature, indicating significant differences in mean values between the groups. Bonferroni-adjusted
multiple comparisons were applied.

(Giovannoni et al., 2022). In this perspective, it will be interesting,
in the future, to design a study focused on deepening knowledge
of the radiomics of the perilesional (or transition) region, and their
possible correlations with clinical parameters.

As mentioned before, radiomics permits the extraction of large
amounts of numerical information from a region of interest defined
in medical images (Scapicchio et al., 2021). After a variable selection
process, it was found that, in this group of patients, there were
10 parameters that proved to be the most important, 5 first order
and 5 belonging to the GLCM class, this one being based on
texture, and being used as a biomarker of heterogeneity, from which
it is possible to obtain information from the microenvironment
of tissues and lesions (Dercle et al., 2017). All of these variables
could contribute to increasing knowledge about the biology of MS
lesions. The study of its behavior and dynamics, reproduced in
imaging exams, has been receiving attention from the scientific
community and could constitute another axis of analysis of the
pathophysiology of the disease and, necessarily, the way in which
available treatments can interfere with it (Moog et al., 2022).

The statistical data derived from radiomic features within
regions of interest of the Lesion, Transition, and Normal groups
reveal statistically significant differences across multiple metrics.
Multiple comparisons suggest consistent variations among groups,
indicating distinctions in the radiomic patterns of lesions compared
to transitional and normal tissues. For instance, pairwise analyses

TABLE 4 Correlations between the volumetry, EDSS score and
laboratory data.

EDSS CSF oligoclonal
bands

Brain volume −0.658** 0.082

Total volume Lesion 0.547** −0.577**

Normalized volume −0.638** 0.577**

Correlations between the volumetry, EDSS score and laboratory data. **The correlation is
significant at 0.01 level.

demonstrate that the mean differences in metrics such as “Entropy,”
“Interquartile Range,” “Mean Absolute Deviation,” “Robust Mean
Absolute Deviation,” “Sum Entropy,” “Autocorrelation,” “Contrast,”
“Cluster Prominence,” “Variance,” and “Cluster Tendency” are all
statistically significant, with p-values < 0.05. Additionally, the η2

values indicate that a substantial proportion of the total variability
in these metrics can be attributed to differences between the
groups, with η2 values ranging from 0.390 to 0.631. These results
underscore the clinical relevance of these radiomic features as
potential markers to aid in the identification and characterization
of pathological tissues.

The characteristics associated with entropy (“SumEntropy,”
“Entropy”) showed a statistically significant correlation with
the tissue group (lesion, transition and normal), as well as a
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FIGURE 2

(A) Scree plot of the principal components analysis. (B) ROC curve after selecting the radiomic characteristics. (C) 3D PCA plot of the 3 main
components of the analysis.

TABLE 5 Class and definition of the selected features in neuroimaging data.

Class Definition

Entropy First order Measures randomness in voxel intensity distribution

InterquartileRange First order The range between the first and third quartiles of a dataset, indicating the spread of values.

MeanAbsoluteDeviation First order Describes dispersion of voxel intensities

RobustMeanAbsoluteDeviation First order A robust version of mean absolute deviation that is less sensitive to outliers.

Variance First order A measure of the spread or dispersion of a set of values around their mean.

SumEntropy GLCM A measure of randomness in the joint distribution of voxel values in GLCM

Autocorrelation GLCM A measure of the similarity between values at different positions in an image.

Contrast GLCM GLCM statistic quantifying the difference between the intensities of a voxel and its
neighbors.

ClusterProminence GLCM Characterizes skewness in distribution of similar intensity voxel pairs

ClusterTendency GLCM Measures tendency of voxels to form clusters with similar intensity values.

Class and definition of the selected features in neuroimaging data: class and definition of the selected features extracted from imaging data. All information available on pyradiomics
documentation (https://pyradiomics.readthedocs.io/en/latest/).

statistically significant difference between groups (normal-lesion
and transition-lesion, p < 0.001). These results are in line with
other radiomics studies, that show that entropy has an important
meaning for the interpretation of tissue heterogeneity, being
therefore considered as a potential imaging biomarker, namely in
oncology (Dercle et al., 2017), but also in the automatic detection
of paramagnetic rim lesions, also seen in adult MS patients
(Lou et al., 2021). The possibility of exploring the automation of
image analysis, taking into account its radiomic characteristics,
is something that could prove to be quite useful in the future,
particularly if image characteristics are considered that the human
eye is not sensitive to.

The results indicate that the developed model may exhibit
a significant performance in classifying multiple sclerosis (MS)

lesions, distinguishing them from the other regions of interest
(ROIs). However, the actual predictive capacity of the model will
need to be investigated in future studies with a different design and
a larger sample of participants, considering “Contrast” as one of the
predictor variables.

This study has some limitations, namely the small sample
size, and it results from the fact that it is only unicentric and
exploratory in nature. In radiomics, the predictive classifier model
is dependent of a sufficient amount (number) of data. A sample
with a minimum of 10 patients has been described as reasonable
for a model based on binary classifiers (and that is why data from
11 patients was included, testing the concept that was set out to
evaluate) (Gillies et al., 2016). In our future studies, the sample
size will be increased, expanding the study to other centers, as well
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TABLE 6 ROC results.

AUC Sensibility Specificity YImax P-value

Entropy 0.967 0.909 0.955 0.864 < 0.001

InterquartileRange 0.988 1 0.955 0.955 < 0.001

MeanAbsoluteDeviation 0.983 1 0.955 0.955 < 0.001

RobustMeanAbsoluteDeviation 0.988 1 0.955 0.955 < 0.001

SumEntropy 0.950 1 0.909 0.909 < 0.001

Autocorrelation 0.971 0.909 0.955 0.864 < 0.001

Contrast 0.917 1 0.727 0.727 < 0.001

ClusterProminence 0.975 1 0.909 0.909 < 0.001

Variance 0.983 1 0.955 0.955 < 0.001

ClusterTendency 0.979 1 0.909 0.909 < 0.001

AUC values selected based on the maximum value of the Youden index.

as include more MRI sequences, radiomics functions and perform
voxel-based morphometry studies.

5 Conclusion

This radiomic approach based on MR imaging (T2-FLAIR)
suggest that this model may have a potential contribution to
the characterization and classification of demyelinating lesions in
POMS, which can facilitate differential diagnosis and eventually
contribute to automating some imaging analysis procedures in
the future. In addition, it can eventually be a potential tool for
understanding the biology of perilesional tissue (whose model also
allows classifying), thus contributing to the improvement of the
understanding of the pathophysiology of this disease.
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P., et al. (2020). Introduction to Radiomics. J. Nucl Med. 61, 488–495. doi: 10.2967/
jnumed.118.222893

Moog, T., McCreary, M., Wilson, A., Stanley, T., Yu, F., Pinho, M., et al. (2022).
Direction and magnitude of displacement differ between slowly expanding and non-
expanding multiple sclerosis lesions as compared to small vessel disease. J. Neurol. 269,
4459–4468. doi: 10.1007/s00415-022-11089-9

Pontillo, G., Tommasin, S., Cuocolo, R., Petracca, M., Petsas, N., Ugga, L., et al.
(2021). Combined Radiomics and machine learning approach to overcome the
clinicoradiologic paradox in multiple sclerosis. Am. J. Neuroradiol. 42, 1927–1933.
doi: 10.3174/ajnr.A7274

Scapicchio, C., Gabelloni, M., Barucci, A., Cioni, D., Saba, L., and Neri, E. (2021).
A deep look into radiomics. Radiol. Med. 126, 1296–1311. doi: 10.1007/s11547-021-
01389-x

Sotoudeh, H., Sarrami, A., Roberson, G., Shafaat, O., Sadaatpour, Z., Rezaei, A.,
et al. (2021). Emerging applications of radiomics in neurological disorders: A review.
Cureus 13:e20080. doi: 10.7759/cureus.20080

Teleanu, R., Niculescu, A., Vladacenco, O., Roza, E., Perjoc, R., and Teleanu, D.
(2023). The state of the art of pediatric multiple sclerosis. Int. J. Mol. Sci. 24:8251.
doi: 10.3390/ijms24098251

van Griethuysen, J., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V.,
et al. (2017). Computational radiomics system to decode the radiographic phenotype.
Cancer Res. 77, e104–e107. doi: 10.1158/0008-5472.CAN-17-0339

Zhao, L., Abrigo, J., Chen, Q., Au, C., Ng, A., Fan, P., et al. (2020). Advanced MRI
features in relapsing multiple sclerosis patients with and without CSF oligoclonal IgG
bands. Sci. Rep. 10:13703. doi: 10.1038/s41598-020-70693-9

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2024.1294574
https://doi.org/10.1186/s12883-018-1026-3
https://doi.org/10.1016/bs.acc.2022.03.004
https://doi.org/10.3389/fimmu.2019.00726
https://doi.org/10.3389/fimmu.2019.00726
https://doi.org/10.1038/s41598-017-08310-5
https://doi.org/10.1080/00207454.2018.1536052
https://doi.org/10.1080/00207454.2018.1536052
https://doi.org/10.1097/RMR.0000000000000296
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1136/jnnp.64.2.197
https://doi.org/10.1136/jnnp.64.2.197
https://doi.org/10.3390/diagnostics13132140
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1177/17562864211066751
https://doi.org/10.3174/ajnr.A4726
https://doi.org/10.1016/B978-0-12-802395-2.00019-5
https://doi.org/10.1016/B978-0-12-802395-2.00019-5
https://doi.org/10.1002/hbm.24750
https://doi.org/10.1016/j.pscychresns.2021.111303
https://doi.org/10.1016/j.pscychresns.2021.111303
https://doi.org/10.1016/j.spen.2023.101054
https://doi.org/10.1007/s00330-023-09827-2
https://doi.org/10.1016/j.nicl.2021.102796
https://doi.org/10.1016/j.nicl.2021.102796
https://doi.org/10.1212/WNL.0000000000000560
https://doi.org/10.1002/1531-8249(200006)47:6<707::aid-ana3<3.0.co;2-q
https://doi.org/10.1002/1531-8249(200006)47:6<707::aid-ana3<3.0.co;2-q
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.1007/s00415-022-11089-9
https://doi.org/10.3174/ajnr.A7274
https://doi.org/10.1007/s11547-021-01389-x
https://doi.org/10.1007/s11547-021-01389-x
https://doi.org/10.7759/cureus.20080
https://doi.org/10.3390/ijms24098251
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1038/s41598-020-70693-9
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Neuroimaging characterization of multiple sclerosis lesions in pediatric patients: an exploratory radiomics approach
	1 Introduction
	2 Materials and methods
	2.1 Patients
	2.2 MRI scanning and protocol
	2.3 Segmentation and volumetric analysis
	2.4 Radiomics features extraction and analysis
	2.5 Statistical analysis

	3 Results
	3.1 Volumetry analysis
	3.2 Tissue group analysis
	3.3 Correlations between the volumetry, EDSS score and laboratory data
	3.4 Radiomics analysis results

	4 Discussion results
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


