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SLoN: a spiking looming
perception network exploiting
neural encoding and processing
in ON/OFF channels

Zhifeng Dai†, Qinbing Fu*†, Jigen Peng and Haiyang Li

Machine Life and Intelligence Research Centre, School of Mathematics and Information Science,

Guangzhou University, Guangzhou, China

Looming perception, the ability to sense approaching objects, is crucial for

the survival of humans and animals. After hundreds of millions of years of

evolutionary development, biological entities have evolved e�cient and robust

looming perception visual systems. However, current artificial vision systems

fall short of such capabilities. In this study, we propose a novel spiking neural

network for looming perception that mimics biological vision to communicate

motion information through action potentials or spikes, providing amore realistic

approach than previous artificial neural networks based on sum-then-activate

operations. The proposed spiking looming perception network (SLoN) comprises

three core components. Neural encoding, known as phase coding, transforms

video signals into spike trains, introducing the concept of phase delay to depict

the spatial-temporal competition between phasic excitatory and inhibitory

signals shaping looming selectivity. To align with biological substrates where

visual signals are bifurcated into parallel ON/OFF channels encoding brightness

increments and decrements separately to achieve specific selectivity toON/OFF-

contrast stimuli, we implement eccentric down-sampling at the entrance of

ON/OFF channels, mimicking the foveal region of the mammalian receptive field

with higher acuity to motion, computationally modeled with a leaky integrate-

and-fire (LIF) neuronal network. The SLoN model is deliberately tested under

various visual collision scenarios, ranging from synthetic to real-world stimuli.

A notable achievement is that the SLoN selectively spikes for looming features

concealed in visual streams against other categories of movements, including

translating, receding, grating, and nearmisses, demonstrating robust selectivity in

line with biological principles. Additionally, the e�cacy of the ON/OFF channels,

the phase coding with delay, and the eccentric visual processing are further

investigated to demonstrate their e�ectiveness in looming perception. The

cornerstone of this study rests upon showcasing a new paradigm for looming

perception that is more biologically plausible in light of biological motion

perception.
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spiking looming perception network, ON/OFF channels, phase coding, eccentric down-
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1 Introduction

Looming perception is an essential ability of sighted
animals that detects objects moving in depth, accordingly
plays critical roles in their daily movements including escaping
from predators, preying, and so forth. With the development of
robotic technologies, the vast majority of mobile robots nowadays
are capable of detecting and avoiding collisions through obtaining
sensor information from their surroundings, for example, infrared
(Benet et al., 2002), ladar (Manduchi et al., 2005), and ultrasonic
(Nelson and MacIver, 2006). Meanwhile, vision-based sensing
modalities are benefiting from their economy, energy saving, and
high-dimension feature acquisition, thus gradually prevailing
over other collision sensing techniques in mobile robotics (Fu
et al., 2019) and ground vehicles (Mukhtar et al., 2015). However,
in terms of reliability and robustness in complex and dynamic
environments, current approaches are far from acceptable for
serving human society.

On the other hand, humans and animals possess highly robust
and efficient dynamic vision systems to handle looming perception
in fast-changing visual environments, which has always been
inspiring researchers to explore the biological visual systems in
order to develop robust artificial vision systems for addressing real
world challenges. In this regard, early studies of mammalian vision
began at the last century of 1930s, in which Hartline pointed out
that the function of brightness increase (ON) and decrease (OFF)
in early visual motion is separated into parallel processing pathways
(Hartline, 1938). This means that the visual neural systems evolved
to split motion information in parallel for better adapting to
dynamic environments, with probably more energy consumption.
After that, neuro-scientists studied the receptive fields (RF) of
cats and rabbits and, in the 1960s, discovered direction-selective
neurons that are sensitive to ON/OFFmoving stimuli along specific
directions (Hubel and Wiesel, 1962; Barlow and Levick, 1965). In
the 1980s, Schiller et al. summarized the function of ON and OFF
channels in the mammalian visual system (Schiller et al., 1986); he
pointed out that ON/OFF retinal ganglion cells constitute the two
polarity pathways of early visual processing.

With advances in biotechnology, the mammalian visual system
has been better understood in recent decades. Many studies
have demonstrated how the mammalian visual systems detect
looming objects by recording the rats’ reactions to the sight of
an approaching disc (Yilmaz and Meister, 2013; Busse, 2018; Lee
et al., 2020). In addition, scientists found that photoreceptors in
the mammalian visual systems are not evenly distributed in the
retina, with rods and cones having a high density in the foveal
region and decreasing toward the marginal regions (Harvey and
Dumoulin, 2011; Wurbs et al., 2013). At the same time, the size
of individual RF increases toward the periphery. This results in a
biological vision that images the foveal region clearly, while the
peripheral region is relatively blurry. These visual characteristics
of mammals have also inspired modeling works accounting for
motion perception (Borst and Helmstaedter, 2015; Fu, 2023).
However, the underlying circuits and mechanisms of biological
vision remain largely unknown.

Although the biological substrates are elusive, computational
modeling is particularly useful for testing hypotheses on biological

signal processing. Regarding computational modeling of looming
perception visual systems, there are many methods inspired by
insects’ visual systems (Fu et al., 2019). Fu et al. introduced
a series of visual neural networks based on the locust’s lobula
giant movement detector-2 (LGMD2) neuronal mechanism,
mimicking its distinctive looming selectivity for darker objects
approaching relative to the background through bio-plausible
ON/OFF pathways (Fu and Yue, 2015; Fu et al., 2018). Owing
to the efficiency in hardware implementation, the model was
applied to the vision systems of micro-robots for quick collision
detection in navigation (Fu et al., 2016). More specifically, the
object movement will elicit the image brightness to change with
respect to time. When the brightness increases, the stimulus
will enter the ON pathway, while the brightness decreases will
enter the OFF pathway. The significance of ON/OFF channels
has been systematically investigated through a recent research
upon implementing different selectivity in motion perception
(Fu, 2023). Moreover, there are also many other models for
motion detection that employ the ON/OFF channels, such as
the elementary motion detectors (EMD) (Franceschini, 2014).
Franceschini et al., for the first time, proposed the splitting of
EMD inputs into ON-EMD and OFF-EMD structures encoding
light and dark moving edges separately for micro-simulation of
photoreceptors in RF (Franceschini et al., 1989). Subsequently,
following advancements in physiological research on the fruit
fly Drosophila, various computational models employing different
combinations of ON/OFF-EMD were proposed to simulate the
motion vision of the fly (Eichner et al., 2011; Joesch et al., 2013;
Fu and Yue, 2020). Additionally, models for small target motion
detectors (STMDs) were developed, drawing inspiration from
insects such as dragonflies and hoverflies. In these models, the
ON/OFF channels play an indispensable role in discriminating
between small moving targets and cluttered, dynamic backgrounds
(Halupka et al., 2011; Wiederman et al., 2013).

However, these bio-inspired motion perception models
essentially belong to the second generation of artificial neural
networks (ANN), where neurons within the network transmit
and calculate real numbers, which are weighted, summed, and
then activated for delivery. Such approaches are not as realistic
as biological visual systems that encode external stimuli as action
potentials or spikes for signal communication between neurons.
Specifically, when the pre-synaptic neuron receives a stimulus
large enough, it is charged to transmit a spike to communicate
with the post-synaptic neuron. Encoding spikes with neuronal
dynamics concerning time gives rise to the third generation of
spiking neural networks (SNNs) (Tan et al., 2020). In terms of
energy efficiency, the SNN undoubtedly prevails over the previous
generations of ANN as the SNN transmits binary information
without multiplication before summation. In addition, sparse
and asynchronous signal processing can also be allowed in SNN
(Lobo et al., 2020). The vast majority of SNN modeling works
have been proposed for addressing real-world challenges including
object detection (Cordone et al., 2022), pattern recognition
(Kheradpisheh et al., 2018; Tavanaei et al., 2019), and perceptual
system (Masuta and Kubota, 2010; Tan et al., 2020). Recently,
Yang et al. (2022, 2023) and Yang and Chen (2023a,b) offered new
insights into enhancing spike-based machine learning performance
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using advanced information-theoretic learning methods. These
studies have introduced novel frameworks to enhance SNN
performance in specific tasks, allowing the model to achieve
high-level intelligence, accuracy, robustness, and low power
consumption compared with state-of-the-art artificial intelligence
works.

In terms of motion perception, to the best of our knowledge,
there are very few modeling works based on the SNN because
decoding video signals to extract motion cues with temporal
coherence is challenging. Salt (2016) and Salt et al. (2017, 2020)
introduced a collision perception SNN implemented in an aerial
robot. However, this study lacked systematic testing in a closed-
loop flight scenario. Recently, the development of dynamic vision
sensors (DVS) has significantly bolstered computer vision and
vision-based robotic applications, e.g., Posch et al. (2014), Milde
et al. (2015), Milde et al. (2017), Vasco et al. (2017), and Gallego
et al. (2022). Compared with traditional, frame-based sensors, the
DVS, such as, event-based camera features low latency, high speed,
and high dynamic range. Most importantly, it can report ON
(onset)/OFF (offset) motion events, which aligns much closer to the
revealed principles of biological visual processing. Utilizing input
from DVS, a novel spiking-EMD (sEMD) model was proposed
for encoding ON/OFF motion events and decoding the direction
of motion via the “time-of-travel” concept (Milde et al., 2018;
D’Angelo et al., 2020). However, the cost of DVS is high, limiting its
flexibility in mobile robotics due to its larger size and higher power
requirements. Here, we aim to develop a more general method for
SNN inmotion perception that can be used with either frame-based
or event-driven sensors.

Accordingly, this study introduces a novel SNN model, the
Spiking Looming perception Network (SLoN), which offers two-
fold advantages over previous ANN models. On one hand, the
SLoN is more biologically realistic as it encodes visual streams
into spikes for communication within the network. On the other
hand, the SLoN mimics the receptive field (RF) of mammalian
vision for looming perception with new bio-plausible concepts
and mechanisms to achieve specific looming selectivity. The
cornerstone of this study is based on the following aspects:

• In consonance with mammalian motion vision (Fu, 2023),
the SLoN introduces ON/OFF channels that split the input
signals into parallel pathways for neural encoding and down-
sampling. This structure enables the SLoN to achieve varying
looming selectivity to ON/OFF-contrast stimuli, improving
robustness in complex and dynamic visual scenarios.

• Various neural coding models transform continuous signals
into spatiotemporal spike trains, generally categorized as
rate-based and temporal coding methods (Guo et al., 2021).
Currently, neural coding is predominantly used to convert
images into spike trains over a time window, with limited
application in processing sequences of images for extracting
motion information with temporal coherence. In the proposed
SLoN model, phase coding is employed to convert video
signals into spike trains as input. The phase coding method
encodes video signals into spike trains using a binary
representation, dividing each frame into eight periods with
weighted spikes and emphasizing the significance of early

TABLE 1 Nomenclature of this study.

ANN Artificial neural network

DVS Dynamic vision sensor

EC Eccentric down-sampling

EPSC Excitatory post-synaptic current

FFI Feed-forward inhibition

IPSC Inhibitory post-synaptic current

LGMD Lobula giant movement detector

LIF Leaky integrate-and-fire

PC Phase coding

PD Phase delay

RF Receptive field

sEMD Spiking elementary motion detector

SLoN Spiking looming perception network

SNN Spiking neural network

spikes (Kim et al., 2018). Importantly, a new concept of
phase delay (PD) is introduced to capture the spatiotemporal
competition between excitatory and inhibitory currents within
the ON/OFF channels, generating specific looming selectivity.
The phase coding with delay mechanism not only combats
noise but also portrays the fundamental characteristics of
interactions between excitatory and inhibitory signals at a
small time scale. This enables the proposed SNN model to
process data from frame-based cameras.

• The mammalian receptive field (RF) does not sample as
uniformly as traditional cameras (D’Angelo et al., 2020). To
align with this, a strategy of eccentric down-sampling (EC)
is adopted at the entry of ON/OFF channels of the proposed
SLoN. The EC uses square regions to approximate the round
retina of the animal, maintaining a quadrilateral camera
resolution. Each RF spatially integrates information within its
sensitive region through leaky integrate-and-fire (LIF) neuron
models. The EC thus implements the foveal region with higher
acuity to motion. Compared with previous study, this study
delineates the EC for a better understanding of its computer
implementation.

The rest of this study is structured as follows. Section 2
introduces the framework of SLoN with elaborated algorithms and
illustrations, the setting of network parameters and experiments.
Section 3 presents the systematic experimental results with analysis.
Section 4 provides further discussions and concludes this research.
The nomenclature used in this study is shown in Table 1.

2 Materials and methods

Within this section, we propose the methodology, including the
framework of SLoN, the parameter setups, and the experimental
settings. As the underlying mechanisms of biological looming
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FIGURE 1

The complete structure of the spiking looming perception network (SLoN): (A) Exemplifies the signal processing diagram of the SLoN against a light

looming square. The network captures di�erential images between successive frames and splits luminance change into ON/OFF channels by

half-wave rectifiers. The motion information is then transformed into spike trains through phase coding and eccentric down-sampling. There are

excitatory and inhibitory post-synaptic current (EPSC and IPSC) generated within ON/OFF channels. There is a feed-forward inhibition (FFI) pathway,

and the ON/OFF-type LIF neurons convey polarity spikes to the output SLoN neuron. (B) Illustrates the diagram of the local LIF neuronal network

structure for EC. (C) The Schematic diagram of the spiking layer representing transmission and computation of EPSC and IPSC, both aggregated at

the summation (S) cell, then fed into the ON/OFF-type LIF neurons. The inhibition shares a larger scale than the excitation. If the population firing

rate is greater than the threshold, EC cells will directly suppress the LIF cell through the FFI channel.

perception visual systems remain largely elusive, this SNN model
is inspired by a few relevant studies. These include the modeling of
ON/OFF channels in the locust’s LGMDmodel to separate different
looming selectivities to ON/OFF-contrast stimuli (Fu et al., 2020a),
eccentric down-sampling methods mimicking the mammalian
receptive field (D’Angelo et al., 2020), and phase coding (Kim et al.,
2018) with the inaugural concept of phase delay to process and
correlate video signals. The complete structure of SLoN is shown
in Figure 1. The EC and PD are shown in Figures 2, 3, respectively.

2.1 Framework of SLoN

In general, the proposed SLoN consists of three layers: the
neural encoding layer, the spiking interaction layer, and the output
layer. Specifically, the main difference from the vast majority of
SNNs is that the SLoN prioritizes motion retrieval from videos
to respond to looming motion features rather than handling

singular images. Accordingly, within the first layer, the differential
images between successive frames are split into ON/OFF channels
encoding luminance increments/decrements, respectively. Phase
coding is adopted to transform pixel intensity features into spatial-
temporal spike trains, where each period is represented by eight
phases. Importantly, the most significant information is retained
in the first phases of each period, with the significance decaying
by phase. The ON/OFF spike trains are then fed into an eccentric
down-sampling mechanism, a partial neural network with LIF
neurons, to simulate mammalian vision with higher acuity in the
foveal region.

Within the second, spiking interaction layer, both EPSC and
IPSC are generated within the ON/OFF channels. The inhibitory
signals are temporally phase-delayed and spatially influenced by a
larger field relative to the excitatory ones. This competition between
them effectively responds most strongly to the expanding edges of
objects over other types of motion stimuli. The ON/OFF-type LIF
neurons integrate the corresponding EPSC and IPSC to generate
polarity spikes. In addition, there are feed-forward inhibition (FFI)
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pathways that can directly suppress the ON/OFF-type LIF neurons
if either the population rate exceeds a threshold. At the last layer, the
output SLoN neuron integrates spikes from the ON/OFF channels,
which inherently is another LIF neuron.

2.1.1 ON/OFF motion retrieving
At the initial step, the SLoN does not handle every single image

from a visual stream. Instead, motion information between two
adjacent frames is retrieved. Assume L(x, y, f ) ∈ R3 is the f th frame
image brightness value, where x, y denote spatial positions, we can
obtain the motion information as

P(x, y, f ) = L(x, y, f )− L(x, y, f − 1) (1)

As movement inevitably induces brightness increment and
decrement within receptive field, the motion information is spit
into parallel ON/OFF channels. This is achieved by half-wave
rectifiers where the brightness increments/decrements flow into
ON/OFF channels, respectively, mathematically expressed as

Pon(x, y, f ) =
[
P(x, y, f )

]+
+ α1Pon(x, y, f − 1) (2)

Poff (x, y, f ) =
[
P(x, y, f )

]−
+ α1Poff (x, y, f − 1) (3)

where α1 is a coefficient, which stands for the residual information
in time. [x]+, [x]− are denoted as max(x, 0) and max(−x, 0),
respectively.

2.1.2 Phase coding with weighted spikes
There are many neural coding methods as reviewed in the

study by Guo et al. (2021), such as rate coding (Heeger, 2000),
time-to-first-spike coding (Park et al., 2020), and burst coding
(Eyherabide et al., 2009). Among these, phase coding was initiated
in relation to the oscillatory firing pattern of neurons (O’Keefe
and Recce, 1993; Laurent, 1996). Laurent conducted biological
experiments on locusts, where a specific odor was directed toward
one antenna of a locust. Laurent observed an oscillatory response
in the mushroom body calyx of the locust. Building on this
foundation, Kim et al. (2018) introduced an enhanced phase coding
method with weighted spikes, emphasizing timing information. In
this approach, the processing time of the stimulus is divided into k
phases, and the stimulus is converted into binary values. Each phase
is assigned a 0 or 1 (1 for a spike and 0 for no spike), with different
weights assigned to each phase highlighting the importance of early
information. The weight decays significantly concerning the phase
time in each period, indicating that the most critical information
is conveyed in the earlier phases. The proposed SLoN aligns with
this coding strategy but introduces a novel concept of phase delay
to accommodate spatial-temporal interactions between excitatory
and inhibitory signals, aiming to shape the looming selectivity.
Taking a few examples in Figure 2, the phase coding divides motion
information, i.e., intensities of luminance change in ON/OFF
channels into eight phases that constitute a time unit of computer
processing. The weight of each phase is 2−1, 2−2, . . . , 2−8, and then

the algorithm assigns 0, 1 to each phase with different weights. The
computation can be defined as

Con(x, y, 8(f − 1)+ i) = mod(
Pon(x, y, f )

2i
, 2), i = 0, 1, . . . , 7 (4)

Coff (x, y, 8(f − 1)+ i) = mod(
Poff (x, y, f )

2i
, 2), i = 0, 1, . . . , 7 (5)

where mod(x, y) is the modulus function that divides x by y. We
herein use time phase instead of video frame to represent time t.
Con/off (x, y, 8(f − 1) + i) thus can be expressed as Con/off (x, y, t) in
the following equations defined in this section. The ON/OFF-type
spike trains can be obtained by assembling phasic spikes, spatially.
Then, the weight of each phase in every period is computed as

ω(t) = 2−(1+mod(t,8)). (6)

2.1.3 Eccentric down-sampling at the entrance
of ON/OFF channels

Eccentric down-sampling uses a square RF to approximate a
circular retina, as shown in Figure 3. The RF decreases linearly from
the edge to the foveal area, where each RF corresponds to a single
image pixel. First, we define the size and center of the RFs. The same
sized RFs form a square ring. We can define only the position of
upper left corner of each square ring, and then the foveal region
will be defined. Accordingly, the size and center of the upper left
corner of RFs can be computed as

Rc(i) = Rc(i− 1)+
1

2
Rs(i− 1), i = 1, 2, . . . , l (7)

Rs(i) = max(Rs)−
max(Rs)

dfovea
Rc(i), i = 1, 2, . . . , l (8)

where i is the number of layers of the square ring, Rs(i) represents
the size of the RF of the upper left corner of the ith layer, and Rc(i)
represents the center of the RF of the upper left corner of the ith

layer. max(Rs) indicates the size of the outermost edge of the RF,
and dfovea is the total distance from the periphery to the edge of
the foveal region whose dimension is 10% of the size of the image.
l is the last layer number of edge square ring and Rs(l + 1) <

2. The square ring starts at layer-0. The length of the upper left
corner of the 0th layer square ring is max(Rs), and its center is
(max(Rs)

2 , max(Rs)
2 ). For ease of description, we arrange all RFs in a

column as a set A: A = {RF1,RF2, . . . ,RFm}, where the side of RFk
is Rs

k
and its center position is (Rx

k
,R

y

k
).

Basically, the EC herein is equivalent to a local SNN, and each
RF is modeled as an LIF neuron (Gerstner et al., 2014), which
integrates the information of the pixels it contains. When the
membrane potential of the RF exceeds the threshold, it fires a spike
to the next layer of its connected neurons. Taking the ON channel
for example, the entire process can be defined mathematically as

Mon(k, t) = Mon(k, t1)e
− dt

τ +

⌊
Rs
k
2

⌋

∑

i=

⌊
−

Rs
k
2

⌋

⌊
Rs
k
2

⌋

∑

j=

⌊
−

Rs
k
2

⌋

Con(Rxk + i,R
y

k
+ j, t)

Rk

(9)
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FIGURE 2

Illustration of the proposed phase coding with delay of IPSC: intensities of visual streams are transformed into spike trains with which each period

consists of eight phases. Two periods herein are shown for each RF as the new concept of PD. Spikes are indicated as vertical red bars. In this figure,

the delay is set at 2 phases.

Son(k, t) =

{
1 ifMon(k, t) ≥ ρ

0 ifMon(k, t) < ρ
(10)

where Mon(k, t) represents the membrane potential of RFk, t1
indicates the moment of last emitted spike, and Rk is a percentage
area of the RF. Rk affects the amount of current received by the pixel
which RFk contains. ⌊·⌋ denotes the floor function, and Son(k, t)
indicates whether the RFk emits spike at moment t. ρ is a spiking
threshold for each RFk, and τ is a time constant (τ = 1,000

fps
, fps

represents frames per second, i.e., the sampling frequency).
Next, we discuss which RFs the output neurons are connected

to. We rezone the image, for which we need to take out a series of
points. Denote the set of all upper left corner points of the square
ring at the edge as a set B: B =

{
(x0, y0), (x1, y1), . . . , (xl, yl)

}
,

the set of diagonal points in the foveal region as a set C:
C =

{
(xl+1, yl+1), (xl+2, yl+2), . . . , (xl+n, yl+n)

}
, and the set of all

bottom right corner points of the square ring at the edge as a set D:
D =

{
(xl+n+1, yl+n+1), (xl+n+2, yl+n+2), . . . , (x2l+n+1, y2l+n+1)

}
,

and the entire process can be defined mathematically as

xi = yi = Rc(i)−
1

2
Rs(i); i = 1, . . . , l (11)

xl+1 = yl+1 = Rc(l), xl+i = yl+i = xl+i−1 + 1; i = 2, 3, . . . , n
(12)

xl+n+i = yl+n+i = L− xl−i+1; i = 1, . . . , l+ 1 (13)

where L denotes the side length of the image, n is the dimension of
the foveal region which starts at Rc(l), and (x0, y0) is (0, 0). Now, we
re-divide the image into regions and the delineated areas are

△(x)
n = [xn, xn+1] ,△

(y)
n =

[
yn, yn+1

]
; n = 0, 1, . . . , 2l+ n (14)

△
(x)
n ,△

(y)
n denote the nth region of x-axis and y-axis in Cartesian

coordinate system, respectively. From this, we can establish the
connection between the RF and the output neurons as

R(x̃, ỹ) =
{
RFk | (x, y) ∩ (△(x)

x̃ ×△
(x)
ỹ ) 6= ∅, (x, y) ∈ RFk, k = 1, 2, . . . ,m

}

(15)
R(x̃, ỹ) represents the RF which the output neuron (x̃, ỹ)

fastened. Furthermore, the output of neuron (x̃, ỹ) can be calculated
as

M̃on(x̃, ỹ, t) = M̃on(x̃, ỹ, t2)e
− dt

τ +
∑

RFk∈R(x̃,ỹ)

Son(k, t) (16)
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FIGURE 3

Schematic diagram of the eccentric down-sampling in the proposed SLoN: The neurons in the output layer are spatially distributed over the RF layer,

taking the red, yellow, blue neurons as examples to illustrate how the RF of input layer has been down-sampled. The outside area of RF has larger

intersects, whereas the inner area has one-to-one correspondence of RF (yellow neuron).

S̃on(x̃, ỹ, t) =

{
1 if M̃(x̃, ỹ, t) ≥ ρ

0 if M̃(x̃, ỹ, t) < ρ
(17)

where t2 indicates the moment of last emitted spike, M̃on(x̃, ỹ, t),
S̃on(x̃, ỹ, t) represents the membrane potential and spike of the
neuron at (x̃, ỹ). The eccentric down-sampling computations of
OFF channels align with ON channels, which is not explicitly
reiterated.

2.1.4 Spike-based interaction with phase delay
After neural encoding and eccentric down-sampling, the

information within the ON/OFF pathways is transmitted to
the second, spiking interaction layer, further extracting looming
motion features. In the ON pathway, the excitatory input will
be directly conveyed to the next summation sub-layer without
time delay by convolving surrounding spikes as EPSC. Meanwhile,
the inhibitory input is phase-delayed by convolving surrounding
delayed spikes as IPSC. The computations in the OFF pathway can
be obtained in the same way. The entire process can be defined as

Eon(x̃, ỹ, t) = ω(t)(
1∑

i=−1

1∑

j=−1

S̃on(x̃+ i, ỹ+ j, t)W1(x̃+ i, ỹ+ j))ρ (18)

Ion(x̃, ỹ, t) = ω(t−ǫ)(
4∑

i=−4

4∑

j=−4

S̃on(x̃ + i, ỹ + j, t−ǫ)W2(x̃ + i, ỹ + j))ρ

(19)

Eoff (x̃, ỹ, t) = ω(t)(
1∑

i=−1

1∑

j=−1

S̃off (x̃+ i, ỹ+ j, t)W1(x̃+ i, ỹ+ j))ρ (20)

Ioff (x̃, ỹ, t) = ω(t−ǫ)(
4∑

i=−4

4∑

j=−4

S̃off (x̃+ i, ỹ+ j, t−ǫ)W2(x̃+ i, ỹ+ j))ρ

(21)
where Eon/off (x̃, ỹ, t) represents the EPSC and Ion/off (x̃, ỹ, t) denotes
the IPSC. ǫ indicates the delayed phase time, andW1,W2 are spatial

convolution matrices, obeying Gaussian distribution to adjust the
connection weights of intermediate neurons.

Although the previous ANN methods apply similar strategy
to shape the looming selectivity, e.g., Fu et al. (2018, 2020a), the
proposed SLoN differs mainly in the following aspects:

• The SLoN is more biologically plausible as transmitting and
processing action potentials between connected neurons.

• The looming selectivity can be implemented through
spatiotemporal competition between excitation and
inhibition, as demonstrated in previous modeling studies (Fu
et al., 2019; Fu, 2023). Here, we introduce the new concept of
phase delay to reflect the spatiotemporal competition between
non-delayed EPSC and delayed IPSC.

• The EPSC is generated by the activities of a relatively smaller
area of excitatory input spikes; on the other hand, the IPSC has
a larger impact despite being delayed.

Therefore, the competitive interaction between EPSC and
IPSC within the ON/OFF channels happened at the summation
sub-layer as

Gon(x̃, ỹ, t) = Eon(x̃, ỹ, t)− Ion(x̃, ỹ, t) (22)

Goff (x̃, ỹ, t) = Eoff (x̃, ỹ, t)− Ioff (x̃, ỹ, t) (23)

The summation LIF neuron receives remaining current
injection, causing an increase in neuronal membrane potential. If
there is no input spikes, the neuron’s membrane potential decays to
the resting potential level. On the other hand, when the membrane
potential exceeds the threshold, the neuron fires a spike, and the
potential immediately declines to the resting level. Such neuronal
dynamics can be described as

Ŝon(x̃, ỹ, t) = U(Von(x̃, ỹ, t3)e
− dt

τ + Gon(x̃, ỹ, t)− ω(t)ρ)) (24)
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Von(x̃, ỹ, t) = Von(x̃, ỹ, t3)e
− dt

τ + Gon(x̃, ỹ, t)− ω(t)Ŝon(x̃, ỹ, t)ρ
(25)

Ŝoff (x̃, ỹ, t) = U(Voff (x̃, ỹ, t4)e
− dt

τ + Goff (x̃, ỹ, t)− ω(t)ρ)) (26)

Voff (x̃, ỹ, t) = Voff (x̃, ỹ, t4)e
− dt

τ + Goff (x̃, ỹ, t)− ω(t)Ŝoff (x̃, ỹ, t)ρ
(27)

where U(·) is the Heaviside step function, and t3, t4 indicate the
moment when last spike was emitted from corresponding neurons
within ON/OFF channels, respectively. Von/off (x̃, ỹ, t) represents

the membrane potential, and Ŝon/off (x̃, ỹ, t) represents whether the
neuron at (x̃, ỹ) releases a spike at t phase time. Notably, the spike
weight ω(t) and the threshold ρ are associated with the calculation
of neuronal membrane potential and spike.

2.1.5 ON/OFF-type LIF neurons and
feed-forward inhibition

Subsequently, there are ON/OFF-type LIF neurons, pooling
spikes from ON/OFF channels. Notably, the summation sub-
layer and LIF neurons are fully connected with a global Gaussian
distributed matrix W3 for either ON/OFF pathways. Inspired by
the locust’s LGMD computational models (Fu et al., 2019), here we
introduce ON/OFF-type feed-forward inhibition (FFI) mechanism
which works effectively to suppress directly the ON/OFF-type LIF
neurons if large area of RF is highly activated inside a tiny time
window. The previous research has demonstrated the effectiveness
of FFI mechanism to prohibit the model from responding to the
non-collision stimuli including rapid view shifting. Differently to
the previous computations of FFI, we nevertheless compute the
population firing rate of ON/OFF-type events to determine its
efficacy. The computation can be defined as

Fon(t) = ω(t − ǫ)(

∑DL
i=1

∑DL
j=1 S̃on(x̃, ỹ, t − ǫ)

DL2
) (28)

Foff (t) = ω(t − ǫ)(

∑DL
i=1

∑DL
j=1 S̃off (x̃, ỹ, t − ǫ)

DL2
) (29)

where DL represents the length of down-sampled image after EC.
Notably, the phase weight ω is also coupled with the calculation
yet with the phase delay ǫ. The FFI output decides whether
the ON/OFF-type LIF neurons receive spikes from the ON/OFF
channels. Precisely, when the population rate exceeds a threshold,
the LIF neuron will be directly suppressed, not receiving any input
spikes. The computation can be expressed as

Ĩon(t) =

{
ω(t)(

∑DL
i=1

∑DL
j=1 Ŝon(i, j, t)W3(i, j))ρ if Fon(t) < Sth

0 if Fon(t) ≥ Sth
(30)

Ĩoff (t) =

{
ω(t)(

∑DL
i=1

∑DL
j=1 Ŝoff (i, j, t)W3(i, j))ρ if Foff (t) < Sth

0 if Foff (t) ≥ Sth
(31)

where Sth is the threshold. Otherwise, the ON/OFF-type LIF
neurons are charged by input spikes working as the following
dynamics:

¯Son(t) = U(Ṽon(t5)e
− dt

τ + Ĩon(t)− ω(t)ρ)) (32)

¯Soff (t) = U(Ṽoff (t6)e
− dt

τ + Ĩoff (t)− ω(t)ρ)) (33)

Ṽon(t) = Ṽon(t5)e
− dt

τ + Ĩon(t)− ω(t) ¯Son(t)ρ (34)

Ṽoff (t) = Ṽoff (t6)e
− dt

τ + Ĩoff (t)− ω(t) ¯Soff (t)ρ (35)

Similarly, t5, t6 indicate the moment of last emitted spike from
ON/OFF-type LIF neurons, respectively. ¯Son/off (t) represents the
generated spike in current phase time, and Ṽon/off (t) is the neuronal
membrane potential.

2.1.6 SLoN output neuron
As shown in Figure 1, the SLoN has only one output neuron to

indicate whether there is any potential looming motion identified
by the network. The outputs of ON/OFF-type neurons are linearly
combined at the SLoN output neuron, which is

I(t) = ω(t)(θ1 ¯Son(t)+ θ2 ¯Soff (t)) (36)

where {θ1, θ2} are term coefficients to adjust the different selectivity
to ON/OFF-contrast looming stimuli. We will demonstrate the
selection of such parameters in the experiments. Finally, the output
of the SLoN is calculated as

S(t) = U(V(t7)e
− dt

τ + I(t)− ω(t)ρ)) (37)

V(t) = V(t7)e
− dt

τ + I(t)− ω(t)S(t)ρ (38)

where U(·) is the Heaviside step function, t7 indicates the moment
of last emitted spike, and S(t),V(t) represent the spike and the
membrane potential of the SLoN output neuron, respectively. The
detailed online signal processing algorithms are also shown in
Algorithm 1.

2.2 Setting the parameters

The parameters and their settings are shown in Table 2. It
is essential to emphasize that the SLoN processes visual signals
in a feed-forward structure without any feedback connections.
Furthermore, learning methods were not employed in this
modeling endeavor. The primary focus of this study was to
propose an SNN framework that emulates biological visual
neural systems for looming perception and integrates ON/OFF
channels for eccentric neural encoding. The parameters were
determined with considerations of mainly two aspects as
follows:

• Certain parameters, such as the LIF spiking threshold
and the standard deviations in connection matrices, were
adjusted during experimental validation to enhance looming
perception performance. The paramount consideration was
achieving robust looming selectivity tested across diverse
visual scenarios.

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2024.1291053
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Dai et al. 10.3389/fnins.2024.1291053

• On the other hand, the SLoN drew modeling inspiration
from several notable studies: (1) The parameters of PC
with weighted spikes were adapted from the modeling
study by Kim et al. (2018), and the novel concept of
PD was further investigated in the experiments. (2) The
parameters of EC were derived from the modeling study
by D’Angelo et al. (2020), and we provided a more detailed

Input: L(x, y, t)

Output: S(t)

1 Receive video input :L(x, y, t)

2 1. ON/OFF motion retrieving:

3 The motion information is spit into parallel

ON/OFF channels by Equations 1-3.

4 2. Neural encoding and eccentric down-sampling:

5 The signal is encoded and down-sampled by

Equations 4-17.

6 3. Spike-based interaction:

7 The competitive interaction between EPSC and

IPSC via Equations 18-27

8 4. ON/OFF-type LIF neurons and FFI:

9 Calculation of population firing rate Fon/off (t) by

Equations 28, 29

10 if Fon/off (t) ≥ Sth then

11 ON/OFF-type LIF neurons do not receive spike

input via Equations 30-35.

12 else

13 ON/OFF-type LIF neurons are charged via

Equations 30-35.

14 5. Output neuron:

15 SLoN neuron integrates ON/OFF input via

Equations 36-38.

Algorithm 1. Online algorithm of the SLoN.

description of the EC algorithms. (3) The fundamental
structure of ON/OFF channels was based on recent
biological and computational advancements in visual motion
perception (Fu, 2023).

2.3 Setting the experiments

To validate our proposed SLoN and investigate its key
components, we conducted experiments across four categories,
encompassing computer-simulated and real-physical stimuli. The
goals were to demonstrate: (1) the basic functionality of the
proposed model for looming perception with robust selectivity,
(2) the efficacy of the ON/OFF channels in implementing diverse
selectivity to ON/OFF-contrast looming stimuli, (3) the impact of
the inaugurated concept of phase delay on looming perception,
and (4) the results of an ablation study with comparison on down-
sampling methods in the SLoN model.

Specifically, the experimental videos were divided into two
parts. The first part included computer-simulated movements such
as approaching, receding, translating, and grating stimuli, aligning
with related physiological research. The second part involved more
challenging real-world vehicle crash videos from a dashboard
camera recording, which was sourced from related modeling
research (Fu et al., 2020b). All input videos were of size 100 × 100
pixels, sampled at 30Hz. The source code of SLoN and visual stimuli
used in the experiments can be accessed as open source at Github.

3 Results and analysis

Within this section, we present the results of systematic
experiments with analysis. This includes four categories of
experiments to verify the effectiveness of the proposed SLoN
model. The main objectives of these tests fall within the following
scope of

TABLE 2 Parameters of the SLoN.

Parameter Description Value

α1 Coefficient at signal bifurcation of the neural encoding layer (Equations 2, 3) 0.1

max(Rs) Largest size of RF in Equation 8 10

τ Time constant in Equations 9, 16, 24, 25, 26, 27, 32–35, 37, 38 1,000
fps

Rk Percentage area of the RF in Equation 9 0.6

ρ LIF neuron firing threshold in Equations 10, 17–21, 24–27, 30–35, 37, 38 0.9

σ1 Standard deviation of Gaussian kernel in Equations 18, 20 1

σ2 Standard deviation of Gaussian kernel in Equations 19, 21 0.5

σ3 Standard deviation of Gaussian kernel in Equations 30, 31 1

ǫ Phase delay time in Equations 19, 21, 28, 29 2

L Side length of original input visual stimuli 100

DL Down-sampled side length in Equations 28–31 58

Sth Threshold of FFI population rate in Equations 30, 31 0.1

{θ1 , θ2} Term coefficients in Equation 36 {0.5, 0.5}
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FIGURE 4

The results of the computer-simulated movements are presented, including (A) looming, (B) receding, (C) grating, and (D) translating. The images

above the experimental results are snapshots of the input stimuli. The results are organized into two sub-graphs each, with one illustrating the

position of the activated neurons over time as raster plots (i.e., the spike trains), and the other depicting the final spike output of the model. In the

spike trains, the X-axis represents the phase time, while the Y-axis indicates ON/OFF-events in a vector after phase coding. In the model response,

the X-axis indicates the phase time, and the Y-axis indicates the binary output of spikes.

• Verifying the effectiveness of SLoN for
looming perception against a variety of visual
collision challenges,

• Implementing the different looming selectivity to ON/OFF-
contrast aligned with biological principles,

• Demonstrating the efficacy of phase delay in spike-based
interaction shaping looming selectivity,

• Highlighting the robustness of EC mechanism increasing
the fidelity of looming perception across various
complicated scenarios.

3.1 Basic functionality

For collision perception models, the most important property
to achieve is whether the model can respond most strongly
to moving object signaling approaching rather than other types
of movements. This is also naturally one criterion of “looming
selectivity” for computer models. First, we carried out experiments
on the approaching of squares, at four contrasts, as shown in
Figure 4A. We can observe that the SLoN spikes for either white
or dark objects, and the contrast matters. The encoded spike trains
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FIGURE 5

The results of vehicle crash scenarios are depicted, with the images above the experimental results illustrating each stage of collision events. The

results are presented in three sub-graphs: the top panel represents the position of the S cells activated in the OFF channel, the middle panel

represents the position of the S cells activated in the ON channel, and the bottom panel represents the final spike output of the model. The Y-axis

indicates binary pulse events, and the X-axis elaborates on phase time. The SLoN releases spikes for collision perception right before the colliding

moment while remaining quiet in normal navigation, as challenged by 12 highly complex scenes.

show more denser events within ON/OFF channels delivered to
the spiking interaction layer, and the events of action potentials
spread out spatially with respect to the approaching of squares. At
all the tested contrasts, the SLoN performs stably on perception of
looming motion.

On the other hand, we also did experiments with objects
receding to observe if the model would generate spike to this
opposite stimulus. Figure 4B shows, conversely, the spatiotemporal
distributions of spike trains challenged by receding stimuli.
Interestingly, the SLoN does not generate any spikes in this case,
marking the emergence of looming selectivity.

Additionally, we tested the SLoN with stimuli involving
translating movements, including sinusoidal grating at different
frequencies and single-bar crossing at four contrasts. Figure 4C
demonstrates that the SLoN does not consistently respond to
grating at certain frequencies but is regularly activated in some
cases. We observed that the PD and the threshold of FFI population

rate Sth can influence the SLoN’s response to grating. Increasing
the threshold could suppress the SLoN’s response to grating stimuli
but might impact the perception of looming motion if set too
high. The subsequent experiments in Figure 8 will illustrate the
influence of PD on grating stimuli. While adjusting the delay can
suppress the response to grating stimuli, it can also compromise
the model’s ability to detect collisions. Attempts to make the model
resolve both grating and approaching stimuli by adjusting the
activation threshold within the neuron model were not entirely
successful in distinguishing between approaching and receding
stimuli. Moreover, the proposed EC facilitates the SLoN model
in capturing motion features near the center of view. Zooming
in on the grating pattern reveals motion features that were not
discernible before the implementation of EC. Raising the threshold
could suppress the SLoN’s response to grating stimuli butmay affect
the perception of looming motion. Additionally, the spike trains,
as shown in Figure 4D, display action potential events as the bar
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FIGURE 6

The illustration of ON/OFF channels in SLoN showcases the specific selectivity to only darker approaching objects rather than other categories of

movements. (A) presents results of two darker and two brighter objects approaching. (B) presents results of four contrasting objects receding from

the RF.

FIGURE 7

The examination of phase delay in the SLoN concerning approaching and receding stimuli is conducted using computer-simulated movements,

including dark/white approaching and receding scenarios. The SLoN model with a phase delay of ǫ = 2 proves to be optimal, aligning with

expectations, by responding exclusively to approaching stimuli.
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moves rightward across the RF, and the SLoN remains inactive
against such motion patterns.

To increase the challenge, we conducted experiments using
real-world car crashes recorded by dashboard cameras. The SLoN
model exhibits robust performance against various crash scenarios,
generating brief spikes just before the moment of collision
(Figure 5). Due to the high complexity of the vehicle scenes and
the redundancy of spike trains after down-sampling, we present
the activation location of ON/OFF polarity S-cells instead of EC
cells. It could be difficult to find collision events directly from such
spike train patterns. Nevertheless, the proposed SLoNmodel works

effectively to filter out irrelevant information, accurately extracting
looming motion cues.

3.2 Potential of ON/OFF channels

The preceding bio-inspired collision perception visual systems
demonstrate the capability to achieve diverse looming selectivity to
ON/OFF-contrast, representing darker or brighter objects moving
against a background. Specifically, the neural network model

FIGURE 8

The examination of phase delay in the SLoN concerning grating and translating stimuli is conducted using computer-simulated movements. Four

di�erent frequencies of grating movements are tested. The SLoN model with a phase delay of ǫ = 0 outperforms other comparative tests in this case,

indicating that the SLoN should not respond to any grating or translating stimuli.
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proposed by Fu et al. (2018) achieves the selectivity of the locust’s
LGMD1 neuron, responding to both dark and white looming
objects. With the introduction of biased-ON/OFF channels, the
neural model presented by Fu et al. (2020a) realizes the unique
selectivity of the locust’s LGMD2 neuron to only darker looming
objects. In a recent study (Chang et al., 2023), feedback neural
computation is incorporated into the original model based on
ON/OFF channels to achieve diverse selectivity to either ON/OFF-
contrast looming stimuli.

To align with the functionality of ON/OFF channels revealed
in neuroscience (Fu, 2023), we conducted experiments to achieve a
similar selectivity to the aforementioned LGMD2 neuron model,
which is only sensitive to darker approaching objects, signaling
OFF-contrast. The experiments so far have demonstrated that the
SLoN model can achieve the selectivity of the locust’s LGMD1,
responding to the approaching of both white and dark objects.
Figure 6 illustrates situations involving white and dark objects
approaching and receding. As our proposed SLoN combines
ON/OFF-type LIF neurons at the final output layer, we have
the flexibility to adjust the contribution of either channel to
the final LIF neuron. In previous experiments, ON-type and
OFF-type spikes contributed equally. However, in these specific
tests, we adjusted the coefficients in Equation 36, with the
coefficient for the OFF pathway increased to 0.7 and that of
the ON pathway decreased to 0.3. This adjustment indicates
that OFF-type spikes contribute relatively more to the network.
Consequently, as shown in Figure 6, the SLoN only generates
spikes for dark looming patterns against a white background,
at two contrasts, over any other movements. The model also
exhibits a higher frequency of spikes in response to darker looming
stimuli.

It is noteworthy that, unlike the model of the locust’s LGMD2
proposed in the study by Fu et al. (2020a), which also responds
briefly to a white object receding within a dark background (OFF-
contrast), the proposed SLoN can better distinguish approaching
from receding courses. Therefore, the ON/OFF channels in the
SLoN contribute potentially to enriching the selectivity to align
with the requirements of looming detection in more complex,
real-world scenarios.

3.3 Investigation of phase delay

The phase time delay is a novel concept introduced in this
modeling work. This subsection delves into the selection of the
delay window in looming perception. As shown in Section 3.1, the
delay is a crucial parameter that empowers our model to address
the grating problem and refine the looming selectivity. The default
setting for the delay is two phases, as shown in Table 2. In this
investigation, we explored a range between 0 and 8, where 0 implies
no delay in the IPSC, while 8 indicates that the IPSC is delayed to
the same phase as the previous video frame.

The results are shown in Figures 7, 8, encompassing various
motion patterns, with only representative results showcased.
When the delay is set to 0, the SLoN model does not respond
to any stimulus, including dark/white approaching, receding,
translating, and grating movements, rendering it devoid of motion
sensitivity. This underscores the crucial role of phase delay in
constructing amotion perception SNNwhen utilizing phase coding
to transform motion features into ON/OFF-type spike trains.
The spatiotemporal competition between excitation and inhibition

TABLE 3 Results of di�erent phase delay in the SLoN against real-world collision challenges.

Dataset Delay 0 Delay 1 Delay 2 Delay 3 Delay 4 Delay 5 Delay 6 Delay 7 Delay 8

Car collision1 # ! ! ! ! ! ! ! #

Car collision2 # # ! ! # ! # ! #

Car collision3 # ! ! ! ! ! ! ! #

Car collision4 # ! ! ! # ! # ! #

Car collision5 # ! ! ! # ! ! ! #

Car collision6 # ! ! ! # ! ! ! #

Car collision7 # ! ! ! # ! # ! #

Car collision8 # ! ! ! ! ! ! ! #

Car collision9 # # ! # # # ! # #

Car collision10 # ! ! ! # ! ! ! #

Car collision11 # # ! ! # ! ! # #

Car collision12 # # ! # # # # # #

Ball collision1 # ! ! ! # ! ! ! #

Ball collision2 # # ! # # # # # #

Ball collision3 # # ! # # # # # #

Ball collision4 # # ! # # # # # #

The notation “delayX” indicates that X-phases are delayed in the SLoN model.

# indicates the model fails to looming perception while!indicates true positives.
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consistently proves to be pivotal in shaping the specific looming
selectivity as affirmed by numerous prior studies (Fu, 2023).

Obviously, when the PD increases to 1, the SLoN works
effectively to detect approaching stimuli, however, also responds to
receding stimuli. After further increasing the PD to 2, the SLoN can
distinguish between approach, receding very well which is more
in line with the expected looming selectivity. A limitation of the
SLoNmodel is its inability to effectively handle grating movements,
as it continues to be activated by certain frequencies, resulting
in regular clustering of spikes. Addressing this issue requires the
introduction of new bio-plausible mechanisms and algorithms in
future research. Additionally, the PD cannot be set too large, as
shown in Figures 7, 8, since the SLoN loses its ability for looming
perception. We further investigated real-world collision challenges
with different delays, and the results are shown in Table 3.

In summary, our investigation indicates that a PD of two-
phases is an optimal temporal delay for the interaction between

EPSC and IPSC in the network. This choice corresponds to
the concentration of ON/OFF-type spike events, which are more
heavily weighted within the initial phases through phase coding.
This observation suggests that the most pertinent information is
effectively conveyed to the ON/OFF-type LIF neurons during the
early time window of each video frame. However, the current
analyses are solely based on experiments where the mathematical
analysis of PD should be involved in the future work.

3.4 Ablation study on eccentric
down-sampling

Photoreceptors density in the mammalian retina is high at the
fovea and decreases toward the periphery area. A recent study
(D’Angelo et al., 2020) combined event-driven visual processing

FIGURE 9

In the comparative results of the ablation study on down-sampling methods against dark/white looming and receding stimuli, ECSNN represents the

SLoN with EC down-sampling method, NDSNN represents the SLoN without any down-sampling method, and ADSNN represents the SLoN with the

traditional average down-sampling method. Both ECSNN and NDSNN can distinguish between approaching and receding movements, with NDSNN

demonstrating a higher spiking rate. However, ADSNN cannot respond to looming stimuli.
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FIGURE 10

Comparative results of ablation study on down-sampling methods against grating and dark/white translating stimuli following Figure 9.

to model sEMD with the non-uniform retina model as a down-
sampling of the visual field.We agreed with this strategymimicking
mammalian motion vision and incorporated the EC mechanism in
the neural encoding of ON/OFF channels. Other motivations for us
to model EC were (1) further sharpening up the looming selectivity
as the object normally expands from the center area of visual field
and (2) enhancing the robustness across complex visual scenes as
the EC could potentially reduce noisy optical flows resident in the
periphery. Accordingly, this subsection carries on ablation study
on the down-sampling method and compares the EC with typical
uniform down-sampling in the framework by SLoN’s.

The results are shown in Figures 9–12. Three sets of
experiments were conducted for each investigatedmodel, including
the EC down-sampling SLoN (ECSNN), the SNN with no
down-sampling (NDSNN), and the average down-sampling SLoN
(ADSNN). The synthetic stimuli, as shown in Figures 9, 10,
revealed similar behavior between ECSNN and NDSNN. Both
models responded to white/dark objects approaching but not to

objects receding and translating. However, they were not effective
in addressing the grating problem at certain frequencies.

Furthermore, ECSNN exhibits earlier spikes than NDSNN in
response to approaching objects (Figure 9), indicating that the EC
mechanism concentrates motion-induced excitations in the central
RF. Additionally, NDSNN is more responsive to grating stimuli
than ECSNN. Conversely, ADSNN proves ineffective at detecting
looming objects and other types of motion stimuli. This study
underscores the unsuitability of uniform down-sampling for the
proposed algorithm.

To assess the capability of EC down-sampling in improving the
model’s performance in real-world complex scenarios, experiments
with vehicle collision stimuli were conducted. Twelve different
scenarios were used to test the three comparative models. The
results presented in Figures 11, 12 demonstrate the superior
performance of ECSNN compared with the other two models,
exhibiting robustness against all collision perception scenarios.
Specifically, ECSNN recognizes all collisions, NDSNN detects only
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FIGURE 11

Comparative results of the ablation study on down-sampling methods against complex vehicle crash scenarios: the proposed SLoN with EC works

most robustly to detect all imminent collisions in real-world scenes.

four collision events, and ADSNN detects five events. The small
size of the RF in the EC-based SLoN model in the foveal region
and its larger size in the edge region contribute to its heightened
sensitivity to motion at the fovea, aligning with mammalian vision
characteristics. The ECmechanism significantly enhances the SLoN
model’s response to approaching objects. The summarized results
of real-world collisions are presented in Table 4, and a couple of
additional experiments on ball collisions were included.

4 Discussion

In this study, we introduce a spiking looming perception
network (SLoN) inspired by biological motion vision. Our
systematic experiments demonstrate the efficacy of the SLoNmodel
in detecting approaching objects while remaining unresponsive

to receding and translating ones. Additionally, we showcase the
model’s robustness in addressing complex challenges posed by real-
world scenarios. The investigations into the intrinsic structures
of SLoN, encompassing the ON/OFF channels, eccentric down-
sampling mechanism, and phase delay, affirm the following key
achievements in this modeling research:

• The incorporation of ON/OFF channels in motion-sensitive
spiking neural networks enables the implementation of
diverse looming selectivity to ON/OFF-contrast stimuli. This
capability enhances the stability of model performance in
complex and dynamic scenes.

• The newly introduced concept of phase delay extends the
theory of phase coding, aligning well with the spatiotemporal
interaction between excitatory and inhibitory signals to
establish specific looming selectivity. As a result, the proposed
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FIGURE 12

Comparative results of the ablation study on down-sampling methods against complex vehicle crash scenarios: the proposed SLoN with EC

outperforms other models in real-world scenes.

SLoN distinguishes itself from typical SNN models that are
designed for pattern recognition or object detection.

• The eccentric down-sampling mechanism not only mimics
mammalian vision but also aligns with the characteristic of
looming perception, focusing more on the expanding edges
of objects from the foveal region of the visual field. This
feature proves particularly beneficial in complex visual scenes,
reducing the model’s sensitivity to strong optical flows at the
periphery.

Moreover, the SLoNmodel can achieve the selectivity of locust’s
LGMD2 (Simmons and Rind, 1997). By adjusting the weighted
ON/OFF-type LIF neurons, the OFF channels contributemore than
ON channels to the final output neuron. Consequently, the SLoN
model achieves specific selectivity for darker objects approaching.

The final ablation experiment also verified the effectiveness of
EC down-sampling. The SLoN responds to objects approaching
rather than receding and translating. Such fidelity in looming
perception is maintained in complex vehicle crash scenarios, which
would be practical for utilization in mobile machines. This non-
uniform sampling implies that the peripheral RF demands more
stimulation to emit spikes. Essentially, the EC mechanism also
reduces the dimension of input to the subsequent network with a
decreased number of intermediate neurons.

We also note some shortcomings of the SLoN model. First,
it cannot address cases of low-contrast motion, i.e., when there

is a small luminance difference between the moving target and
the background. In such instances, the SLoN model may struggle
to detect approaching objects, as the LIF neurons in the initial

encoding layer rely on visual contrast for spiking. Additionally,
the SLoN model responds to grating movements at certain
frequencies, which is not in line with expectations from either
biological looming perception circuits or their computational
models. Second, the feed-forward inhibition mechanism, learned
from the modeling of locust’s LGMD neuronal models, works

TABLE 4 Results of the ablations study on down-sampling methods in the

SLoN model against real-world collision challenges.

Dataset ECSNN ADSNN NDSNN

Car collision1 ! ! !

Car collision2 ! # #

Car collision3 ! ! #

Car collision4 ! # !

Car collision5 ! ! #

Car collision6 ! ! #

Car collision7 ! # !

Car collision8 ! ! !

Car collision9 ! # #

Car collision10 ! # #

Car collision11 ! # #

Car collision12 ! # #

Ball collision1 ! ! !

Ball collision2 ! # #

Ball collision3 ! ! #

Ball collision4 ! # #

# indicates the model fails to looming perception while!indicates true positives.

effectively to suppress such stimuli, but to some extent, it influences
the responsive preference to approaching stimuli. There is a trade-
off in tuning the FFI mechanism, as the threshold is not adaptive
at present. Finally, it is essential to note that the SLoN model, like
other vision-based neural models, is highly dependent on realistic
lighting conditions. Under extreme conditions, such as excessively
bright or dark scenes, our model may face challenges.
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The future direction of this study encompasses three key
aspects. First, we aim to incorporate event-based sensing
modalities into the SLoN, providing an ideal match at the
neural encoding layer. This approach not only enhances
energy efficiency but also offers a high dynamic range,
making it adaptable to extreme lighting environments
(Gallego et al., 2022). In the SLoN model, the sensor
could potentially replace the neural coding layer, directly
generating ON/OFF-type spike trains as input for the EC down-
sampling, as demonstrated in previous studies (D’Angelo et al.,
2020).

Second, in the investigation of phase delay, we have set
the maximum value at 8, considering that one video frame is
composed of eight phases. However, further research is needed
to explore the optimal choice of delay for different types of
stimuli. In a previous LGMD2 modeling study (Fu et al.,
2020a), inhibitory currents were found to be related not only
to the excitatory current of the current frame but also to the
excitatory current of the previous frame. Adjusting the delay
can partially address specific types of stimuli. The exploration of
different delay scopes and whether smaller delays are preferable
requires systematic investigation, representing a focus for future
work.

Third, our future research will delve into learning methods or
time-varying, adaptive mechanisms to effectively handle grating
stimuli. This represents a significant area for improvement in the
SLoN model.

In conclusion, this study presents a computational model
of a spiking looming perception network (SLoN) inspired by
biological vision. Our objective is to capture looming perception
in a manner consistent with neural information processing in
the brain. The proposed model features an eccentric down-
sampling mechanism that connects ON/OFF channels for neural
encoding and transmission. Notably, we employ phase coding
to transform video signals into spike trains for input to the
SLoN, enabling the model to process data from frame-based
cameras. Additionally, we introduce phase delay to represent the
spatiotemporal interaction between excitation and inhibition for
achieving looming selectivity. Systematic experiments validate the
effectiveness and robustness of the SLoN model across a variety of
collision challenges. The foundational structure of SLoN positions
it well for integration with event-driven cameras, a focus for future
investigations.
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