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A neuromorphic system is composed of hardware-based artificial neurons and 
synaptic devices, designed to improve the efficiency of neural computations 
inspired by energy-efficient and parallel operations of the biological 
nervous system. A synaptic device-based array can compute vector–matrix 
multiplication (VMM) with given input voltage signals, as a non-volatile memory 
device stores the weight information of the neural network in the form of 
conductance or capacitance. However, unlike software-based neural networks, 
the neuromorphic system unavoidably exhibits non-ideal characteristics that 
can have an adverse impact on overall system performance. In this study, the 
characteristics required for synaptic devices and their importance are discussed, 
depending on the targeted application. We categorize synaptic devices into two 
types: conductance-based and capacitance-based, and thoroughly explore the 
operations and characteristics of each device. The array structure according to 
the device structure and the VMM operation mechanism of each structure are 
analyzed, including recent advances in array-level implementation of synaptic 
devices. Furthermore, we reviewed studies to minimize the effect of hardware 
non-idealities, which degrades the performance of hardware neural networks. 
These studies introduce techniques in hardware and signal engineering, as well 
as software-hardware co-optimization, to address these non-idealities through 
compensation approaches.
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1 Introduction

The neuromorphic system, designed to mimic the neuron-synapse connections of the 
human neural network, aims to achieve a robust and efficient operation in big data-based deep 
learning and artificial intelligence (AI) systems (Mead, 1990; Ham et al., 2021). To accomplish 
this goal, it focuses on key characteristics of biological neural networks, such as large-scale 
parallel signal processing and ultra-low power consumption. Over the past few decades, 
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extensive research has been conducted on artificial neural network 
(ANN) algorithms, which emulate biological neural networks using a 
mathematical perceptron (Jain et al., 1996; Maass, 1997; Gardner and 
Dorling, 1998). These ANN algorithms include various network 
structures like convolutional neural networks (CNNs), used for image 
classification through kernel-based feature extraction, and fully 
connected networks (FCNs) with multiple perceptron layers (Albawi 
et al., 2017; Gu et al., 2018). In general, ANNs operate in two phases: 
the ‘training’ phase, where interconnected synaptic weights are 
adjusted in the direction of the desired output based on gradient 
descent with respect to the loss function, and the ‘inference’ phase, 
where output values are determined through the vector–matrix 
multiplication (VMM) of input data and weights. Throughout this 
phase, neuron outputs are represented using activation functions such 
as sigmoid, ReLU, tanh, and others.

Neuromorphic systems can perform powerful and efficient neural 
computations by hardware implementations of ANNs (Misra and 
Saha, 2010; Indiveri and Liu, 2015; Schuman et al., 2017), and the 
basic concept of hardware-based neural networks (HW-ANNs) with 
synaptic devices is described in Figure  1. In HW-ANNs, the two 
phases of the ANN algorithm can be realized by reading and adjusting 
the states of synaptic devices for inference and training, respectively. 
The SW-ANN model can be implemented as array structure-based 
hardware consisting of several synaptic elements. The ANN model has 
three core components: input vector x, weight matrix w, and output 
vector f(w·x), where f is the activation function. When these 
components are implemented in hardware, they have the following 
correspondence: (1) Input vector x corresponds to signals applied to 
the wordlines (WLs) of the synapse device array. For example, in the 
case of the Modified National Institute of Standards and Technology 
database (MNIST), images are composed of 28 × 28 pixels with 8 bits 
per pixel. Such images are encoded into waveforms based on pulse 
amplitude or repetition count and then presented as input to the 
neural network. (2) The weight matrix, denoted as w, is implemented 

by the state of synapse devices. Assuming a conductance-based device, 
it is symbolized as G. (3) The output vector, denoted as f(w·x), which 
serves as the input vector to the next layer, corresponds to the output 
of the CMOS peripheral circuit. The output current (Ii) at each BL can 
be determined by the VMM operation of the input voltage signals (Vj) 
applied to the WLs and the device state. Neuron circuits in HW-ANNs 
correspond to activation functions in SW-ANNs and are implemented 
in analog or mixed-signal circuits to represent the output signal 
generation or firing of neurons. These circuits receive presynaptic 
signals from synaptic devices, and then generate corresponding output 
signals when integrated signals exceed a certain threshold.

Generally, incorporating synaptic devices into large-scale 
neuromorphic systems demands consideration of specific 
performance metrics aligned with industrial requirements. These 
metrics include (1) non-volatile memory, which is essential for 
maintaining network function by reliably storing weight values; (2) 
high integration density is necessary to efficiently accommodate a 
large neural network in a limited area; (3) high operating speed is 
needed for fast inference (read) and training (write) operations in 
HW-ANNs; (4) low power consumption is desired to achieve energy-
efficient neural network operations, including both inference and 
training. Various types of synaptic devices have been investigated for 
these purposes and can be categorized into two types: conductance-
based and capacitance-based. Among conductance-based devices, 
there are two-terminal devices exhibiting memristive behaviors 
(Strukov et al., 2008) and three-terminal devices with an additional 
selecting electrode such as a gate for the channel conductivity. Synaptic 
array architectures, which consist of synaptic device cells, can vary 
based on the device operation mechanism and structure, each having 
its unique VMM operations depending on the array structure. 
Furthermore, the neuromorphic system can be  affected by the 
inherent non-ideal characteristics of synaptic devices. Due to material 
and process-related limitations, synaptic devices may exhibit 
non-linear and asymmetric conductance modulations, a narrow on/

FIGURE 1

Correspondence between SW-ANN and HW-ANN realized by synaptic device array and the correlation between SW-ANN and HW-ANN. Red text 
indicates that it is implemented by synaptic devices.
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off ratio, low precision of device states, poor reliability, and device-to-
device or cycle-to-cycle variations. These challenges make it difficult 
to achieve reliable and accurate analog computing operations, 
including computations with analog states, compared to conventional 
digital computing. To mitigate this issue, device-to-circuit- and 
circuit-to-algorithm-level studies have been conducted to explore 
compensation methods for addressing hardware non-idealities.

This article provides a comprehensive investigation into 
neuromorphic systems with non-volatile memory devices. This article 
explores the significance of synaptic device metrics in various 
applications and discusses their importance. Firstly, synaptic devices 
are discussed depending on the operation mechanism and device 
structure in Section 2. Furthermore, the corresponding array structure 
is explored, including weight mapping schemes with recently reported 
advances, such as capacitor-based synapses. In Section 3, we have 
introduced studies that explored the compensation methods to 
mitigate hardware non-idealities from two perspectives. Given 
inevitable non-idealities, compensation approaches against the 
non-idealities are discussed, including hardware and signal 
engineering as well as software-hardware co-optimization methods to 
specifically address non-idealities and enhance neuromorphic system 
performance. We believe that this review article could contribute to a 
better understanding of recent advances in neuromorphic system 
engineering and the development of hardware-driven neural network 
systems, even in the presence of non-idealities.

2 Synaptic devices

The essence of a neuromorphic system resides in synaptic devices 
that not only fulfill ‘store’ functions but also execute ‘computational’ 
operations. In other words, synaptic devices must be capable of both 
storing the states and accurately representing analog values while also 
performing precise VMM operations. These functionalities hold 
immense importance as they directly influence the performance of 
neural network applications. The following are the required 
performance metrics that synaptic devices should exhibit, as depicted 
in Figure 2 (Misra and Saha, 2010; Chen et al., 2017; Yu, 2018). (1) 
Linearity: it indicates how much the conductance of a device changes 
in relation to the applied pulses. Better linearity means that the 
amount of weight change is consistent in relation to the number of 
applied pulses. This factor plays a critical role in weight modulation to 
reach a target device state. It also affects the precision of weight states, 
along with the time and energy necessary for weight modulation. 
Linearity can be  analyzed through the conductance response (G 
response) according to the number of pulses. (2) Asymmetry: it refers 
to the disparity in the amount of conductance change (ΔG) when the 
device undergoes potentiation (increasing conductance) or depression 
(decreasing conductance). This implies that ΔG depends on the 
current state of the device. Thus, when certain pulses are applied to 
the current state, an imbalance arises in the conductance increase and 
decrease, which subsequently affects the precision of weight 
adjustment. Asymmetry can be determined from G response, and G 
versus ΔG response data can provide a more intuitive interpretation. 
(3) On/off ratio: it is also referred to as the dynamic range, the on/off 
ratio signifies the proportion between the maximum conductance 
(Gmax) and the minimum conductance (Gmin) achievable by the device. 
The higher dynamic ranges provide sufficient margins between weight 

states, guaranteeing weight precision and establishing a more stable 
state representation. (4) Precision: it means the number of states that 
a device can exhibit within its dynamic range, corresponding to the 
concept of multi-bit characteristics in the conventional memory 
device. It entails maintaining intervals between device states to achieve 
multi-bit representation, aligning with the objective of preventing 
overlaps. The attainable number of states relies on the distribution of 
states resulting from device variability. Weight precision is closely 
related to the capability of analog value implementation. (5) Retention: 
it is a reliability metric for memory devices, indicating their ability to 
maintain their current weight states effectively. To assess it consistently 
over an extended period, changes in conductance state are analyzed 
under high-temperature conditions. (6) Endurance: it is also a 
reliability metric that quantifies how many switching cycles a memory 
device can endure. It evaluates the number of times the device can 
switch during set/reset or program/erase pulse cycles, serving as a 
measure of the weight update lifetime and directly impacting the 
overall performance of HW-ANNs.

In addition to these considerations, the switching (write/read) 
speed of synapse devices, which represents the fundamental level of 
the overall system, must be  carefully addressed to efficiently 
implement large-scale HW-ANNs. Slow operation of synaptic devices 
can lead to decreased throughput and increased latency, making it a 
critical metric for real-time applications across the entire system 
(Zhang W. et al., 2019). Moreover, power consumption is a crucial 
requirement at the device level. Energy efficiency, from a device design 
perspective, is closely tied to the switching operating voltage of 
memory devices. Balancing power consumption and operational 
stability requires careful design and configuration of switching/read 
voltage amplitudes, especially to achieve selective operation on target 
cells (van De Burgt et al., 2018). However, it is important to note that 
the metrics associated with synaptic devices, while critical, do not 
always collectively fulfill ideal characteristics. For instance, achieving 
excellent retention may come at the cost of low endurance, and weight 
precision may vary based on factors such as on/off ratio and 
programming characteristics. Furthermore, consistently defining 
optimal synapse device characteristics proves challenging due to 
diverse considerations such as target application, network topology, 
and system-wide optimization. More details on these challenges are 
provided below.

There are two HW-ANN learning methods: in-situ (online) 
learning and ex-situ (offline) learning. In-situ learning involves 
conducting training directly on the hardware itself. This method 
possesses tolerance and self-adapting capabilities toward hardware 
imperfections (Li et al., 2018). On the other hand, the ex-situ approach 
involves training in software and then importing the pre-trained 
weights into the neuromorphic system. Ex-situ learning benefits from 
the direct use of training algorithm in software-based artificial 
intelligence, resulting in higher performance. Figure 3 explains the 
operation phases of each learning method. The primary action in 
in-situ learning is weight update, while ex-situ learning focuses on 
transferring the pre-trained weights, referred to as weight import. 
Consequently, the importance of specific metrics in the synaptic 
devices varies according to the learning method. In other words, the 
required metrics for synaptic devices are application-dependent.

The requirements of each metric can be prioritized based on the 
characteristics of the target application. (1) Frequency of state writing/
reading: In classification applications (or inference machines, 
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write-once-read-only systems), the stored memory state is read 
repeatedly, necessitating uniform reading at every step. Therefore, 
metrics such as retention, read stability, read speed, and a wide on/off 
ratio are of greater importance. Conversely, for on-chip training 
applications (such as pulse modulation, online learning for DNN), 
frequent weight update-state writing is required in hardware. 
Achieving this necessitates the use of a constant programming pulse, 
thus requiring synapse devices with robust endurance to sustain 
operational range during frequent and swift switching. Precise linear 
and symmetric programming, along with high bit precision, is 
essential to clearly represent different states (Sun and Yu, 2019; Zhao 
et al., 2020). (2) Network topology: The size of the network and the 
defined form of input/weight/output also influence metric 
requirements. As the network size increases, the array size grows 
accordingly, and design considerations must extend beyond single-
device operation to the array level. With an increase in the number of 
cells, desired values at the single-cell level may change due to inter-cell 
influence, necessitating faster switching speeds. Furthermore, 
depending on whether the input/weight/output form of the neural 
network is binary or analog, requirements for weight precision vary 

according to the on/off ratio and programming characteristics. (3) 
Systematic design interface: Additionally, considering the hierarchy of 
the overall neuromorphic system, specifications of the signal 
conversion peripheral circuit connected to the synaptic device (such 
as DAC/ADC precision, parasitic resistance, etc.) as well as the on/off 
ratio, weight precision, and speed of the synaptic device should 
be considered.

The desired metric values are outlined in Table 1, where their 
significance varies depending on the target application, often 
necessitating trade-offs. Key metrics for enhancing synaptic device 
characteristics include tuning accuracy during weight import, 
conductance response for weight updating, long retention time for 
weight storage, and evaluating the difference in VMM current during 
weighted sum operations (VMM operations). The importance of each 
metric can fluctuate depending on specific operational requirements, 
such as read speed for inference and write speed for frequent weight 
updates. We will explore the operational principles and metrics of 
conductance-based devices (both two- and three-terminal devices) as 
well as capacitance-based devices to achieve these desired synaptic 
device characteristics.

FIGURE 2

Requirements for large-scale neuromorphic systems and each performance metric for synaptic device.

FIGURE 3

Operating phases in hardware neural networks and required metrics for each phase.
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2.1 Two-terminal devices

2.1.1 Resistive random access memory (RRAM)
Resistive random-access memory (RRAM) is one of the most 

representative two-terminal devices with a metal–insulator–metal 
(MIM) structure in general, as shown in Figure  4A. Resistance 
changes occur within an intermediate material known as the switching 
layer, utilizing a variety of metal oxide materials such as TiOx, HfOx, 
AlOx, WOx, TaOx, and others. RRAM can be classified into filamentary 
type and non-filamentary type (also referred to as interfacial type; Lee 
et al., 2008; Jang et al., 2015; Wang et al., 2015; Hu et al., 2022). The 
filamentary type includes OxRAM (metal oxide RRAM) and CBRAM 
(conductive bridge RAM). OxRAM utilizes metal oxide materials as 
the switching layer, and oxygen ions migrate toward the top electrode 
when switching voltage is applied, leading to the formation of 
conductive filaments (CFs) consisting of oxygen vacancies within the 
switching layer. Various metal oxide materials can be employed, and 
in certain cases, a thin bilayer can be  introduced to facilitate the 
development of multiple weaker filaments, enabling gradual switching 
operations (Gao et al., 2017). CBRAM forms a CF consisting of metal 
ions and employs materials such as metal oxides, amorphous silicon, 
and solid electrolytes as the switching layer. Due to its operation 
mechanism, it is believed to have the potential to be scaled down to 
an atomic-level dimension. This type of RRAM device exhibits 
stochastic and abrupt switching characteristics due to the randomness 
of CF generation. Consequently, this leads to challenges in achieving 
the desired state because of non-linearity in the conductance response 
and variations in device reliability caused by fluctuations in the device 
state. In addition, CBRAM tends to have a relatively high LRS (low 
resistance state) current due to the metal path within the CF, resulting 
in increased leakage current. In contrast, the switching materials 
employed in non-filamentary type devices are not as widespread as 
those used in filamentary types, leading to increased costs, reduced 
retention, and slower switching speeds (Gao et al., 2016).

The operation of RRAM can be  divided into three phases—
forming, set, and reset—which are determined by the states of CFs 
within the switching layer. Initially, RRAM is in the pristine state, 
where little to no conductive filament is present in the switching 
region, resulting in minimal current flow. When voltage is applied to 
the top electrode, oxygen ions (O2−) migrate toward the top electrode, 
generating oxygen vacancies in the switching region. This results in 
the formation of CF through which electrons can flow, a process 
known as the forming phase. During the forming phase, RRAM 
transitions to the LRS, allowing current to flow easily through the 
CF. In the LRS, applying VRESET to the top electrode induces 
recombination of oxygen ions near the top electrode, filling the oxygen 
vacancies and leading to the rupture of the CF. As a result, the device 
switches to the HRS (high resistance state) with reduced current flow. 
This process is called the reset operation. In the HRS, applying VSET to 
recreate the conductive filament is known as the SET phase. The 
current–voltage (I-V) curve of a typical RRAM device, exhibiting its 
representative switching behavior, is shown in Figure 4B. Based on this 
characteristic, it is necessary to determine an appropriate read voltage 
(Vread) that does not alter the device state.

RRAM offers several advantages, including BEOL (back-end-of-
line) compatibility, scalability (4F2/n, where n refers to the number of 
layers in the 3-D structure), nanosecond-level read/write speed, 106 
endurance cycles, and low power consumption (Wong et al., 2012). 
However, RRAM exhibits stochastic resistance states resulting from 
the randomness of oxygen vacancy generation by oxygen ion trapping 
and de-trapping. Thus, this leads to device-to-device and cycle-to-
cycle variations in conductance values rather than maintaining a 
stable conductance level Liao et al. (2020) incorporated the number 
of conductive filaments (N), filament gaps (Tgap), and applied voltage 
(V) into the I-V characteristic of the switching region of multiple-
weak-filament-based analog RRAM. This enables us to anticipate the 
dynamic switching behavior of RRAM devices with stochastic 
characteristics. Furthermore, based on the mathematical modeling, it 

TABLE 1 Desired figure of merit as synaptic devices and significance of each metric according to operating phase in a hardware-based neural network.

Figure of merit Desired value Importance of each metric according to operating phase 
(larger number, higher requirement)

Weight 
import

Weight update Weight storage Weighted sum

Weight programming
Linear and symmetric

(small non-linearity; 0.5 ~ 1)a
5 5 1 2

On/off ratio 50b 4 5 1 5

Weight precision 16 (4 bits)c ~ 64 (6 bits)b 5 5 1 2

Retention
103 ~ 108 s, 

10 years at 85°Cd
5 2 4 5

Endurance
~109 cycles 

(online learning)
2 5 4 2

Write/read speede <1 μs

aThe given numbers are defined by the non-linearity formula, as detailed in Yu et al. (2016). As a result of evaluation with NeuroSIM+ for both online and offline learning modes, non-linearity 
of 1 or more (high non-linearity) was defined as a value with low resilience against performance degradation due to device-to-device variation. bThese values are the ideal characteristics of 
synaptic device confirmed with NeuroSIM+ (simulation framework for benchmarking HW-ANN). This required value-based HW-ANN was performed on online learning (derived accuracy: 
94.8%) and offline classification (accuracy: 94.5%) on the two-layer multilayer perceptron (MLP) neural network with the MNIST dataset (Yu et al., 2016). cAccuracy degraded gradually when 
the weight precision was lower than 4 bits for ex-situ training. dThis figure is widely applied as an industry standard in existing digital computing (memory-centric) and is applicable for the 
synaptic devices with binary states. e Speed requirements are different for each target application. There will be stricter metrics for read speed for ex-situ learning (write-once-read-only) and 
write speed for in-situ learning (frequent weight update).
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provides a reasonable explanation for the weight update behavior 
within the array structure, and the consistency with experimental 
results validates the soundness of this model. Kang et  al. (2022) 
proposed a novel cluster-type CBRAM to tackle the challenge of 
achieving analog resistance changes caused by the electric field 
feedback effect in conventional filament-type CBRAM. The proposed 
solution involves precise control over the amount of metal ions in the 
cluster type. By utilizing a reducing agent, Ti, with a lower standard 
reduction potential than Ag, the oxidation and reduction processes of 
Ag cations are carefully regulated. This innovative approach mitigates 

the electric field feedback effect, resulting in a balance between linear 
switching characteristics and a high on/off ratio, demonstrating its 
potential as an exceptional analog synaptic device.

Efforts to achieve gradual switching characteristics in RRAM have 
primarily focused on the utilization of additive layers such as bilayers 
(commonly referred to as multilayers; Wang Z. et  al., 2018; Kim 
S. et al., 2022). Sun et al. (2018) fabricated AlOx/TaOx-based RRAM 
devices and achieved high uniformity, excellent analog switching 
characteristics (~200 states), and impressive retention properties 
(~30,000 s). They conducted a comparison between identical and 

FIGURE 4

Two terminal conductance-based synaptic devices. (A) RRAM basic structure. (B) RRAM I-V curve. (C) Conductance modulation on AlOx/TaOx-based 
RRAM under identical pulses with different amplitudes. Reproduced with permission (Sun et al., 2018), Copyright 2018 IEEE. (D) PCRAM basic structure. 
(E) PCM R-V curve. (F) Conductance modulation on narrow heater electrode-based PCM with identical fast programming pulses of depression, 
potentiation, and read, resulting in gradual amorphization and crystallization (La Barbera et al., 2018), Copyright 2018 John Wiley & Sons. (G) MRAM 
basic structure. (H) MRAM R-V house curve. (I) Conductance modulation on CoFeB/MgO-based MRAM under incremental pulse scheme. Reproduced 
under the terms of the CC-BY Creative Commons Attribution 4.0 International License (Ostwal et al., 2019), Copyright 2019 IEEE. (J) FTJ basic 
structure. (K) FTJ P-E hysteresis curve. (L) Symmetric conductance modulation on FTJ. Reproduced under the terms of the CC-BY Creative Commons 
Attribution 4.0 International License (Luo et al., 2022), Copyright 2022 Springer Nature.
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non-identical pulse inputs to modulate conductance, demonstrating 
that the modulation of RRAM device weights can be achieved through 
pulse parameters, as shown in Figure 4C. They observed different 
conductance responses based on amplitude (VSET: 0.8–0.9 V) and 
width (1–15 μs), confirming the potential for weight modulation of 
RRAM devices. Yeon et  al. (2020) fabricated Si-alloy:Ag 
electrochemical RRAM devices and achieved highly stable operational 
characteristics. By employing an optimized alloying ratio, they 
successfully controlled the movement of mobile Ag ions with Cu, 
resulting in spatial and temporal switching uniformity. They also 
obtained a conductance range exceeding 102 and significantly 
enhanced programmed symmetry characteristics.

The fundamental mechanism for the recently reported RTN of 
RRAM has been demonstrated through conductive atomic force 
microscopy (C-AFM) and simulations based on the electron wave 
energy function. RTN arises from electron transport obstruction by 
trapped charges within incomplete channels, in addition to the main 
conduction channels. A solution to this issue involves the removal of 
the RTN component by applying a subthreshold voltage significantly 
smaller than the set/reset voltage, thereby eliminating incomplete 
channel islands and phase boundaries (a process known as phase field 
relaxation). Consequently, achieving high-precision programming is 
feasible through a stabilization process involving denoising voltage for 
the RTN components generated within the synapse device. In essence, 
the development of an RRAM-based neuromorphic chip with 
remarkable analog functionality, capable of expressing up to 2,048 
states through fundamental-level operation analysis from a device 
perspective, underscores the potential for the commercialization of 
memristor device-based arrays (Rao et al., 2023).

2.1.2 Phase-change random access memory 
(PCM)

Phase-change memory (PCM) is a two-terminal device where the 
resistance state is determined by the phase change of a material located 
between the two electrodes through the application of heat, as shown 
in Figure 4D (Raoux et al., 2008; Bruns et al., 2009; Wong et al., 2010). 
It is simply composed of electrodes, a heater, and phase-change 
material. Typically, the material of the bottom electrode is deposited 
and then etched into a trench shape, with its surroundings 
encapsulated by an insulating material (e.g., SiO2). Commonly used 
phase-change materials include chalcogenide-based materials (e.g., 
Ge2Sb2Te5 or GST). GST can readily switch between amorphous and 
crystalline states bidirectionally and can maintain each state for an 
extended period. When the phase-change material is in the crystalline 
state, it exhibits LRS; when it is in the amorphous state, on the other 
hand, it blocks the conduction path between the two electrodes, as 
depicted in Figure 4D as a dot-dash line, resulting in HRS. When a 
specific voltage is applied between the top and bottom electrodes, the 
current flows through the GST material, heating and changing its 
phase. This region where the change occurs is referred to as the 
programming region or active region, and it typically exhibits a 
mushroom-shaped profile due to the current crowding effect.

PCM starts in its initial state (as-fabricated device) with a 
low-resistive crystalline phase. When relatively small-amplitude 
voltage pulses are applied over an extended period, the GST material 
undergoes crystallization due to Joule heating. This heating aligns the 
atomic arrangements within the material without reaching its melting 
point. It causes the device state to transition from HRS to LRS, a 

process known as set (see Figure 4E). On the contrary, when relatively 
large-amplitude but short-duration voltage pulses are applied, a 
portion of the GST material undergoes local melting (the melt-quench 
process), resulting in consequent amorphization and a transition to 
HRS, a process known as reset. For a read operation, the current state 
of PCM is sensed by applying a weak electrical pulse that does not 
induce a significant phase change. PCM has several advantages, 
including fast SET speed, scalability, high endurance, long data 
retention over 10 years, and a high dynamic range around 103 (Burr 
et al., 2016). However, PCM exhibits abrupt RESET characteristics due 
to the crystallization/amorphization of the phase-change material, as 
reported by Burr et  al. (2015). This implies that the conductance 
modulation is not consistent with the number of pulses applied. 
Additionally, a prominent issue in PCM is ‘resistance drift’, where the 
resistance value increases over time.

Kuzum et al. (2012) fabricated a PCM with W/TiN/GST/TiN 
stack that shows no degradation up to 107 cycles and demonstrates 
gradual set/reset operations with progressively increasing voltage 
pulses, enabling analog behavior. For this device, spike-timing-
dependent plasticity (STDP) was experimentally verified, indicating 
the potential for extending to synaptic PCM arrays in terms of 
nanoscale and energy efficiency. Ding et al. (2019) fabricated a phase-
change heterostructure (PCH) device to achieve continuous resistance 
states. The PCH is a multilayer structure where phase-change 
materials and confinement nanolayers (TiTe2/Sb2Te3) are alternately 
deposited. Given that the nanoscale amorphous Sb2Te3 layers restrict 
structural relaxation, this device significantly reduced the resistance 
drift problem compared to traditional GST-based PCMs (Ielmini 
et al., 2007). As a result, the enhanced weight resolution achieved 
through stable set/reset operations makes PCH-based devices 
promising candidates for synaptic applications in neuromorphic 
systems. La Barbera et  al. (2018) demonstrated the potential for 
synaptic devices using a narrower bottom electrode-based PCM 
device. With a memory initialization step before applying switching 
pulses, they employed identical pulses (VSET: 1.25 V, VRESET: 1.6 V) for 
50 cycles each, resulting in the switching characteristics shown in 
Figure 4F. These conditions allowed for conductance modulation to 
initiate without fully covering the amorphous region above the heater, 
leading to a more gradual switching behavior. The device exhibited 
endurance of at least 106 cycles across 145 cells.

2.1.3 Magneto-resistive random access memory 
(MRAM)

Magneto-resistive RAM (MRAM) is a two-terminal device 
featuring two ferromagnetic layers separated by a non-magnetic layer 
(Akerman, 2005; Bhatti et al., 2017). The upper ferromagnetic layer is 
referred to as the free layer, while the lower ferromagnetic layer is 
known as the pinned or fixed layer. A thin insulating tunnel barrier is 
placed between these two layers, as shown in Figure 4G. To change the 
magnetization direction within the magnetic layers, the current 
direction in the word line (WL) connected to the lower layer is fixed, 
while the current direction in the bit line (BL) connected to the upper 
layer is varied. Through this process, the magnetization direction of 
the free layer can be  freely changed based on the programming 
voltage. The ferromagnetic layers typically consist of transition metal 
elements (Fe, Co, Ni, etc.) and their alloys (CoFeB, NiFe, etc.), while 
the non-magnetic layer mainly consists of insulating materials 
such as MgO.
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The resistance state of MRAM is determined based on the 
alignment of the magnetic orientations in the two ferromagnetic 
layers, whether they are parallel or antiparallel. If the magnetic 
orientations are in the same direction, it results in LRS, also known as 
the parallel state (RP). Conversely, if they are in opposite directions, it 
leads to HRS, or the antiparallel state (RAP), as depicted in 
Figure 4H. With increasing integration, interference between adjacent 
cells has led to read errors and energy inefficiencies, prompting the 
adoption of spin transfer torque MRAM (STT-MRAM). STT involves 
directly injecting current into the magnetic layer, where the spin 
carried by the injected electrons is transferred to the spins in the 
magnetic layer. This allows for the direct switching of the magnetic 
orientation. Another type of MRAM that utilizes a different 
mechanism for magnetization inversion is spin-orbit torque MRAM 
(SOT-MRAM). It generates spin-orbit effects, including a spin Hall 
effect within the device that enables the generation of spin currents 
and changes the magnetic orientation of the free layer to enable 
switching operations. SOT-MRAM injects current in the horizontal 
direction, producing more spin current for the magnetic layer. This 
results in faster operation and lower power consumption compared to 
STT-MRAM, making it the focus of recent extensive research.

In MRAM, the electron traverse between the two ferromagnetic 
layers through quantum tunneling in the thin insulating layer. The 
switching operation is achieved by applying different current directions. 
When the current flows from the pinned layer to the free layer, the spins 
of the free electrons align themselves according to the magnetization 
direction of the pinned layer due to the magnetic exchange coupling 
energy. This alignment of spin-polarized current exerts a torque on the 
free layer, causing its magnetization direction to align in parallel with that 
of the pinned layer. This results in LRS (RP) during the SET operation, as 
illustrated in Figure 4H. On the contrary, when the current flows from the 
free layer to the pinned layer, the free electrons with different spin 
orientations from the pinned layer exert a torque on the free layer in the 
opposite direction of its magnetization. This counteracting torque changes 
the magnetization direction of the free layer, leading to HRS (RAP) during 
the RESET operation.

MRAM has several advantages, including high endurance 
(>109 cycles) and fast switching speed (<100 ns). However, it also has 
some limitations, such as a limited number of distinct resistance states 
and a small on/off ratio, which can be  drawbacks in its state 
representation capabilities. The key metric that represents the 
performance of MRAM is the magnetoresistance (MR) ratio, which 
indicates the ratio of resistance values between LRS (RP) and HRS 
(RAP), so that MR is defined as (RAP–RP)/RP. To achieve high 
performance during the inference process, high tunnel 
magnetoresistance (TMR), low write error rate (WER, <10−6), and low 
read disturbance rate (RDR, <10−6) are required during the weight 
import and weighted sum phases (Xu et al., 2018). Zhang et al. (2021) 
fabricated a high-TMR perpendicular MTJ device with W inserted 
into the free layer using the following stack: W/CoFeB/MgO/
CoFeB/W/CoFeB/MgO/Ta. The device exhibited a 200% TMR at the 
nanoscale level, and the strong domain wall pinning effect in the free 
layer facilitated memristive behavior. The plasticity characteristics 
(resistance changes over time) for ramped and constant voltage pulse 
sequences were studied. By applying a subthreshold voltage to the free 
layer with a positive or negative delay Δt following a pre-spike, the 
resistance was effectively increased or decreased, simulating the STDP 
characteristic of a biological synapse.

Siddiqui et al. (2019) demonstrated the fabrication of MTJ devices 
utilizing the magnetic domain wall effect with CoFeB ferromagnetic 
layers and MgO spacer, which enabled the generation of linear 
multilevel weights. Additionally, non-linear activation functions were 
implemented using MTJ devices with sigmoid-like behavior, 
indicating the versatility of MTJ devices in neuromorphic systems. 
The linear resistance (weight) changes were observed in a parallel 
connection of seven MTJ devices when subjected to positive/negative 
currents in the CoFeB/Ta wire. Ostwal et  al. (2019) fabricated a 
perpendicular SOT-MRAM device based on a Ta/CoFeB/MgO/Ta 
stack. This configuration yielded a high TMR and gradual 
potentiation/depression characteristics, as depicted in Figure 4I. In the 
case of an identical pulse scheme, they repetitively applied a current 
pulse of 5.4 mA for potentiation and a current pulse of 5.2 mA for 
depression. In the case of an incremental pulse scheme, they applied 
a current pulse ranging from 5 mA to 6 mA for potentiation and pulses 
ranging from −4.8 mA to −5.8 mA for depression, with increments 
and decrements of ±0.05 mA. Through this approach, they achieved 
improved linearity and demonstrated the potential of SOT-MRAM as 
synaptic devices.

2.1.4 Ferroelectric tunneling junction (FTJ)
Ferroelectric memory can be  utilized as both capacitor-based 

types, such as ferroelectric random-access memory (FeRAM) and 
ferroelectric capacitor, and conductance-based types, including 
ferroelectric field-effect transistor (FeFET) and ferroelectric tunneling 
junction (FTJ; Oh et al., 2019; Slesazeck et al., 2019; Mikolajick et al., 
2022). Ferroelectric memory functions by storing information 
through the polarization of ferroelectric material when an external 
electric field is applied, as illustrated in Figure  4J. Ferroelectric 
materials have a polarization-electric field (P–E) hysteresis due to their 
non-centrosymmetric structure, as shown in Figure 4K. Unlike most 
materials that lose their polarization properties once the electric field 
is removed, non-centrosymmetric FE materials maintain polarization 
even without the electric field. The polarization state when the electric 
field is zero is termed as remnant polarization (Pr), and this lattice 
structure and the presence of electric dipoles give rise to two distinct 
polarization states (+Pr and − Pr). The absence of a central positive 
charge leads to an electric dipole moment, often resulting in two stable 
configurations. Altering the state of Pr involves applying an electric 
field greater than a threshold value known as the coercive field, which 
signifies the reverse field necessary to nullify the polarization state.

Among ferroelectric devices, FTJ is a two-terminal device that 
utilizes ferroelectric materials for practical memory applications 
(Kohlstedt et al., 2005; Böscke et al., 2011; Garcia and Bibes, 2014). 
Operating on the principle of electron tunneling, this memory 
necessitates an exceedingly thin ferroelectric film. Thus, HfO2-based 
material capable of deposition in ultrathin layers has predominantly 
been used. The FTJ features a metal-ferroelectric-metal sandwich 
structure and shares similarities in configuration with RRAM. The 
process of polarization reversal is employed to alter the effective 
tunneling barrier between the electrodes. Charge carriers accumulate 
or deplete within the interface layers of electrodes to screen bound 
polarization charges, depending on the polarization direction within 
the tunneling barrier. In junctions employing distinct electrodes, this 
screening effect induces an uneven barrier potential. By using top and 
bottom electron electrodes with two different screening lengths, the 
tunneling probability varies depending on the polarization direction. 

https://doi.org/10.3389/fnins.2024.1279708
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnins.2024.1279708

Frontiers in Neuroscience 09 frontiersin.org

The state is classified based on the difference in tunneling current 
generated from the read bias, and tunneling electro-resistance (TER) 
is a method used to control the tunneling current through polarization. 
TER is measured by calculating the resistance ratio in LRS and HRS 
(Gruverman et al., 2009; Zhuravlev et al., 2009). In the MFM structure, 
the ferroelectric layer needs to be as thin as 3–4 nm in thickness to 
ensure a reasonable tunneling current, but such thickness leads to 
reduced polarization and TER ratio. Additionally, the traps generated 
by the tunneling current can reduce the memory window. To address 
this problem, researchers are investigating a metal-ferroelectric-
interlayer-metal (MFIM) structure, which introduces an additional 
thin tunneling layer to the MFM structure. The MFIM structure 
improves TER by creating an extra energy barrier by inserting an 
interlayer (IL) with a high bandgap into the silver MFM structure. By 
separating the tunneling effect and ferroelectric materials, electron 
tunneling occurs through thin tunneling, and it can take advantage of 
tunneling optimization and high speed.

As a synaptic device, it has been investigated for its notable 
advantages, including high-speed switching, multi-value cell 
operation, and low power consumption attributed to low current 
levels and operating voltage (Chen et al., 2018; Majumdar et al., 2019; 
Ryu et al., 2019; Max et al., 2020; Song et al., 2022). In addition, it can 
operate with low power compared to other synapse devices because it 
has good endurance characteristics of 105 or more and uses a 
TER-based current mechanism. Polarization changes to store 
information, and various states can be implemented by adjusting the 
polarization of the domains by changing the programming voltage. 
Ryu et al. (2019) improved the TER ratio by fabricating an HZO-based 
FTJ with an interfacial Al2O3 layer added. The reliability of the Synapse 
device was measured to secure endurance (>107) and retention 
(10 years) characteristics. Using the incremental step pulse 
programming (ISPP) 10 μs pulse method, linear and symmetric 
characteristics were obtained for long-term potentiation (LTP) and 
long-term depression (LTD). Luo et al. (2022) fabricated an FTJ with 
a PZT-based metal-ferroelectric-semiconductor (MFS) structure. It 
was possible to operate in the multilevel state of the (111)-oriented 
PZT structure due to the ultra-fine polydomain structure and at a very 
high speed (10 ns). As characteristics of the synaptic device, ISPP 
pulses were used (10 ns), 256 conductance states, high dynamic range 
(~100), linearity close to 1, and symmetric characteristics were 
secured, as depicted in Figure  4L. In addition, it secured the 
characteristics of a synaptic device with very high endurance (109) and 
retention (104 s). Goh et al. (2021) fabricated an FTJ with a TiN/HZO/
TaN/W structure. The TaN layer prevented diffusion and prevented 
leakage current, improving the TER value (~100). The endurance 
(~108) and retention (10 years) characteristics of the synaptic device 
were secured, and 30 multilevel states were secured through LTP and 
LTD measurements.

2.1.5 Array demonstration of two-terminal 
devices

The key operation of neural networks is VMM. During inference, 
large-scale VMM operations need to be efficiently implemented on 
hardware using a crossbar array (CBA) structure. The CBA structure 
is inherently suitable for VMM based on synaptic devices (Gao et al., 
2016, 2017). As depicted in Figure 5A, input voltages (Vj)  encoded 
from input data are applied to each row (jth) or each WL of the 
CBA. Through Ohm’s law at each device cell ( I V Gij j ij= × ) and 

Kirchhoff ’s current law ( I I= ∑ ij ), the BL currents are obtained as a 
result of VMM operation. These currents contribute to the weighted 
sum within the activation neuron circuits. Furthermore, to account 
for negative weights in the CBA, a commonly employed technique is 
the use of a differential pair, involving a pair of devices for each weight.

The most basic two-terminal device-based CBA structure is the 
0T1R passive array, consisting of memristor elements (1R) in each 
unit cell. As depicted in Figure 5B, the passive CBA structure positions 
a two-terminal element at the crosspoint where WL and BL intersect 
perpendicularly. In this configuration, where two-terminal elements 
are located in parallel, an appropriate bias scheme is necessary to 
program and read only the selected cell. Accurate array operation for 
the selected cell is crucial for efficient performance of the entire 
HW-ANN, including inference accuracy, speed, and power efficiency. 
The half-V scheme represents a standard biasing method commonly 
employed in passive CBA. It aims to enhance cell selectivity by 
applying full bias (V) to the WL of the selected cell and 0 V to its 
BL. Meanwhile, unselected WLs and BLs receive half of the full bias 
(V/2). Specifically, when reading a certain cell, Vread is applied to the 
top electrode (WL, row), while 0 V is applied to the bottom electrode 
(BL, column). However, for the remaining unselected cells, half-Vread 
(Vread/2) is applied to the remaining rows and columns, ensuring that 
the voltage across those cells remains at 0 V. For instance, when 
reading the first column in Figure 5B, Vread is applied to all rows, 0 V is 
applied to the first column, and Vread/2 is applied to the rest of the 
columns simultaneously. In this scenario, other unselected cells 
located in the same row or column as the selected cell experience 
Vread/2. The better the device I-V non-linearity (or I-V selectivity) that 
ensures low OFF current for unselected cells compared to the ON 
current for selected cells, the more effectively the off-switch operation 
can be  carried out on those cells. This approach enables parallel 
operations with the weight matrix implemented in the CBA when a 
specific input voltage vector is applied. However, if sufficient I-V 
selectivity (I@Vread/I@Vread/2) is not guaranteed, passive arrays with 
high integration and low process costs encounter issues such as 
unwanted current flow in unselected cells (sneak current issue) and 
read errors during the half-Vread scheme (half-select disturbance). This 
results in challenges in high-precision weight programming/reading 
in passive arrays. Nonetheless, this can be mitigated with an additional 
non-linear selection device (referred to as an extra access device, 
selection device, or series device), including transistor, diode (with 
unipolar memristor), or selector (with bipolar memristor) devices.

A 1T1R structure is one of the active arrays having a transistor 
with a gate terminal that provides switch and selective operation for 
the selected device, as shown in Figure 5C. Typically, a two-terminal 
memristor is deposited on the drain end of a transistor co-integrated 
through a mature CMOS integration process. Due to the maturity and 
controllability of the CMOS process and transistor operation, many 
neural network applications have adopted the 1T1R-based CBA 
structure (Yu et al., 2016; Yao et al., 2017; Hu et al., 2018; Cai et al., 
2019; Xue et al., 2020; Yao et al., 2020). Excellent weight programming 
is possible for the desired cell, but the 1T1R structure has a tradeoff 
between the scaling difficulty of the transistor (at least 6F2 when 
W/L = 1) compared to the passive 0T1R structure with 4F2 and 
difficulty in 3-D stackability. To resolve this tradeoff, the need for a 
two-terminal synaptic device and a serially stackable two-terminal 
selection device emerged. A 1D1R structure addresses this need, 
where a diode, a representative non-linear device, is utilized as a 
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selection device. The diode stack can be deposited in series with the 
memristor, each stackable on top, solving the low integration density 
of 1T1R (Kim et al., 2013; Gül, 2019; Li et al., 2021). Additionally, the 
rectifying characteristic of diode can guarantee I-V selectivity, but 
resistive devices connected in series must have unipolar characteristics, 
enabling set/reset switching for voltage of one polarity. However, the 
unipolar memristor device faces challenges such as low program 
margin (weight precision) due to a narrow switching voltage window 
(Huang et al., 2011). Additionally, in the case of 1D1R, reverse bias is 
applied to unselected WL/BL, which imposes stricter requirements on 
non-linearity factors compared to 1S1R.

A 1S1R configuration, depicted in Figure 5D, involves stacking 
selector materials and a memristor in series, effectively alleviating the 
sneak current problem. This configuration combines the advantages 
of both active and passive arrays, meaning that it possesses the benefits 
of read/write selectivity while improving integration density. The 

selector is expected to perform a role similar to that of a transistor in 
a 1T1R configuration, exhibiting high non-linearity in its I-V 
characteristics and offering electroforming-free behavior and 
scalability. The selector exhibits bipolar switching characteristics, with 
various material stacks studied to fulfill this function (Wong et al., 
2012; Burr et al., 2014; Aluguri and Tseng, 2016; Li et al., 2021; Woo 
et  al., 2022). From a stack perspective, these are referred to as 
two-terminal selector ‘materials’, and from a device perspective, they 
can be  expressed as a ‘bidirectional diode’ (Jeon et  al., 2024). To 
distinguish it from the diode used for the unipolar memristor device 
in the 1D1R, selector material compositions with bidirectional diode 
characteristics are included in the 1S1R configuration. Representative 
types include ovonic threshold switching (OTS) with high 
compatibility of PCM devices (Kau et al., 2009; Lee et al., 2012, 2013; 
Song et al., 2015; Chen et al., 2016; Velea et al., 2017; Hua et al., 2019), 
mixed ionic-electronic conductors (Gopalakrishnan et  al., 2010; 

FIGURE 5

Two terminal device array structures. (A) Schematic of VMM operation with input vector, weight matrix, and output vector. (B) 0T1R passive crossbar 
array structure. (C) 1T1R array structure. (D) 1S1R array structure. Yellow panel indicates the weight matrix implemented by the conductance of two-
terminal devices, and red lines indicate the bitline where output currents are obtained through Ohm’s law and Kirchhoff’s current law. (E) Scanning 
electron microscopy image of 64  ×  64 0T1R crossbar array. (F) Weight tuning results in crossbar array. (E,F) Reproduced under the terms of the CC-BY 
Creative Commons Attribution 4.0 International License (Kim H. et al., 2021), Copyright 2021 Springer Nature. (G) Fabricated Ta/HfO2/Pd memristor 
1T1R array. (H) VMM results in 1T1R array. To check the DPE VMM error, circuit simulation (gray) and raw data (colored) from experimentally measured 
VMM data were compared for both a signal processing application of the discrete cosine transform and neural network inference for the MNIST 
database. (I) Impact of ‘stuck on’ defects and parasitic of 16  ×  16 array, resulting in the signal degradation from left to right and from top to bottom. Red 
lines indicate the rows of 16  ×  16 array with applying voltages from left, and blue lines indicate the columns grounded on top, and red dots indicate 
“stuck on” defects. (G–I) Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International License (Hu et al., 2018), 
Copyright 2018 John Wiley & Sons.
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Burr et al., 2012; Shenoy et al., 2014; Luo et al., 2015), metal–insulator-
transition (Lee et al., 2007; Son et al., 2011; Kim S. et al., 2012; Lee 
et al., 2015; Cha et al., 2016), tunnel barrier (Lee et al., 2012; Choi 
et al., 2016; Upadhyay et al., 2020), and field-assisted super-linear 
threshold switching materials (Jo et al., 2014, 2015).

The 1S1R structure requires a balance between the conductivity 
of the selection device and the memristor device. Devices with 
excessively high conductivity may struggle to function effectively as 
selectors, while those with low conductivity may require higher 
operating voltages and could reduce the programming window, 
complicating the design process for optimized read/write voltage 
margins (Wong et al., 2012; Li et al., 2021). Furthermore, additional 
selector devices or materials may pose challenges in terms of material 
optimization and fabrication compatibility with the memristor device. 
In response to these challenges, there is active research into self-
rectifying memristor (or self-rectifying cell) passive arrays. These 
arrays eliminate the need for extra access devices for memory elements 
found in existing 0T1R passive arrays. The memristor cell itself 
exhibits I-V non-linearity characteristics and offers an alternative to 
the area overhead of 1T1R structures and the design complexity of 
1S1R configurations (Kim K.-H. et al., 2012; Hsu et al., 2013; Kim 
et  al., 2016; Li and Xia, 2019; Sun et  al., 2019; Jeon et  al., 2024). 
However, there is a need for further research into CMOS-compatible 
selector-based large-scale 1S1R crossbar array structures.

The fabrication of a large-scale hardware synaptic device-based 
array, a 64 × 64 Al2O3/TiOx RRAM passive array, is presented (see 
Figure 5E) for ex-situ training (Kim H. et al., 2021). By utilizing 
low-temperature processes, high yield of 99% is achieved, ensuring 
the array’s high potential for synaptic operations. Additionally, three 
voltage-programming techniques (bound reducing, high-voltage 
devices aware, and shifting conductance) are proposed for precise 
state writing within the array, and the result of weight import (write) 
on CBA is shown in Figure  5F. In particular, the passive array 
structure has been shown to address the issue of half-select 
disturbance that arises in passive array configurations. This research 
demonstrates the potential for mitigating half-select disturbances in 
passive array structures and validates the robust operation of the 
passive array. These techniques take into consideration hardware 
characteristics, securing the required multilevel state in synaptic 
devices by ensuring a reliable weight import, a critical operation in 
ex-situ training. Hu et al. (2018) fabricated a 128 × 64 Ta/HfO2-based 
1T1R array (Figure  5G) and experimentally demonstrated its 
impressive performance in analog computing for the VMM 
operation in a CBA. In Figure 5H, the linear relationship between 
VMM experimental raw data and ideal circuit simulation, including 
circuit parasitic, was shown for both discrete cosine transform signal 
processing applications and neural network inference for the MNIST 
dataset. It suggests a close match between the simulation-based 
VMM results and the measured one from the fabricated array-based 
VMM, demonstrating 6-bit precision, re-programmability, and 
stable operation. In addition, it includes simulations displaying the 
influence of the impact of faulty cells on VMM performance, as 
shown in Figure  5I. This article showcases the potential of a 
memristor CBA-based Dot Product Engine (DPE) for analog 
computing. Li et al. (2022) demonstrated the potential of HW-ANNs 
using a 2-D material, HfSe2-based CBA. Traditional bulk-based and 
transition metal oxide (TMO)-based memristor devices suffer from 
limited resistive switching ratios and challenges related to variations. 

To address the hard-breakdown issue caused by the forming voltage 
in bulk material-based RRAM devices in CBAs, a 3 × 3 memristor 
array was fabricated using polycrystalline HfSe2 thin films with 
defects and dislocations. Through stable control of conductive 
filaments via defect paths, the HfSe2-based 3 × 3 array was 
experimentally shown to enable hardware neural network operations 
in ex-situ training for edge extraction.

Giannopoulos et al. (2018) experimentally demonstrate the VMM 
performance on the projected PCM array as 8-bit precision and low 
power (60 nW). A single-layer neural network implemented on a 
10 × 3 GeTe-based projected PCM array successfully performed 
inference without errors even under varying external temperatures. 
The projected PCM devices exhibit much weaker field dependency 
compared to conventional PCM (Koelmans et  al., 2015), thereby 
resolving the conductance drift issue caused by structural relaxation 
in the amorphous state of conventional PCM. Consequently, they 
enable more accurate VMM. Figure  4L shows the VMM results 
obtained from 2,000 experimental runs of 4 × 3 VMM, which closely 
approximates the performance of 8-bit fixed-point arithmetic with the 
inclusion of temperature compensation techniques. A three-layer 
neural network consisting of 164,885 synapses was experimentally 
implemented using a 500 × 661 1T1R PCM array for in-situ training 
(Burr et al., 2015). Each synapse utilized two PCM devices (G+, G−) as 
a differential pair, and the weighted sum operation was performed by 
the software-based neurons with sense amplifiers to process the 
column currents. The measurements obtained from the hardware 
implementation were compared with simulation results based on 
parameter values, and a close match was observed, confirming the 
predictability of the array’s behavior and consideration of 
non-ideal effects.

An experimental implementation of ex-situ training was 
achieved using a 64 × 64 1T1MTJ CBA-based hardware neural 
network (Jung et al., 2022). To address the power consumption issue 
in large-scale arrays caused by the low resistance of MRAM, a new 
cell-based CBA was fabricated, proposing an energy-efficient 
synaptic hardware system. The 1-bit cell, composed of two 
complementary devices, represents the 1-bit state with the 
combination of FET’s gate voltage and the state of MTJ. For 
conventional VMM operations, Kirchhoff ’s current law was used to 
calculate the current sum. However, by measuring the RC time delay, 
the new structure determines the neuron output based on the 
resistance sum of each column. The time taken to charge the 
capacitor at the end of each column to Vref varies depending on the 
resistance of each column, allowing VMM operations to 
be performed based on the time difference based on the CBA. Berdan 
et al. (2020) fabricated an FTJ in which thin SiO2 was added to the 
ferroelectric layer doped with SiO2 to HfOx and confirmed the VMM 
operation in a neuromorphic system in a passive 5 × 5 crossbar array. 
An FTJ array without a selector was fabricated, and analog voltage-
amplitude VMM operation was demonstrated using the non-linear 
and very low current characteristics of the FTJ. The non-linear I-V 
characteristics were linearized using a word line driver, and the very 
linear I-V for input voltage in 16 conductance states was confirmed 
through experiments. MM operation was performed for 100 inputs 
by adjusting the state with different weight maps, and a very accurate 
result was obtained with an error of 0.77% between the value 
calculated through effective conductance and the actual 
VMM operation.
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2.2 Three-terminal devices

2.2.1 Flash memory
Flash memory is one of the most representative and successfully 

commercialized three-terminal non-volatile memory devices. It has 
gained popularity due to its scalability, high reliability (Mizoguchi 
et al., 2017), and multilevel capabilities (Wang F. et al., 2020). However, 
both charge-trapping layer (CTL)-based and floating gate (FG)-based 
devices suffer from the drawback of requiring high voltage during 
program and erase operations, which can lead to a decline in 
endurance characteristics (Lee et  al., 2003). As technology scales 
down, researchers have investigated solutions like 3-D NAND flash or 
closer cell spacing to ensure better scalability and to overcome cell-to-
cell interference (Jang et al., 2009; Compagnoni and Spinelli, 2019). 
To achieve better scaling and performance, the flash memory structure 
has evolved from the traditional MOSFET to a configuration involving 
blocking oxide/charge trapping layer/tunneling oxide, as illustrated in 
Figure 6A. In the past, FG was used as the charge-trapping layer, but 
this approach became impractical due to cell-to-cell interference as 
scaling continued (Lu, 2012). Thus, insulator materials with high trap 
density like Si3N4 and HfO2 have been adopted as CTLs (Jung et al., 
2006; You and Cho, 2010). Each material offers distinct advantages 
and disadvantages, with HfO2 having good memory window but poor 
retention, while Si3N4 has excellent retention due to the absence of 
shallow traps.

In general, flash memory device can be integrated into NAND and 
NOR array structures based on the connection method, leading to a 
distinct program/erase method for each cell (Bez et al., 2003). NOR 
flash enables parallel computation for ANN applications, but it suffers 
from low area efficiency. On the other hand, NAND flash exhibits 
excellent area efficiency but lacks parallel summation capability due 
to its serial connection structure. As a result, to read the entire current 
of one bit line, the string cell must be read sequentially, leading to a 
significant disadvantage in terms of speed. Both NAND and NOR 
structures utilize Fowler–Northeim (F-N) tunneling for the erase 
method. However, they differ in their programming methods. In NOR 
flash, a high positive voltage applied to the gate and drain via channel 
hot electron injection causes electrons to move to the CTL in the drain 
pinch-off region. In NAND flash, a strong positive voltage applied to 
the gate through F-N tunneling bends the tunneling oxide, enabling 
electron injection into the CTL. When electrons are accumulated in 
the charge-trapping layer, the formation of the inversion layer is 
hindered. As a result, the threshold voltage is increased, and the 
threshold voltage is decreased in the opposite case, as shown in 
Figure 6B.

As a synaptic device, it offers significant advantages for analog 
computing, such as excellent endurance and retention characteristics, 
a wide memory window enabling numerous states, large on/off ratio, 
and good linearity. Zhou et al. (2022) demonstrated the conductance 
modulation of 3-D NAND differential pair with identical LTP and 
LTD pulses, as shown in Figure 6C. Due to the block erase operation 
in the NAND flash architecture, the synaptic weight was decreased or 
increased by simply programming one of the devices within the 
differential pair. However, in the NAND flash structure, cells are 
connected in series, and multiple cells are connected to a single 
WL. Due to the structural features of the NAND flash array, 
performing an inference operation may alter the weights of 

unintended cells due to the read and pass voltage. Therefore, it is 
essential to assess the disturbance characteristics caused by read and 
pass voltages. The repeated weight modulations were performed using 
an identical pulse (12 V, 13 μs), and excellent disturbance 
characteristics were confirmed for read (108) and program (106) for 
reliability characteristics as a synapse device. Lee et  al. (2019b) 
employed a 2-D NAND flash string fabricated in the industry using 
26 nm technology and confirmed the characteristics as synaptic 
devices. By changing the drain voltages, 30 multilevel states were 
secured, and the LTP and LTD characteristics were repeatedly checked 
using identical pulses (14 V, 100 μs). The retention (>104 s) and 
conductance response (after 1 k endurance cycling) were checked in 
30 states for reliability characteristics.

2.2.2 Ferroelectric field-effect transistor (FeFET)
FeFET has a three-terminal structure with a ferroelectric layer as 

the gate dielectric. FeFET controls the polarization direction of the 
ferroelectric layer through the gate voltage, and the threshold voltage 
is modulated in the opposite direction compared to flash memory, as 
depicted in Figure  6D. When a positive voltage is applied, the 
threshold voltage is lowered due to polarization and positive charge 
on the channel side, whereas the threshold voltage increases when a 
negative voltage is applied, as shown in Figure  6E. Unlike a flash 
memory device, which necessitates high voltage for F-N tunneling 
during program and erase operations, FeFET takes advantage of 
polarization induced by low switching voltage, resulting in lower 
power consumption. While perovskite materials have been studied for 
their good endurance and high-speed operation, hafnium oxide-based 
ferroelectric layers have gained attraction due to good CMOS process 
compatibility and scaling down (Böscke et  al., 2011). FeFETs can 
be  fabricated by replacing the gate dielectric layer with HfOx or 
HfZrOx (HZO) layers through low-temperature atomic layer 
deposition (ALD), following the conventional CMOS process flow 
(Ali et al., 2018; Mulaosmanovic et al., 2021).

Unlike the early Si channel-based MFS structure of the FeFET 
device (Yoon et al., 1999), the annealing process used to create the 
orthorhombic phase of HZO layer has led to the formation of a SiO2 
interlayer between the ferroelectric gate dielectric and Si channel. 
When an intrinsically grown SiO2 interlayer is formed, applying 
voltage to the gate results in most of the electric field being confined 
within the SiO2 layer because of a lower dielectric constant (3.9) 
compared to HZO (20–40). This disparity in dielectric constants can 
potentially lead to charge trapping/de-trapping, interface reaction, 
and inter-diffusion issues (Tokumitsu et al., 2000; Anderson et al., 
2018), which can contribute to poor endurance, retention, and a small 
dynamic range of FeFETs. To address the interface reaction and 
diffusion issues observed in the MFS structure, the metal-ferroelectric-
insulator–semiconductor (MFIS) structures have been explored with 
the insertion of an interlayer between the ferroelectric layer and the Si 
layer (Mueller et al., 2013; Mulaosmanovic et al., 2017; Ni et al., 2018). 
The interlayer offers the advantage of preventing interdiffusion and 
interface reactions, thus reducing gate leakage current. When utilizing 
the MFIS structure, the ferroelectric layer and the dielectric interlayer 
form a configuration where capacitors are connected in series. This 
structure design leads to a decrease in the potential difference across 
the ferroelectric layer, posing a challenge that necessitates higher 
voltage for programming and erasing operations. To optimize the gate 
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voltage applied to the ferroelectric layer, the magnitude of the voltage 
applied to the interlayer can be decreased by employing a high-k 
material for the interlayer, leading to extensive exploration into 
investigating suitable stack configurations. The MFMIS structure 
enhances the MFIS design by incorporating a floating gate metal layer 
between the ferroelectric layer and the Si substrate. The top MFM and 
bottom MIS components are independently designed, which 
effectively mitigates voltage drop issues in the MFM capacitor. This 
leads to a reduction in the operating voltages required for program 
and erase operations, addressing a pre-existing concern and 
significantly improving data retention characteristics.

FeFET emerges as a strong candidate for a synaptic device given 
its advantages, including low operating voltage and power 
consumption. Additionally, it exhibits effective conductance control, 
a high on/off ratio, a minimal sneak path, and rapid operation speed 
(Mulaosmanovic et al., 2017; Jerry et al., 2018). Jerry et al. (2017) 
fabricated an HZO-based MFIS-structured FeFET and demonstrated 
multilevel characteristics of high dynamic range (45) and 32 

conductance state levels by using multi-domain polarization 
characteristics. The linearity characteristics were verified by using 
three methods of changing identical, ISPP, and pulse width 
modulation, and the linear and symmetric weight update 
characteristics were secured with ISPP pulses (75 ns, 50 mV step), as 
shown in Figure 6F. Dutta et al. (2020) fabricated a BEOL-compatible 
FeFET capable of 3-D integration with In2O3 (IWO) channel and HZO 
layer. A wide memory window of 1.2 V, a fast write speed of 100 ns, 
endurance cycle (>108), and memory retention characteristics (>103 s) 
were confirmed through gate voltage pulses. In addition, uniform 
cycle-to-cycle variation was secured for the state of 2 bits according to 
the program voltage. Kim M.-K. et al. (2021) fabricated a FeFET using 
an HZO ferroelectric layer and an IZTO channel. The conductance 
modulation characteristics were confirmed through the gate voltage, 
and the on/off ratio (>10) and endurance characteristics (>107) were 
secured. To obtain linear and symmetric characteristics, the ISPP 
method was used to secure 64 conductance states and symmetric 
characteristics of 0.98 and 1.1795.

FIGURE 6

Three terminal conductance-based synaptic devices. (A) Flash memory basic structure. (B) Flash memory transfer curve. (C) Conductance modulation 
on flash memory under incremental step pulse programming (ISPP). Reproduced with permission (Zhou et al., 2022), Copyright 2022 IEEE. (D) FeFET 
basic structure. (E) FeFET transfer curve. (F) Conductance modulation under ISPP. Reproduced with permission (Jerry et al., 2017), Copyright 2017 IEEE. 
(G) ECRAM basic structure. (H) ECRAM transfer curve. (I) Conductance modulation on ECRAM under identical pulses. Reproduced with permission 
(Tang et al., 2018), Copyright 2018 IEEE.
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2.2.3 Electrochemical random access memory 
(ECRAM)

Electrochemical RAM (ECRAM) is a non-volatile, three-terminal 
device operating with electrochemical switching behaviors. It consists 
of a gate, ionic reservoir, source/drain, electrolyte, and conductive 
channel, as depicted in Figure 6G (Nitta et al., 2015; Van De Burgt 
et al., 2017; Jeong et al., 2021; Kang and Woo, 2021; Talin et al., 2022). 
It is also known as an ion-based synaptic transistor. In ECRAM, the 
conventional gate dielectrics of three-terminal transistors are replaced 
with an electrolyte layer. Depending on the applied gate voltage, ions 
from the electrolyte diffuse into the channel, inducing an 
electrochemical change that controls the conductance of the channel, 
as shown in Figure 6H. In general, the electrolyte ions include Li+, H+, 
O2−, etc., and lithium-ion-based synaptic transistors have been 
extensively studied (Fuller et al., 2017; Yang et al., 2018). By allowing 
ions to leave or enter the channel, ECRAM can modulate the 
conductivity of the channel, enabling it to function as an analog 
synaptic device. The conductivity of the channel is monitored by 
applying a fixed voltage to the source-drain voltage during read and 
write operations. ECRAM exhibits relatively symmetric switching 
characteristics and low stochasticity due to the control of 
electrochemical reactions by the amount of charge generated in 
response to the applied gate voltage.

Tang et al. (2018) demonstrated an ECRAM device based on a 
WO3 channel with LiPON electrolyte and its operational 
characteristics. By applying positive and negative gate current pulses, 
the conductance of the WO3 channel was modulated through the 
intercalation of lithium ions, achieving potentiation and depression 
responses, as shown in Figure 6I. The measured conductance response 
exhibited excellent symmetry, a large dynamic range (up to 103), and 
minimal stochasticity, allowing for precise conductance state 
representation. Furthermore, the ECRAM device demonstrated the 
endurance characteristics with no degradation, lasting up to 105 
pulses. Additionally, the ECRAM device showed high-speed 
programming capability (down to 5 ns) and scalability potential, 
indicating its promising prospects as a synaptic device. Kim et al. 
(2019) demonstrated a metal oxide ECRAM array based on WO3 
channel, HfO2 electrolyte, and metal oxide reservoir stack, and both 
array operations and stochastic update algorithm-based weight update 
characteristics were experimentally presented. The fabricated devices 
exhibited reliable synaptic characteristics, including retention of over 
14 h after programming, endurance of 20 million pulses, and an on/
off ratio of 2. The metal oxide ECRAM-based 2 × 2 array was 
configured with the drain terminals of each device connected in one 
row and the source terminals connected in one column, and the 
half-V scheme was employed for weight updates. The array was 
trained using a linear regression problem, and the learning algorithm 
tuned the weights toward the target values. As the training progressed, 
the weight values converged to target values, and the error with 
respect to the epoch approached zero, as demonstrated 
through experimentation.

2.2.4 Array demonstration of three-terminal 
devices

Most three-terminal devices are integrated into flash memory 
arrays, and representative structures are NOR, NAND, and AND flash 
arrays. Additionally, some studies have demonstrated the use of 3-D 
stacked arrays, considering the commercialized 3-D NAND flash 
memory. Figure 7A illustrates the structure of a 2-D NOR flash array 

and the VMM operation mechanism. Similar to the memristor CBA, 
each cell is connected in parallel, enabling simultaneous VMM 
operations. When input signals are applied to WLs, drain current with 
constant bias can be summed along with the BL or source line (SL) 
direction. The input signals can also be applied to BLs, and current 
summations occur along with SLs. Guo et  al. (2017) employed 
embedded NOR flash memory technology for neuromorphic 
classifiers, as shown in Figure 7B. For analog computing, the synaptic 
devices in the array exhibited near analog-grade weight levels achieved 
by the weight-tuning process, including a verification step. The 
accurate VMM results were experimentally demonstrated with 10,000 
CIFAR-10 test images, as depicted in Figure  7C. The reliable 
classification operation was also verified by comparing the relative 
changes of the output voltages for all 10,000 MNIST test images 
between the originally measured one and those measured 
7 months later.

In contrast to NOR flash array, NAND flash structure connects 
cells in series to form a string, as shown in Figure 7D. This series 
connection prevents parallel current summation, allowing only one 
cell to be read at a time. To read the state of one cell, pass voltage must 
be applied to all unselected cells in the same string to function as 
wires. During program or erase operations, a high voltage is applied 
to the same page due to the shared WL structure, and an inhibit 
voltage is necessary to prevent disturbance. Because of this structure, 
simultaneous VMM operation is challenging in NAND flash array. 
The input signals can be applied to either WL or BL, while the other 
one is biased. In both scenarios, however, each cell needs to be read 
sequentially due to the serial connection of NAND flash string. Lee 
et  al. (2019a) presented a method for implementing the XNOR 
operation using a 2-D NAND string within the group. Figure  7E 
shows the process of performing VMM operation on a 2-D NAND 
string, along with the distribution of string current output based on 
the XNOR operation results. When two cells are utilized as a pair, +1 
is an output when the left cell is in the on state. The input signals were 
applied to the input transistors of the string cells, and the VMM 
operation was executed while sequentially reading the WLs. The 
distribution of outputs +1 and − 1 confirmed the proper execution of 
the XNOR operation based on the state of each cell.

This issue can be addressed with a 3-D NAND flash structure, 
where each string is connected in parallel through BL. This structural 
feature allows the string current to be summed along the BL direction, 
enabling simultaneous VMM operations (Wang P. et al., 2020). The 
VMM method slightly varies depending on the planes within the 
3-D-based structure used for weight mapping. In addition, the 
technologically matured 3-D NAND flash structure offers significant 
advantages for implementing large-scale DNNs with numerous 
synapse weights. Wang P. et al. (2018) demonstrated a method for 
VMM operation based on 3-D NAND flash architecture, as shown in 
Figure  7F. The weight matrix was mapped on one WL layer (XY 
plane), so the selection voltage was needed for the selected WL, while 
pass voltage was applied to the unselected WLs. The input signals were 
applied to the SL in the form of a read voltage so that string current 
could be  summed along the BL. The result of VMM calculation 
performed in the 256 × 256 × 8 structure was demonstrated with 
SPICE simulation, showing a linear BL current increase as the number 
of cells increased. Kim I.-J. et  al. (2023) developed a 3-D NAND 
structure using FeFETs and conducted VMM operations with 4 × 2 
images. The fabricated 3-D Fe-NAND structure demonstrated various 
electrical characteristics, and array operations were successfully 
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verified. Like traditional NAND flash, the pass voltage of 2 V was 
applied to unread cells, while −5 V pulse was used for erasing, and a 
program pulse of 4 V was applied to the selected cell with 0 V. A 
voltage of 2.5 V was applied to the BL for the unwanted string. 
Through repetitive device measurements, program, erase, and inhibit 
characteristics were confirmed to work effectively. The device also 
exhibited reliable retention characteristics (106 s) and endurance 
operation (106) in each state, proving its usability as a synapse device. 
As a synapse array, the input signal was applied to BL in the 3-D 
NAND structure, and string current was summed to the SL line as a 
result of the multiplication between the BL voltage and the 
cell conductance.

AND flash array is also one of the potential candidates as a 
synapse array for three-terminal devices, as shown in Figure 7G (Jang 
et al., 2020; Lue et al., 2020; Seo et al., 2021). Its VMM operation is 
very similar to that of the NOR flash array. The input signals can 
be applied to either WL or BL, and each cell current can be summed 
along with SL. Since each cell is integrated in parallel along with the 
BL and SL directions, parallel current summation and VMM 
operations can be conducted. Due to the parallel BLs and SLs, sneak 
paths can be  prevented during programming, and 3-D array 
integration is in a structure similar to that of 3-D NAND flash 
architecture with common drain and source plugs. Lue et al. (2018) 
presented 3-D AND-type array for in-memory VMM computations, 
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FIGURE 7

Three terminal device array structures. Yellow panel indicates the weight matrix implemented by conductance of three-terminal devices, and red lines 
indicate the bitline where output currents are obtained through Ohm’s law and Kirchhoff’s current law. (A) NOR flash array. (B) Analog VMM circuit 
schematic using floating gate NOR flash structure. (C) Simulated and measured VMM results for 10,000 inputs. (B,C) Reproduced with permission (Guo 
et al., 2017), Copyright 2017 IEEE. (D) NAND flash array. (E) Circuit diagram and bias scheme of 3-D NAND array architecture for VMM operation with 
sequential read method. Reproduced with permission (Lee et al., 2019a), Copyright 2019 IEEE. (F) The circuit diagram of VMM operations in 3-D NAND 
array structure. For the selected layer, the selected input voltage vector is applied to WL, and a pass voltage is applied to WL of the remaining layers. 
Vread is applied to SL, and GND is applied to BL to read the BL current. Reproduced with permission (Wang P. et al., 2018), Copyright 2018 IEEE. (G) AND 
flash array. (H) Schematic diagram of 3-D AND-type NVM. (I) Two VMM methods proposed in the 3D AND flash array structure. Method 1: Insert analog 
input into BL to read current from SL. Method 2: Apply binary input to WL to enable high-density, fully connected operation. (H,I) Reproduced with 
permission (Lue et al., 2018), Copyright 2018 IEEE.
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as shown in Figure 7H. The current summations were conducted 
along with the SL as a result of the multiplication between the BL 
voltage and the device conductance. In addition, two VMM methods 
were proposed for the 3-D AND flash array depending on whether 
WL or BL is used as input signal, as shown in Figure 7I. The former 
method enabled high-resolution operation because analog input was 
inserted into BL to read current from SL. The latter method enabled 
high-density and fully connected operation by applying binary 
input to WL.

Chen et al. (2023) recently fabricated a 10 × 10 YSZ/WOx-based 
ECRAM array and successfully implemented a mushroom 
classification task in 10 × 5 × 2 bilayer neural network through in-situ 
training. This experiment represents the largest-scale implementation 
of an ECRAM array to date, surpassing previous demonstrations 
limited to single-cell characteristics. Notably, the experiment 
showcased the feasibility of open-loop programming, leveraging the 
excellent uniformity, linearity, and symmetry of the fabricated 
ECRAM devices. By demonstrating accurate programming 
performance using a single-voltage PWM pulse, the study highlighted 
the advantages of open-loop programming, such as reduced 
complexity and enhanced system efficiency compared to closed-loop 
schemes (write-verify). This achievement underscores the exceptional 
characteristics of the ECRAM array and underscores both its potential 
and the challenges associated with implementing large-scale networks 
in the future. While recent studies have explored programming 
schemes to overcome the limited operational characteristics of the 
device, such methods often entail trade-offs in terms of repetitiveness, 
time consumption, and energy consumption (Maheshwari et  al., 
2021). Moreover, these approaches may not be readily applied to other 
synaptic devices due to the unique characteristics of ECRAM.

2.3 Capacitor-based devices

When capacitors are connected in parallel, the total capacitance 
appears as the sum of individual capacitance (C = C1 + C2). The total 
charge induced in each capacitor can be expressed as the sum of the 
charges of parallel-connected capacitors. Consequently, while the 
conventional conductance-based neural network produces the current 
as the outcome of VMM operation, the capacitor-based neural 
network generates the charge in relation to C and V as a result of 
VMM operation (Pershin and Di Ventra, 2014; Zheng et al., 2019; 
Kwon and Chung, 2020; Luo et al., 2021). Additionally, capacitive 
devices can be integrated into a 4F2 CBA due to their two-terminal 
structure. However, capacitive CBAs exhibit distinct characteristics 
compared to memristive CBAs. Firstly, IR drop is negligible since the 
cell resistance is significantly greater than the wire resistance, unlike 
memristive CBAs, where a serious IR drop can occur in a large-sized 
array. Due to the open-circuit nature of a capacitor, sneak path current 
can also be effectively suppressed. Additionally, when using pulse-
related inputs, a capacitor-based array can consume less power 
compared to conductance-based arrays since it only uses 
dynamic power.

The basic operating principle of capacitive neutral networks is 
illustrated in Figure 8A, which shows the schematic of the capacitive 
crossbar array. In general, the operation method proceeds in two 
stages. The first step is to charge the capacitive devices. When a voltage 
pulse is applied to the WL, the accumulated charges vary depending 

on the device state. Then, the stored charges in the capacitor flow 
through the BL when the discharging voltage is applied. The charges 
in each cell are added through Q = ∑CV, where Q can correspond to 
the VMM results. In general, the output voltage is obtained by 
transforming Q through an integrator connected to the BL.

One potential candidate for a capacitor with memory function, 
known as a memcapacitor, is a metal oxide semiconductor (MOS) 
capacitor based on a charge trap flash (CTF) cell structure. Since its 
threshold voltage can be modulated by the trapping and de-trapping 
of electrons, the capacitance is adjusted accordingly. Hwang et al. 
(2023) fabricated the 8 × 16 MOS capacitor arrays with Ti/Al2O3/
Si3N4/SiO2/Si (TANOS) charge trap flash structure as shown in 
Figure  8B and experimentally demonstrated VMM operations. 
Employing program and erase schemes based on the F-N tunneling 
mechanism like conventional flash memory, multilevel characteristics 
of 4-bit were confirmed, as shown in Figure 8C. Transitioning the 
applied voltage from the charging voltage (Vc) to the discharging 
voltage (Vd) resulted in varying levels of discharging current and 
accumulated charge, dependent on the threshold voltage of the MOS 
capacitor, as depicted in Figure 8D. The operating principle of the 
capacitor crossbar array is as follows: When the charging transistor 
is activated, Vc is applied to the BLs, and the transistor of the selected 
WLs initiates charging. Unselected WLs remain in a floating state, 
with the cells remaining uncharged. Subsequently, when the charging 
transistor is turned off and the discharging transistor is turned on, 
the BL voltage shifts from Vc to Vd, inducing the corresponding charge 
and discharging current through the BL. The VMM operations were 
also validated using a randomly generated weight distribution, 
achieved by adjusting the program and erasing voltages. The excellent 
correlation value confirms the accurate execution of the VMM 
results, as shown in Figure 8E.

Ferroelectric capacitor is also another candidate for capacitive 
neural network, and a lower switching voltage can be  employed 
compared to the MOS capacitor based on CTF cell. Luo et al. (2020) 
fabricated a non-volatile and tunable MFM capacitive device based on 
a TiN/HZO/TiN stack. It was explained that the non-volatile 
capacitance arose from oxygen vacancy accumulation at the bottom 
electrode. The oxygen vacancies resulted in asymmetric number of 
domain walls (DWs) for positive and negative biases, subsequently 
inducing distinct capacitance states within varying polarization 
conditions. Hur et al. (2022) fabricated a HZO-based ferroelectric 
capacitive CBA based on the same TiN/HZO/TiN stack, as shown in 
Figure 8F, and examined its operational characteristics for in-memory 
computing. The on/off ratio > 110% was achieved by utilizing the DW 
pinning effect caused by oxygen vacancies at the bottom electrode, 
resulting in high and low capacitance due to polarization 
characteristics at DC bias of 0 V, as shown in Figure 8G. As a capacitive 
synapse device, the device exhibited reliable characteristics, including 
endurance (103) and retention characteristics (10 years), in both high 
and low capacitance states. The weighted sum operations were also 
experimentally demonstrated in a fabricated 12 × 12 array. These 
operations involved two steps, including charging and charge transfer 
steps, as illustrated in Figure 8H. Initially, charge was accumulated in 
the ferroelectric capacitors when a voltage was applied to the 
WL. Then, the stored charges were transferred to the integrator, and 
the output voltage was generated accordingly. The VMM operation 
was verified according to the number of capacitive devices, as shown 
in Figure 8I.
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To address the low on/off ratio observed in the MFM 
structure, research has explored capacitive synapses using the 
MFS stack. In the conventional MFM structure, the capacitance 
values in both states are very small, making it susceptible to noise 
and variations (Yu et al., 2023). Kim T.-H. et al. (2023) validated 
the operation of capacitive synapses using the MFS-structured 
FeFET. They varied the program voltage while keeping the erase 
voltage fixed to confirm multilevel operation and the on/off  
ratio at the read voltage. Applying a positive voltage causes the 
ferroelectric dipole to orient downward, resulting in a  
larger capacitance value at the read voltage. Through TCAD 
simulations, they investigated capacitance values in two  
different states by varying parameters such as gate area and 
overlapped area.

3 Compensation methods against 
hardware non-idealities

To implement a hardware-based neuromorphic system 
comparable in performance to software-based neural networks, 
considerations at each level—device, array, and device/array interface, 
overhead in peri-circuits—necessarily must be followed by achieving 
robust overall system performance. Among them, synaptic devices 
and arrays form the foundational elements at the bottom level of the 
neuromorphic system. These fundamental components can give rise 
to potential performance degradation within the overall system if not 
addressed adequately. This section focuses on the hardware 
non-idealities in artificial synaptic devices and arrays, which handle 
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FIGURE 8

Capacitor-based devices and array structures. (A) Basic structure of capacitive crossbar array. (B) SEM image of 8  ×  16 capacitive crossbar array based 
on charge trap flash structure. (C) C-V characteristics according to program and erase voltage. (D) Discharging current characteristics according to the 
capacitor state. (E) VMM operation results measured through the fabricated 8  ×  16 capacitive crossbar array. (B–E) Reproduced with permission 
(Hwang et al., 2023). Copyright 2023 WILEY-VCH. (F) Optical image of fabricated ferroelectric capacitive crossbar array. (G) Physical illustration of the 
asymmetric C–V characteristics. (H) The weighted sum operation in capacitive crossbar array. (I) Voltage output through a weighted sum according to 
the number of high-capacitance states. (F–I) Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International License (Hur 
et al., 2022), Copyright 2022 John Wiley & Sons.
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the storage and processing of weight values, crucial information in 
neural networks. In addition, the compensation methods against the 
hardware non-idealities are discussed.

Imperfections within synaptic devices and array structures can 
lead to lower neural network learning performance, as shown in 
Figures 9A,B (Burr et al., 2015; Zhang W. et al., 2019; Joksas et al., 2020; 
Lim et  al., 2021). The non-idealities can arise from both synaptic 
devices themselves (non-linearity, asymmetry, variation, noise, etc.) 
and array structures (IR drop, read/write disturbance, sneak path 
current, interference, etc.), necessitating methods to compensate for or 
mitigate their impacts. Once the synaptic devices and arrays are 
fabricated, it is significantly difficult to change or suppress the intrinsic 
non-ideal factors they possess. As the network size increases, the size 
and analog characteristics of the required synaptic arrays become more 
stringent. However, even with unavoidable non-idealities, a flexible 
approach for compensation is needed. To address the performance 
degradation of hardware-based neural networks caused by non-ideal 
characteristics within the devices, various compensation approaches 
have been proposed. In this section, we explore various approaches 
designed to alleviate the impact of hardware non-idealities on network 
performance. These approaches fall into two main categories: signal 
and hardware engineering, which entail methods implemented at the 
hardware level; and SW-HW co-optimization, wherein ideal neural 
networks are benchmarked against software baselines.

3.1 Hardware and signal engineering

3.1.1 Program-and-verify methods
During the weight import stage, which is the primary phase of 

ex-situ learning, achieving precise weight writing might be challenging 
due to conductance variations or malfunctioning devices, leading to 
a potential degradation in inference accuracy. To achieve accurate 
weight transfer, a program–verify algorithm (also known as the 
feedback programming method or closed-loop programming 
method) is utilized, and, as can be seen in Figure 9C, the set pulse and 
reset pulses are adjusted while checking the conductance states to 
reach the target conductances. This tuning algorithm is designed to 
approach the target conductance as closely as possible by employing 
read pulses between switching voltage pulses (Alibart et al., 2012; Kim 
H. et al., 2021). If the conductance state is lower than the target, a set 
pulse is applied to increase the device conductance; conversely, a reset 
pulse is used to decrease the device conductance if the conductance 
state is higher than the target. This iterative process ensures that the 
conductance falls within the acceptable range, where inter-state 
overlap is avoided, thus enabling precise state programming. 
Incorporating a tunable parameter known as the tuning margin 
provides finer control, and increasing the number of applied pulses 
compensates for tuning inaccuracies arising from variations in the 
degree of non-idealities.

Kim T.-H. et  al. (2022) successfully transferred 3-bit states in 
TiOx-based RRAM using a program–verify algorithm, ensuring no 
state overlapping. They applied set/reset pulses within a program error 
margin of 5 μA to observe the process of reaching the target 
conductance range. Bayat et  al. (2018) further improved tuning 
accuracy by utilizing the feedback programming method, taking 
advantage of the device’s inherent variation characteristics. This 
approach involved continuously verifying the states during 

programming, enabling control of switching threshold variation on a 
per-device basis. Additionally, they reduced the impact of tuning 
inaccuracy on performance and increased operational speed by fixing 
one of the two RRAM devices that constitute a weight to its minimal 
conductance during programming, thereby minimizing the influence 
on the actual weight calculation.

Yao et al. (2017) developed a one-layer perceptron neural network 
with a 320 × 3 configuration using a 1T1R structure, which was 
employed for face image classification. They investigated the impact 
of two methods: the program–verify method, which applies pulses 
until the target conductance is achieved, and the method utilizing a 
single set/reset voltage pulse. Analyzing the effects of these methods 
on 255-level normalized conductance, they observed that, after 
training, the weights tended to concentrate at lower conductance 
levels when the write-verify method was employed. When considering 
input images with added noise components, the write-verify method 
exhibited better learning accuracy (88.08%) compared to not using it 
(85.04%), on average. The write-verify approach also demonstrated 
faster convergence, reduced energy consumption, and higher accuracy 
due to the fewer required iterations.

3.1.2 Input encoding schemes
To enable effective analog computing, it is crucial to establish a 

linear correspondence between current and voltage, especially during 
VMM operations. In general, two approaches are employed to 
interpret input as an analog signal. One method involves adjusting the 
voltage magnitude while maintaining a constant pulse width, whereas 
the other entails modifying the pulse width while keeping the voltage 
magnitude constant. In the case of altering the voltage magnitude, the 
linear relationship between applied voltage and devices is mandatory 
to ensure precise VMM operation. However, most of the non-volatile 
memory devices under investigation find it challenging to exhibit the 
necessary linear relationship, which can result in inaccuracies in the 
output signals. Achieving this linearity can be challenging due to the 
non-linear I-V characteristics inherent in non-volatile 
memory devices.

Lee and Lee (2020) utilized the pulse width modulation with a 
fixed amplitude, where the pulse width was modulated to express 
analog-grade input signals, in 3-D NAND flash array as shown in 
Figure 9D. By employing a fixed voltage magnitude and varying the 
pulse width according to signal information, the resulting output is 
represented as the capacitor node voltage according to the 
accumulated charge within the neuron circuit. Using a fixed voltage 
helps alleviate non-linear I-V characteristics in the synaptic device 
because the accumulated change can be linear to the pulse width of 
input signal. Choi et al. (2017) also utilized the pulse width modulation 
while keeping the input amplitude constant in the memristor CBA. To 
mitigate the non-linear I-V characteristics of memristor device, the 
input signal was encoded by varying pulse width from 0 to 1,000 μs 
(100 μs unit pulse width and a constant amplitude of 0.3 V) 
proportional to the values of the input data. Another approach to 
tackling non-linear I-V relationships in analog input involved PWM, 
where analog input was encoded into n pulse trains. Cai et al. (2019) 
implemented a multilayer neural network employing this technique. 
To account for the constant offset that occurs during the rising and 
falling times, instead of solely modifying the pulse width, they 
adjusted the equivalent width of the input pulse using n discrete-time 
pulse trains. Each channel was subsequently linked to a 
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digital-to-analog circuit, which converted the 6-bit input into an 
n-element pulse train. Considering the I-V non-linearity, VMM 
operation was executed in the charge domain, and the charge 
accumulated in the capacitor during the application of the input pulse 
was utilized as the outcome of the VMM operation. Yao et al. (2020) 
employed shift-and-adder circuits to represent analog-grade input 
information, as depicted in Figure 9E. They achieved this by applying 
binary pulses n times, each with the same pulse width, and utilizing 
the shift-and-add method, starting from the most significant bit 
(MSB). This approach allowed them to represent 255 levels of 
grayscale MNIST images through 8-bit binary encoding with a 0.2 V 
pulse for ‘1’ and GND for ‘0’. These pulses were applied sequentially at 
eight-time intervals, allowing the current to flow through the shift-
and-add circuitry.

3.1.3 Multi-device weight implementation
Multi-device refers to representing a single synaptic weight using 

multiple synaptic devices (Rzeszut et  al., 2022). This approach 
addresses the limitations posed by devices with restricted dynamic 
ranges and asymmetric conductance responses, which can lead to 
precision challenges in weight representation. Boybat et al. (2018) 
introduced a multi-memristive synapse architecture in which multiple 
PCM devices form a single synapse, as depicted in Figure 9F. This 
architecture resolves the issue of asymmetric weight updates caused 
by the abrupt reset behavior of PCM devices. Furthermore, it has been 
demonstrated that the conductance varies linearly with the number of 
devices, thereby enhancing weight resolution and facilitating more 
accurate weight updates. Through this strategy, temporal correlation 
detection was experimentally implemented using 103 PCM-based 
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FIGURE 9

Signal and hardware engineering against non-idealities of synaptic device. (A) Various non-idealities of synaptic devices. (B) Impact of non-idealities on 
training accuracy. (A,B) Reproduced with permission (Burr et al., 2015), Copyright 2015 IEEE. (C) Write-and-verify programming method during weight 
tuning phase. Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International License (Kim M.-K. et al., 2021), Copyright 
2021 Springer Nature. (D) PWM with the same amplitude and different pulse width depending on the intensity of signal. Reproduced under the terms 
of the CC-BY Creative Commons Attribution 4.0 International License (Lee and Lee, 2020), Copyright 2020 Frontiers Media S.A. (E) Binary pulse 
scheme encoding 255 levels using shift and adder. Reproduced with permission (Yao et al., 2020), Copyright 2020 Springer Nature. (F) Concept of 
multi-memristive synapse. Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International License (Boybat et al., 2018), 
Copyright 2018 Springer Nature. (G) Tiki-taka algorithm with core and auxiliary system composed of main array and reference array. Reproduced 
under the terms of the CC-BY Creative Commons Attribution 4.0 International License (Onen et al., 2022), Copyright 2022 Frontiers Media S.A.
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synapses in a spiking neural network (SNN). As a result, this method 
compensates for the inherent limitations of specific synaptic devices 
and can potentially be applied to other synaptic device types apart 
from PCM. Garbin et al. (2015) also proposed the configuration of a 
single synapse comprising n binary OxRAM cells connected in 
parallel. The n devices in a row form the synaptic structure connected 
to the presynaptic and postsynaptic neurons. Ambrogio et al. (2018) 
tried to compensate for the linearity problem caused by the variation 
issues encountered when using analog synaptic devices. They 
introduced a novel 2PCM + 3T1C structure, wherein additive devices 
(CMOS and capacitors) were integrated into a single synapse unit. 
This structure aimed to achieve enhanced linearity and precise weight 
modulation, taking inspiration from DRAM-like operations. Their 
objective was to achieve weight adjustments proportional to the 
current flowing through the weight.

3.1.4 Cell compensation
During hardware-based inference operations, performance 

degradation can occur due to stuck cells or resistance from other cells 
(Yan et  al., 2017; Park et  al., 2022). A single faulty cell within a 
memristor crossbar array can disrupt the current in the column, 
affecting the neuron’s output and overall yield. Two types of fault 
devices can exist within such arrays: soft and hard faults. Soft fault 
devices undergo changes in conductance due to factors like write 
variation, read disturbance, fabrication discrepancies, and endurance 
issues, leading to decreased computational accuracy. The status of 
these cells can be re-adjusted through tuning processes. On the other 
hand, hard-fault devices experience complete breakdowns, rendering 
their status uncontrollable. These faults may arise from process issues, 
resulting in the device being stuck in either LRS or HRS. LRS faults 
could be caused by defects during over-forming or failures during the 
reset switching process, while HRS faults may result from permanent 
electrode opening or switching failure (Xia et  al., 2017; Yeo 
et al., 2019).

The influence of stuck cells may be more significant for offline 
learning, where pre-trained weights are transferred. To mitigate the 
impact of such stuck cells, Ma et al. (2016) investigated the utilization 
of redundant arrays for error correction. In addressing the issue of 
SA1 faults, they developed a method to detect columns where SA1 
occurs and remove them during online learning. For this, they 
employed a larger crossbar array and implemented a technique 
involving the random selection and replacement of an additional 
column. This action was taken if a specific column accounted for more 
than 10% of the total training time due to the influence of SA1 and 
substantially reduced the mean squared error. Liu et  al. (2017) 
addressed the impact of stuck cells through both the retraining 
method and redundancy cell usage. While retraining led to an 
enhancement in recognition rates, more substantial improvements 
were achieved by replacing an additional column when stuck cells 
were concentrated within a specific column.

3.1.5 Modified weight update methods
During the key operation phase of in-situ training, specifically the 

weight update stage, the presence of device non-idealities, especially 
limited dynamic range, and asymmetric conductance response exerts 
an influence on stable and precise conductance representations. The 
inherent limited conductance range of the synaptic device hinders the 

attainment of ideal analog states via continuous application of infinite 
pulses. Essentially, subjecting the device to a sustained series of 
massive pulses leads to saturation of its conductance state within a 
constrained range. As a result, significant set pulses cause each device 
within a differential pair synapse structure to saturate, leading to 
complexities in achieving accurate representation (Nandakumar et al., 
2020). Consequently, this compromises network accuracy, impacting 
both inference and training operations.

To address this issue, a “refresh operation” can be employed. This 
operation involves applying multiple reset voltage pulses to devices 
that have reached saturated conductance levels, thereby reducing their 
conductance and restoring their functionality. This modified weight 
update scheme can also be considered a compensation method based 
on signal processing, enabling precise learning by accounting for the 
device finite states during the weight update process. Suri et al. (2011) 
suggested programming schemes involving reset updates based on 
device state checks, along with read and write schemes, to maintain 
the continuous representation (retaining) of weight states in a 
two-layer spiking neural network array composed of two PCM cells 
performing LTP and LTD during operation. These approaches were 
demonstrated not only in PCM but also in RRAM devices (Zhou et al., 
2018; Xiang et al., 2019), as well as a van der Waals hybrid synapse 
device-based differential pair structure (Seo et  al., 2020). These 
findings demonstrate the feasibility of stable weight update operations 
through reprogrammable, gradual conductance adjustments.

In addition, synaptic devices can exhibit an asymmetric 
conductance response. This implies that the amount of potentiation 
or depression (ΔG) for the identical pulse varies depending on the 
current G state. This phenomenon requires more energy and time to 
achieve precise weight updates, leading to a degradation in training 
accuracy. Instable training issues can arise due to the asymmetric 
behavior of synaptic devices. This mismatch occurs because the 
direction taken by the software-based backpropagation algorithm 
does not align with the actual hardware device characteristics 
(Gokmen and Haensch, 2020). To address this, Onen et al. (2022) 
proposed a learning strategy, called the Tiki-Taka algorithm, by 
introducing an auxiliary array system. Training is conducted in the 
auxiliary array and the accumulated weight update (ΔW) is transferred 
to the core array, as shown in Figure 9G. Each array system includes a 
reference array that stores the symmetry point of the devices. By 
subtracting the value of this reference array, the cost term of the 
stochastic gradient descent (SGD) update can be eliminated. This 
Tiki-Taka algorithm allows synaptic devices to converge toward their 
symmetry point as they receive repeated pulses, compensating for the 
original non-ideal behavior and thereby enhancing weight 
convergence stability. This algorithm was experimentally 
demonstrated in a 2 × 2 ECRAM-based array. Research on the Tiki-
Taka algorithm, which relaxes the symmetry requirements for synapse 
devices, is ongoing with a focus on co-design. Material improvement 
approaches have been pursued from a device development perspective 
to ensure that ΔG maintains a stable symmetry point even when 
subjected to set/reset pulses. Additionally, algorithm development 
efforts have aimed to enhance noise tolerance by incorporating a 
filtering function to refine transmitted values before transferring the 
accumulated gradient to the existing separate A (auxiliary) and C 
(core) arrays (Gokmen, 2021). Gong et  al. (2022) experimentally 
implemented the TTv2 algorithm in hardware through open-loop 
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training on a 12 × 4 6T1R unit cell-based RRAM array. Hardware 
designed to maintain a stable symmetry point and accommodate a 
noise-tolerant algorithm yielded superior results, achieving 
approximately 98% accuracy in MNIST classification, surpassing the 
performance of existing synapse devices and SGD-based 
learning accuracy.

3.2 SW-HW co-optimization

3.2.1 Hybrid and mixed approaches
The hybrid learning method is an approach that applies two 

learning methods, namely in-situ and ex-situ learning, within the same 
network. In-situ training minimizes the impact of hardware defects on 
hidden neurons in deep networks by inherently compensating for the 
weights through self-adaptation (Alibart et al., 2013; Li et al., 2018). 
However, a drawback of in-situ training is the cost associated with 
weight updates to the hardware and additional circuits. On the other 
hand, ex-situ training is simpler in operation but vulnerable to 
hardware non-idealities and incurs a cost in terms of retraining since 
it lacks considerations regarding hardware-induced non-idealities. In 
the conventional ex-situ learning approach, if accuracy decreases due 
to hardware non-idealities after transferring the pre-trained weights, 
retraining is necessary. However, hardware non-idealities in the earlier 
layers can be tolerated and compensated with the adoption of the 
hybrid approach.

Yao et al. (2020) employed a hybrid learning approach based on a 
memristor array for CNN, effectively addressing the challenges 
associated with ex-situ and in-situ training. In this approach, the 
convolutional layers responsible for feature extraction utilized the 
ex-situ learning method, while the FC layer responsible for the final 
output was trained using the in-situ learning method. This strategic 
combination compensated for performance degradation stemming 
from hardware non-idealities, as illustrated in Figure 10A. To assess 
the impact of this hybrid approach on the overall system performance, 
a five-layer CNN structure was implemented on a fully hardware 
system comprising eight packages of 128 × 16 1T1R array with TaOx/
HfOx RRAM devices, processing elements, and ARM core. For the 
CNN network system implementation, a 255-level grayscale image 
was binary encoded as input, and a total of 15 levels were employed as 
weights. The ideal software baseline network using 32-bit floating-
point precision exhibited a CIAFR-10 recognition rate of 95.57%. 
However, without hybrid training and relying solely on weight 
transfer, a notable degradation of 79.76% occurred due to hardware 
non-idealities. Remarkably, following in-situ retraining of the FC layer, 
the accuracy performance demonstrated a significant 
improvement to 92%.

Nandakumar et  al. (2020) proposed the mixed-precision 
computational architecture to achieve performance comparable to 
software-based ANN. The main operation in in-situ learning, the 
weight update phase, was addressed by proposing a new processing 
structure to achieve accurate and incremental conductance control 
and resolve precision issues in PCM devices. VMM operations and 
weight storage were handled by the PCM array with low precision, 
while the processing of VMM operation results and accumulation of 
weight update values were managed by a digital processing unit with 
high precision, as shown in Figure  10B. The experimental 
implementation of this mixed-precision structure demonstrated 

performance close to 64-bit floating-point software learning. This 
indicates that the hardware form of synapses, such as memristor-based 
crossbar arrays, can expect performance improvements by leveraging 
the area, energy efficiency, and parallel computation of the memristor-
based arrays, along with the maturity of existing digital processing 
units and reduced information loss due to high precision. Kumar et al. 
(2022) also used the hybrid architecture based on a CMOS-based 
encoder unit and the emerging 2-D material h-BN-based decoder 
unit. They experimentally demonstrated that the mixed-precision 
architecture can be generalized to various edge computing tasks.

3.2.2 Binarized neural networks
Binarized neural networks (BNNs), a modified type of DNN 

algorithm, in which weights and activations are binarized, were 
originally proposed to mitigate the memory access issue (Courbariaux 
et  al., 2016). BNN employs a mixed-weight form known as 
binarization, allowing it to utilize analog values only during updates. 
Weights are binarized, except during the weight update process. When 
updating weights based on the accumulated gradient, real-numbered 
weights are utilized. These analog weights are then converted into two 
states through binarization. This network enables efficient hardware 
implementation of neural networks by adopting weight binarization 
to address the insufficient analog nature of synaptic devices. In 
HW-ANN, memory devices need to have multilevel implementation 
and sufficient margin between states to express precise weights. 
However, accurately implementing multilevel weights poses challenges 
due to the limited operating range (on/off ratio) of the device itself, 
non-linear state changes, and switching yield problems. This 
inaccurate representation of analog weights based on non-ideality 
negatively impacts accuracy and power efficiency in HW-ANN 
systems. By applying HW-BNN, high performance can be ensured, 
particularly in applications requiring high operation speed and power 
efficiency in arrays or large-scale neural network systems where 
analog weight expression is challenging due to intrinsic device 
non-ideality. There may be concerns about performance degradation 
compared to high-precision (analog) weight-based HW-ANN due to 
the low precision weights in BNNs. However, the BNN algorithm, 
proven in the deep learning community, exhibits robustness against 
binarization noise since the noise is averaged out through numerous 
multiplication and weighted sum operations, converging to the 
desired ideal weight. HW-BNN performance can be  efficiently 
maintained even with hardware exhibiting non-ideal operation due to 
the algorithm’s robustness. From a system perspective, there are 
advantages in terms of computational efficiency and system energy, as 
matrix multiplication operations are possible with a simple 
XNOR operation.

Yu et al. (2016) implemented a two-layer (400 × 100 × 10) BNN on 
a 512 × 1,024 RRAM array in a 16 Mb RRAM macro chip. Even though 
the weight of the synaptic device was applied in a binary state, a high 
learning accuracy of 96.5% was obtained for the MNIST dataset 
classification task. Zhou et  al. (2018) presented a hardware-based 
BNN demonstrating the feasibility of mitigating the degradation in 
on-chip learning performance attributed to the non-linearity of 
synaptic devices. They proposed a 2T2R cell structure for performing 
weight updates based on identical pulse programming, utilizing a 
simple peripheral circuit, where the two requirements (binary weight 
reading and analog weight updating) are implemented as shown in 
Figure 10C. Achieving precise weight updates using identical pulses is 
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challenging due to the non-linearity in RRAM devices, which can 
be  effectively addressed by proposed hardware-based BNNs. The 
accumulated change in analog weights (ΔW) in HW-BNN was 
realized as accumulated pulses applied to the devices. The binary 
reading stage, responsible for determining weight values as +1/−1, was 
achieved by comparing the conductance of the two devices (G+, G−) 
within a single cell as W = sign(G+ –G−) implemented with 
comparators. Even with increasing non-linearity, the accuracy of the 
five-layer ANN for MNIST classification remained almost constant at 
97.4%. Zhang Y. et al. (2019) proposed an improved hardware-based 

BNN by separating the weight updating and propagation (forward and 
backward) modules in a 1T1R RRAM crossbar array structure, 
representing W = G+–G−, and only two states (LRS and HRS) are 
needed for one cell. This approach addresses two main issues in 
previous 2T2R cell structure-based BNN: the speed bottleneck caused 
by row-by-row computing during forward pass and the challenges 
associated with analog computations during backward pass. In 
addition, they successfully mitigated the impact of cell-to-cell and 
device-to-device variations in RRAM devices. By limiting the current 
during the set operation of the 1T1R cell with a lower gate voltage, the 
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FIGURE 10

Software–hardware co-optimization approaches against non-idealities of synaptic device. (A) Hybrid training has eight convolution layers for ex-situ 
training and an FC layer for in-situ training. Reproduced with permission (Yao et al., 2020), Copyright 2020 Springer Nature. (B) Mixed-precision 
architecture consisting of high-precision processing unit and low-precision computational memory unit. Reproduced under the terms of the CC-BY 
Creative Commons Attribution 4.0 International License (Nandakumar et al., 2020), Copyright 2022 Frontiers Media S.A. (C) BNN algorithm and 
hardware-based BNN operations in a synaptic cell. Reproduced with permission (Zhou et al., 2018), Copyright 2018 IEEE. (D) Conductance map 
informing the locations and values of stuck cells in fault-aware training. Reproduced with permission (Yeo et al., 2019), Copyright 2019 IEEE. (E) Flow 
chart and overall methodology in variation-aware training with injecting a noise factor in the forward propagation. Reproduced under the terms of the 
CC-BY Creative Commons Attribution 4.0 International License (Joshi et al., 2020), Copyright 2020 Springer Nature.
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influence of LRS variation was reduced, and the propagation efficiency 
was increased, thereby further improving the HW-BNN. Kingra et al. 
(2020) demonstrated hardware-based BNN with the fabricated 8 × 8 
OxRAM passive array, wherein the resistance state distribution and 
VMM results. To achieve analog inputs by using PWM encoding, a 
BNN-based ADALINE classifier was used to mitigate non-idealities 
by comparing the experimental (67.54%) and simulation accuracy 
(78.07%) classification accuracy results for the UCI Cancer dataset. 
This approach addressed challenges arising from imprecise state 
control due to the wide LRS and HRS distribution across the device. 
This variation was identified through measurement data, and the 
utilization of binary states limited the impact of variability on VMM 
accuracy. These approaches can be regarded as a co-design involving 
both hardware characteristics and algorithmic considerations beyond 
the synaptic devices (Qin et al., 2020; Jung et al., 2022).

3.2.3 Hardware-aware training
Hardware-aware training is a learning approach where the 

operational characteristics of synaptic devices and arrays are 
considered, and then the non-idealities are identified to minimize 
their impact on the overall system performance in advance. This 
approach can be  divided into two stages: (1) Detection stage: 
non-ideal elements of the hardware are identified and 
characterized. This involves detecting the conductance values, 
locations, and other relevant information of the non-ideal 
devices. (2) Tolerant training stage: once the non-ideal devices 
are detected, the training process incorporates the data obtained 
from the detection stage to train the system in a way that tolerates 
or compensates for the effects of the non-idealities. By following 
this hardware-aware training process, the neural network can 
adapt and optimize its performance even in the presence of 
non-ideal characteristics in the synaptic devices.

The effect of stuck cells, which cannot change conductance at a 
specific value, on system performance was reported by Bayat et al. 
(2018). These defects were experimentally identified through 
tuning. By incorporating this information into the software-based 
learning, the hardware-aware ex-situ training obtained pre-trained 
weights, making it aware of and importing the data from these cells. 
Through both simulation and experimentation methods, the effect 
of the hardware-aware approach was compared to the hardware-
oblivious approach, where no information about these cells was 
considered during ex-situ training. They experimentally 
implemented a two-layer neural network on a PCB board, 
employing a 20 × 20 Al2O3/TiOx-based RRAM passive crossbar 
array. Both approaches were executed in 16 × 10 × 4 multilayer 
perceptron networks for 4 × 4 alphabet image classification. In 
comparison to the approach that disregarded stuck cells (with an 
accuracy of 79.06%), the method that considered stuck cells during 
training (achieving 81.4% accuracy) exhibited a better performance, 
demonstrating that the hardware-aware ex-situ training approach 
achieved higher classification accuracy compared to the hardware-
oblivious approach. Liu et al. (2017) reported that a compensation 
method called the rescuing methodology, with weight significance 
evaluation stage, was proposed for addressing defects, specifically 
stuck cells, in memristor CBA. They conducted simulations based 
on measured data to develop this methodology. They used a 64 × 64 
TaOx RRAM array to read data and obtain measurements related to 

stuck on/off cells. By measuring the worst-case conductance data of 
the stuck cell defects, they determined the normal operational range 
of stuck on/off conductance. Using the experimental data collected 
from the array, the proposed retraining approach was validated 
through simulations. The results showed that, when applied, the 
retraining significantly enhanced the robustness of a two-layer 
neural network model for MNIST digit recognition. The accuracy 
of the neural network improved from 42.5 to 98.1% on average 
when retraining. Yeo et al. (2019) proposed the fault-aware training 
algorithm with experimental demonstration. The first stage involves 
identifying the locations and values of stuck cells within the array, 
as shown by the conductance map in Figure 10D. They achieve this 
by applying two read voltages to a cell and calculating the current–
voltage ratio at those points. The current–voltage ratio of stuck cells 
exhibits linear characteristics compared to non-stuck cells. This 
detection stage helps reduce the cost of retraining. In the second 
stage, cells detected as stuck ones are excluded from weight updates 
during software training. The proposed algorithm demonstrated 
that even with an increased ratio of faulty cells, the recognition rate 
does not decrease compared to other algorithms.

Joshi et  al. (2020) proposed a software-based compensation 
method called variation-aware training by quantifying the amount of 
variation in the obtained weights from reading PCM arrays. When 
examining the programming results for 104 PCM devices at 11 
conductance levels, it was observed that there was a standard deviation 
for the target conductance. This signified that the exact weight transfer 
operation was not achieved due to read/write noise inherent in the 
synaptic devices. To address this, the measured noise data were 
incorporated into the software training during inference by adding a 
noise factor η  (the relationship between the deviation obtained based 
on the device with the maximum weight value within one layer and 
the weight value) to the weights based on a Gaussian distribution as a 
flow in Figure 10E. As a result, the accuracy on ex-situ training, which 
trained with additive noise, was the highest and remained consistent 
even during multiple inference operations.

Wan et al. (2022) implemented a synapse array of 256 × 256 
RRAM cells, 256 activation functions, and several cores composed 
of an analog-to-digital converter (ADC) neuron circuit on one 
FPGA board. To maintain inference accuracy from hardware 
non-ideality, three hardware-algorithm co-optimization techniques 
were developed. (1) Model-driven chip calibration: the weights and 
input data of the real model were used to find the dynamic 
conditions for chip optimization. (2) Noise-resilient neural network 
training and analog weight programming: hardware non-idealities 
were statistically modeled during training by using methods such 
as injecting noises obtained through RRAM device measurements 
into the training process. (3) Chip-in-the-loop progressive fine-
tuning: fine-tuning was performed in the forward pass process by 
directly calculating the error in the chip. These algorithms that 
consider hardware non-ideality enabled the NeuRRAM chip to 
secure an accuracy very similar to that of software. They confirmed 
the classification accuracy of the CIFAR-10 image according to the 
use of the algorithm. When the chip measurement was performed, 
the recognition accuracy decreased compared to software; however, 
when the proposed algorithm was used, the recognition accuracy 
increased by nearly 2%, and it was confirmed that its performance 
was very close to that of software.
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3.3 Comparison

Table 2 summarizes the representative approaches to compensate 
for the hardware non-ideal characteristics, as discussed in this section. 
Various non-idealities present at these levels significantly impact the 
performance of neuromorphic systems, showing a lower correlation 
compared to software-based results. Through efforts within hardware 
and hardware-software co-optimization methods, improvements in 
neuromorphic system performance have been achieved. From a 
broader system-level perspective, the fundamental enhancements at 
the device and array levels result in significant performance 
differences, highlighting the importance of these studies. In addition, 
Table  3 summarizes the compensation methods for hardware 
non-idealities. Each method includes adjustments and application 
techniques customized for specific target non-idealities. Undesirable 
performance degradation in neuromorphic systems can result from 
significant hardware non-idealities, and each technique can be applied 
during operational phases to address such issues.

4 Summary and discussion

In this review, we  examined the types of artificial synaptic 
devices corresponding to the weight components containing the 
core information of neuromorphic systems, along with their 
operational characteristics. The synapse devices not only store 

weight states but also transmit computation results by performing 
VMM operations, which are the main operations of DNN. To 
approach ideal performance close to SW-ANNs, synaptic devices 
and their array structures are expected to exhibit analog (gradual) 
switching characteristics. Synaptic devices can be  classified as 
conductance-based ones or capacitor-based ones. Specifically, 
conductance-based devices include two-terminal memristive 
devices and three-terminal transistor-type devices. Furthermore, 
we  explored the synaptic array structures and weight mapping 
schemes depending on device structure and operational features for 
VMM operations.

However, when actually implementing HW-ANNs, the 
performance is lower than that of the software base, and various things 
affect the performance of the system from the device level to the 
smallest. In particular, non-ideal characteristics such as those at the 
device and array level have a great influence on the performance of the 
system. Thus, we anticipate hardware to exhibit excellent reliability for 
the successful deployment of a robust neuromorphic system. The 
device and array levels constitute the fundamental building blocks of 
a hardware-based neuromorphic system, and the non-idealities at this 
level are not simply eliminated or suppressed. Instead, these inevitable, 
non-ideal effects stemming from device limitations are addressed. Our 
investigation has focused on the implementation of neuromorphic 
systems from a compensatory and tolerant standpoint. This entails 
two main approaches: hardware and signal engineering, intended to 
be  resolved within the hardware domain, and software-hardware 

TABLE 2 Representative approaches for network performance improvement by non-ideality compensation method.

Ref. Compensation method Network 
structure 

(synapse array)

Network 
performance 

(before)

Network 
performance 

(after)

SIM/EXPa

Yao et al. (2017)

Signal/hardware 

engineering

Program-and-verify
320 × 3 for face image data 

(128 × 8 1T1R)
85.04% 88.08% EXP

Boybat et al. 

(2018)
Multi devices per synapse

784 × 250 × 10 for MNIST 

dataset based on 9,700 

PCM devicesb

15% 88.9% SIM

Gokmen and 

Haensch (2020)

Modified weight update 

(Tiki-Taka algorithm)

784 × 256 × 128 × 10 for 

MNIST dataset
15%c 2%c SIM/EXP

Yao et al. (2020)

SW-HW co-

optimization

Hybrid training
Five-layer CNN for CIFAR 

10 dataset (128 × 16 1T1R)
79.76% 92% EXP

Bayat et al. 

(2018)

Hardware-aware training 

(defect; stuck cell)

16 × 10 × 4 for 4 letters data 

(20 × 20 1R)
79.06% 81.4% EXP

Liu et al. (2017)
Fault-aware training 

(Retraining the chip)

784 × 10 for MNIST 

dataset (64 × 64 1T1R 

array data)

42.5%d 98.1%d SIM

Wan et al. 

(2022)

 (1) Noise-resilient 

training

 (2) Chip-in-the-loop  

training

 (3) Model driven chip 

calibration

ResNet-20 CNN for 

CIFAR-10 dataset 

(256 × 256 0T1R)

(1) 25.34%e

(2) 83.67%

(1) 85.99%e

(2) 85.66%
SIM/EXP

aSIM, simulation-based demonstration; EXP, experiment-based demonstration. bThe experimental hardware platform is built around prototype PCM chip with 3 million devices with a four-
bank inter-leaved architecture. cThese numerical values represent the test error (%). dThis is the average accuracy of iterative operations, and the simulation was conducted with assumption 
that the same defect ratio is applied to the array data. eThis accuracy improvement is based on the simulation under the network structures.
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co-optimization, a recently active research area that seeks to identify 
and mitigate hardware non-idealities by leveraging software assistance.

Realistically, demanding all metrics in synaptic devices for 
implementing a neuromorphic system is challenging. The choice 
between learning methods (in-situ, ex-situ training) within a network 
(FCN, CNN, LSTM, etc.) of a specific size, as well as the data type 
(binary or analog), does not critically operate for all metrics of overall 
system performance. This is due to the existence of primary metrics that 
carry varying significance based on the major operational phase (weight 
update, weight import, weight storage, etc.) within a particular neural 
network specification. For instance, it is not a given that achieving 
excellent linearity solely through conductance response for analog state 
representation would necessarily enhance network performance. This is 
because if conducted with ex-situ training, which is inference-only 
training, metrics like device retention and yield related to set/reset 
distribution could hold greater importance than linearity. Taking these 
application-dependencies into account, we anticipate a more robust 
neuromorphic system through a hybrid approach that combines 
complementary signal transmission and the interplay between device 
specifications and the surrounding CMOS/VLSI circuitry that drives the 
device array environment. Looking ahead, we envision a fully hardware-
based neuromorphic chip that operates with stability, achieved by 
co-designing with the existing analog software environment, in tandem 
with hardware computational and information storage capabilities.
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TABLE 3 Summary of compensation methods, including target non-idealities, possible issues, and operating phases where each method is applied.

Methods Target non-ideality Possible issue Operating phase

Hardware/signal engineering

Program-and-verify Variation, stuck cells Tuning inaccuracy Weight import

Input encoding schemes Variation, I-V non-linearity Inaccurate output signals Weighted sum

Multi-device weight 

representation

Limited dynamic range, 

asymmetry, non-linearity
Limited weight precision Weight import

Cell compensation Stuck cells Inference accuracy degradation
Weight import

Weighted sum

Modified weight update
Limited dynamic range, 

asymmetry
Unstable weight representation Weight update

SW-HW co-optimization

Hybrid approach Overall non-idealities
Each limitation of ex-situ/in-situ 

learning
Overall operating phases

Mixed approach Limited precision
Limited precision, inaccurate 

conductance control
Weight update

Binarized Neural Networks
Limited dynamic range, non-

linearity
Limited weight precision

Weight update 

Weight import 

Weight storage

Hardware-aware training Overall non-idealities Inference degradation

SW training before the weight 

import 

(Detection stage must be 

precedented).
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