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Riemannian geometry-based classification (RGBC) gained popularity in the field

of brain-computer interfaces (BCIs) lately, due to its ability to deal with non-

stationarities arising in electroencephalography (EEG) data. Domain adaptation,

however, is most often performed on sample covariance matrices (SCMs)

obtained from EEG data, and thus might not fully account for components

a�ecting covariance estimation itself, such as regional trends. Detrended

cross-correlation analysis (DCCA) can be utilized to estimate the covariance

structure of such signals, yet it is computationally expensive in its original form.

A recently proposed online implementation of DCCA, however, allows for its

fast computation and thus makes it possible to employ DCCA in real-time

applications. In this study we propose to replace the SCM with the DCCA matrix

as input to RGBC and assess its e�ect on o	ine and online BCI performance.

First we evaluated the proposed decoding pipeline o	ine on previously recorded

EEG data from 18 individuals performing left and right hand motor imagery (MI),

and benchmarked it against vanilla RGBC and popular MI-detection approaches.

Subsequently, we recruited eight participants (with previous BCI experience)

who operated an MI-based BCI (MI-BCI) online using the DCCA-enhanced

Riemannian decoder. Finally, we tested the proposed method on a public,

multi-class MI-BCI dataset. During o	ine evaluations the DCCA-based decoder

consistently and significantly outperformed the other approaches. Online

evaluation confirmed that the DCCA matrix could be computed in real-

time even for 22-channel EEG, as well as subjects could control the MI-BCI

with high command delivery (normalized Cohen’s κ: 0.7409 ± 0.1515) and

sample-wise MI detection (normalized Cohen’s κ: 0.5200 ± 0.1610). Post-hoc

analysis indicated characteristic connectivity patterns under both MI conditions,

with stronger connectivity in the hemisphere contralateral to the MI task.

Additionally, fractal scaling exponent of neural activity was found increased in
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the contralateral compared to the ipsilateral motor cortices (C4 and C3 for left

and right MI, respectively) in both classes. Combining DCCA with Riemannian

geometry-based decoding yields a robust and e�ective decoder, that not

only improves upon the SCM-based approach but can also provide relevant

information on the neurophysiological processes behind MI.

KEYWORDS

brain-computer interface, detrended cross-correlation analysis, Reimannian geometry,

motor imagery, detrended fluctuation analysis, fractal connectivity, online

1 Introduction

Brain-computer interfaces (BCIs) establish a link between the
central nervous system and some external device, thus allowing
the user to deliver commands via brain patterns exclusively
and without any involvement of the peripheric nervous or
skeletomuscular systems (Wolpaw et al., 2020). By far the most
popular modality for non-invasive brain computer interfacing is
electroencephalography (EEG) due to its high temporal resolution,
flexibility and relatively low cost. With recent advancements in
both the software and hardware domains, EEG-based BCIs already
paved their ways to a wide variety of applications, including but
not limited to spelling devices (Yin et al., 2014; Chavarriaga et al.,
2016), robotics control (Gordleeva et al., 2017; Beraldo et al.,
2022; Mitra et al., 2023) or neurorehabilitation (Biasiucci et al.,
2018). Nevertheless, although EEG appears as a suitable choice of
imaging technique for a non-invasive BCI, it also has its set of
shortcomings. EEG has limited spatial resolution and imprecise
anatomical localization, low signal-to-noise ratio due to electric
field attenuation, and is also susceptible for a range of artifacts,
eventually resulting in a fairly unstable signal. This instability is
one of the main reasons why most EEG-based BCIs have poor
generalizability both over longer time periods and among different
individuals, and modest overall performance, especially in contrast
with their invasive counterparts (Steyrl et al., 2016).

Consequently, immense efforts were made aiming at more
reliable non-invasive BCI performance, ranging from the
development of novel artefact-removal techniques (Kim and Kim,
2018) to the adaptation and production of sophisticated decoding
algorithms (Xu et al., 2021). Among the latter, Riemannian
geometry-based classification approaches are gaining much
popularity lately, mainly due to their computational efficiency
and favorable properties in dealing with non-stationarities widely
present in EEG data (Congedo et al., 2017; Zanini et al., 2017).
Briefly, Riemannian geometry-based classifiers operate with
symmetric positive definite (SPD) matrices as input and allow
for domain adaptation, reducing non-stationarities arising from
covariance shifts between different recording sessions (Kumar
et al., 2019, 2024). Sample covariance matrices (SCMs) are SPD
and can be easily obtained from empirical EEG data, hence
allowing for Riemannian geometry-based classification of neural
signals (Barachant et al., 2010b). Nevertheless, the performance
of Riemannian geometry-based approaches yet fundamentally
depend on the covariance estimate itself, which can be greatly
affected by local non-stationarities present in the data.

Podobnik and Stanley (2008) proposed detrended cross-
correlation analysis (DCCA) to assess the covariance between
a pair of non-stationary signals and the plausible power-
law (or fractal) nature of their long-range coupling. DCCA
employs a local detrending step that ideally renders smaller
segments of the given data set stationary, thus promoting the
estimation of the covariance structure absent from the biasing
effects of regional non-stationarities. Furthermore, in case of
multivariate signals, performing DCCA in a pairwise manner
yields SPD matrices (as demonstrated below). Recent studies
also indicate that the concept of DCCA could be utilized
effectively to capture relevant functional connectivity patterns
in the human brain (Chen et al., 2018; Ide and Chiang-shan,
2018; Kaposzta et al., 2023). Therefore, these notions render
DCCA as a potentially attractive candidate in providing input
for Riemannian geometry-based classification schemes of neural
data. In its original formulation DCCA is computationally
expensive, which contradicts its applicability in online BCI
applications where real-time performance is essential. Recently,
however, Kaposzta et al. (2022) proposed an online formula
for DCCA (rtDCCA) allowing for real-time computation of
the DCCA matrix from multivariate data and thus resolving
this limitation.

Accordingly, in this paper we propose a novel BCI decoding
pipeline combining rtDCCA with Riemannian geometry-based
classification, where the SCM is replaced with a DCCA matrix
as classifier input. To assess the utility of this approach, we first
evaluate it offline and pseudo-online on two—one independent
and one in-house—previously recorded and validated datasets
employing motor imagery (MI) paradigms and benchmark it
against a vanilla Riemannian geometry-based pipeline and a
standard decoder utilizing common spatial patterns (CSP) and
linear discriminant analysis (LDA) for detecting MI (Blankertz
et al., 2007). Then, we also test our pipeline in a true online
setting employing the same MI paradigm, demonstrating for the
first time that the rtDCCA formula can indeed be utilized in a
real-time BCI application. Our offline results suggest that replacing
the sample covariance matrix with DCCA improves decoding
accuracy, also surpassing the acknowledged CSP-based method.
Furthermore, we show that the rtDCCA formula can be used in
real time to create a robust BCI decoder that operates online
at high performance even when trained on a relatively small
dataset. Finally, we conduct post-hoc analyses to assess how fractal
connectivity and regional neural dynamics are affected by left and
right MI.
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2 Materials and methods

2.1 Participants and experimental
procedures

As mentioned before, we verified our proposed approach of
combining DCCA with Riemannian geometry-based classification
on three independent data sets. First, we evaluated the detection
pipeline offline (and pseudo-online) on previously collected data
in order to assess its potential effects on performance in an
MI task. Then, we tested if rtDCCA (Kaposzta et al., 2022)
can indeed be utilized online in a BCI application. Finally,
we further validated our proposed method on an independent,
publicly available dataset (Schalk et al., 2004). Below we provide
specifics and details of these datasets. All in-house recordings
took place at the Engineering Education and Research building
and at the Health Discovery Building at The University of
Texas at Austin, involving young, healthy volunteers. The
studies were conducted in line with the guidelines of the
Declaration of Helsinki, and were reviewed and approved by
the institutional ethics committee (approval number: 2020-03-
0073). All participants provided written informed consent prior to
the recordings.

The in-house offline MI dataset consisted of EEG data collected
from 18 young, healthy volunteers (age: 23.22 ± 3.59 years, seven
female) performing a motor imagery (MI) task involving imagined
movements with the left or right hand. None of the participants had
experience with operating a BCI before. EEG was recorded at 512
Hz with an ANT Neuro EEGO device (ANT Neuro, Netherlands)
from 32 standard scalp locations according to the international 10–
10 system, however only data from 22 channels positioned around
sensorimotor areas (F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, C3,
Cz, C4, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, and POz) were
used for further analysis. Synchronized electrooculography (EOG)
signals were collected via a bipolar box connected to the amplifier,
from three channels according to the triangular montage described
in Schlögl et al. (2007). Ground and reference electrodes were
positioned at AFz and CPz, respectively, and electrode impedances
were kept under 25 k�. EEG data for the online demonstration
was collected using the exact same setup as for the offline dataset.
For these recordings we recruited eight young, healthy individuals
(age: 26.38 ± 6.21 years, one female) with previous experience
in MI. None of the participants in either group had been ever
diagnosed with any medical condition affecting the central nervous
system, or were under any medication that might influence their
BCI performance.

Participants performed the benchmark bar feedback BCI task
(Leeb et al., 2013), during which the user has to imaginemovements
with their left or right hands and feedback is provided by a
horizontal bar growing in the direction of the motor intent. The
task and the experimental design is illustrated on Figure 1. A single
trial (both offline and online) started with a fixation cross at the
center of the screen (presented for 1 s), that was followed by the
cue corresponding to the MI-class (left/right) of the upcoming trial
(presented for 1.5 s). In the offline setting, this was followed by a
visual guidance cue, where a one dimensional horizontal bar was
filling up toward the given MI direction in 5 s (Figure 1, left).

Participants were instructed to perform an imaginary movement
with their corresponding arm during this period. The nature of
movement was not explicitly specified as in subjects were free to
decide what type of movements they imagined with their left/right
arms, however it was requested to remain consistent throughout
the recording. During all recordings, an investigator was observing
the participants continuously to ensure that they indeed did not
execute any motions during active trial periods. In the online
setting, the horizontal bar was utilized to provide real-time visual
feedback on the users’ neural patterns. Bar size was updated every
62.5 ms showing the accumulated probability of EEG activity
belonging to a given MI class, until the user reached a pre-defined
threshold value (of either the correct or the erroneous class), or the
trial timed out after 7 s (see Section 2.4.2. below for more details).

In the offline dataset, each participant completed a calibration
session and an online task performance session on two consecutive
days. Note that this design introduced between-session non-
stationarities (e.g., slightly different electrode placements and
impedances) that increase the challenge of the decoding task, as
elaborated on later. One recording session consisted of four runs
of MI task performance, with one run comprising 20 trials—10-10
for left and right directions—in a randomized order. This dataset
was also analyzed and verified in previous studies (Liu et al.,
2023; Kumar et al., 2024). In the online demonstration, subjects
performed four offline runs to collect calibration data for training
the decoder, then performed five runs online on the same day
(Figure 1, right), hence to reduce the effects of between-session
non-stationarities. The entire recording session lasted nomore than
90 minutes.

Finally, we utilized the EEG Motor Movement/Imagery
Dataset version 1.0.0 (Schalk et al., 2004) made available via
Physionet (Goldberger et al., 2000) at https://physionet.org/
content/eegmmidb/1.0.0/ to assess the performance of our method
on an independent sample. Here we only provide a brief description
of the dataset, while for further details the reader is referred to the
data descriptor. The dataset consisted of EEG recordings from 109
young, healthy volunteers; however data of only 103 participants
were analyzed after excluding incomplete entries (Shuqfa et al.,
2023). EEG was collected from 64 standard 10–10 locations at a
sampling rate of 160 Hz. To remain consistent in our analytical
approaches, we analyzed data from the same exact 22 channels
as described previously. Participants performed two separate MI
paradigms: (i) left vs. right hand MI where they had to imagine
squeezing their left or right hand, respectively, and (ii) both
hands vs. both feet MI where they were instructed imagining
squeezeing with both their hands or feet, respectively. For each
participant, all data was collected in a single recording session,
where they performed three runs for both MI paradigms. Each
run consisted of 15 trials—8 and 7 for the two conditions in
a counterbalanced manner—and each trial lasted for 4.1 s. In
the first paradigm, left/right MI was indicated by arrows on the
corresponding sides of a computer screen, while in the latter
both hands and both feet MI was instructed via arrows on
the top and on the bottom of the screen, respectively. Note
that this dataset only consisted of offline recordings, i.e., online
feedback on neural activity was not provided to the users at
any time.
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FIGURE 1

Timeline and visual illustration of the employed bar feedback task. The left panel illustrates the visual interface and feedback provided for the

subjects, while the right panel shows the experimental design of the o	ine and online sessions. Note that in the o	ine dataset the same visual

interface was used, only subjects performed four o	ine runs on the first day and four online runs on the second day.

2.2 Riemannian geometry-based
classification

Riemannian geometry-based classification became increasingly
popular lately in BCI applications due to its simple nature and
robustness against non-stationarities (Yger et al., 2016; Congedo
et al., 2017; Kumar et al., 2019). Here we briefly summarize the
essence of Riemannian geometry-based decoding in a generic
two-class scenario, while for more details on its mathematical
background we refer the reader to the cited works below.

Let us denote the set of symmetric matrices of size n × n as Sn

and that of size n×n symmetric positive definite (SPD) matrices as
Pn. Given that covariance matrices are SPD, any sample covariance
matrix C estimated from n-channel EEG data will therefore be
C ∈ Sn and C ∈ Pn for ∀n. A Riemannian manifold is defined as
a smooth manifold equipped at any point with a finite dimensional
Euclidean tangent space that is homogeneous to Sn. Due to their
SPD nature, covariance matrices lie on the Riemannian manifold
(Moakher, 2005; Yger et al., 2016). On the manifold, the shortest
path (also called a geodesic) between two SPDmatrices P1, P2 ∈ Pn

can be defined as Barachant et al. (2010b):

γ (P1, P2, t) = P
1
2
1 (P

− 1
2

1 P2P
− 1

2
1 )tP

1
2
1 , t ∈ [0, 1]. (1)

that can be then utilized to estimate their distance δ(P1, P2)
according to Moakher (2005):

δ(P1, P2) =

∫ 1

0
γ (P1, P2, t)dt = ‖ log(P

− 1
2

1 P2)‖F (2)

where log(·) refers to matrix logarithm and F is the
Frobenius norm of the resulting matrix. The distance metric
defined in Equation 2 and derived from the geodesic (Equation 1)
is invariant under affine transformations on the Riemannian
manifold (Moakher, 2005), and thus is often referred to as the
Affine Invariant Riemannian Metric (AIRM). Furthermore, given
a set of SPD matrices on the Riemannian manifold, their Karcher
mean P̄ (center of mass, also refrerred to as Riemannian mean
interchangeably) can be obtained as the SPDmatrix that minimizes

the squared AIRM distance between all SPD matrices in the set
(Kumar et al., 2019):

P̄ = argmin
P∈Pn

N
∑

i=1

δ2(Pi, P). (3)

The concepts of Riemannian mean and distances could be
utilized to build a minimal distance to the mean (MDM) classifier
as proposed by Barachant et al. (2010b). Let us consider an EEG
dataset consisting of samples (i.e., EEG epochs) from two classes
(e.g., left vs. right MI). First, samples are characterized by their
covariance structure, such as via their sample covariance matrices.
Then, class prototypes C̄1 and C̄2 are computed using Equation 3
for the two classes separately. Finally, for every new incoming
sample (after transformed into SPD covariance matrix) the AIRM
distance to both class prototypes is computed, and the class
corresponding to the prototype with smaller distance is predicted.
Note that these outlined concepts can be generalized trivially for
more than two classes, too.

It is commonly accepted that EEG data is non-stationary
between different subjects, but even between different recording
sessions of the same subject (Raza et al., 2016). Furthermore,
EEG is often considered as non-stationary over longer time scales
(Kaplan et al., 2005). These non-stationarities will result in greatly
differing distributions of the estimated sample covariance matrices
across different sessions/days even within a single subject, which
in turn will lead to unstable decoding of neural correlates on the
grand scale. However, as proposed by Zanini et al. (2017), due to
the affine invariant property of the Riemannian distance metric
(Equation 2) covariance matrices from multiple sessions can be
aligned to have a similar distribution. At the same time, this step
preserves the within session structure, and thus provides robustness
against non-stationarities introduced by covariance shifts. These
properties made the Riemannian geometry-based approach very
attractive in BCI applications lately (Yger et al., 2016; Congedo
et al., 2017). Nevertheless, domain adaptation can only align
sample covariance matrices once they are estimated from data,
and therefore it does not necessarily compensate for all effects that
might affect covariance estimation itself. In this paper, we propose
DCCA to replace sample covariance estimation to ameliorate this
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issue and provide further robustness to Riemannian geometry-
based classification via removing local non-stationarities from the
empirical EEG signal, as elaborated on in the followings.

2.3 Detrended cross-correlation analysis

DCCAwas first introduced by Podobnik and Stanley (2008) as a
tool to estimate the covariance between two non-stationary signals
and to assess the potential power-law nature of their coupling. It
is a bivariate extension of Detrended Fluctuation Analisys (DFA),
a popular tool to characterize fractal temporal scaling in univariate
signals (Peng et al., 1995).

Given two long-range coupled time series x(t) and y(t) of
length N, first their integrated versions X(t) and Y(t) are computed
according to

X(t) =
t

∑

i=1

x(i)

Y(t) =
t

∑

i=1

y(i).

(4)

Then, at given scale s the integrated time series are divided into
K = N − s+ 1 overlapping windows containing s values each, with
at t = k starting at k and ending at k+s−1. For both time series the
local trends X̃k and Ỹk are estimated independently in each window
k via ordinary least squares (OLS) regression, and subtracted from
the data. Covariance of the residuals in each window are then
estimated according to

f 2DCCA(s, k) =
1

s− 1

k+s−1
∑

i=k

(X(i)− X̃k(i−k+1))(Y(i)− Ỹk(i−k+1))

(5)
and finally the estimate of detrended covariance at scale s is

obtained via averaging over all windows (Podobnik and Stanley,
2008; Podobnik et al., 2011):

F2DCCA(s) =
1

K − 1

N−s1
∑

k=1

f 2DCCA(s, k). (6)

Even though the procedure outlined in Equations 4–6 describes
a sliding window approach with a step size of one data point, it is
more common to obtain F2DCCA(s) by dividing the time series into
KNO = floor(N/s) non-overlapping windows for computational
efficiency. Also note that by making x(t) = y(t) one arrives at the
well-known formula for DFA.

Extending the univariate approach proposed for DFA by
Hartmann et al. (2013) it has been shown that by rearranging
the terms in the closed form solution for OLS regression and
by computing covariance in a one-pass manner, F2DCCA(s) can
be obtained in real-time (referred to as rtDCCA) for a pair of
incoming signals (Kaposzta et al., 2022). Furthermore, in case
of multivariate signals the rtDCCA formula can be expressed
as a set of matrix operations, rendering the computation of
a DCCA matrix very efficient. Therefore, the online algorithm

proposed by Kaposzta et al. (2022) is ideal to obtain the detrended
covariance structure of incoming EEG signals in real time.
Implementations of rtDCCA in Matlab and Python are available
at https://github.com/samuelracz/rsDCCA.

Since DCCA in essence computes a covariance matrix (see
Equation 5), the resulting matrices are by definition SPD (also
considering that the sum/average of two SPDmatrices is also SPD).
Therefore, DCCA could be easily combined with the Riemannian
geometry-based classification approach. Furthermore, since DCCA
was proposed to capture the covariance structure of coupled
processes with local (or global) non-stationarities (Podobnik and
Stanley, 2008)—a property often characteristic for EEG signals
(Kaplan et al., 2005)—, this would make it an ideal fit for extracting
features from neural data in BCI applications.

Two notions must be stressed, however. First, in the proposed
approach our main goal at this point is to exploit the “denoising"
effect of local detrending by eliminating non-stationarities, and not
to characterize the plausible fractal nature of long-range coupling
between the neural activity of various brain regions [such as in e.g.,
Chen et al. (2018)]. Therefore, in our analyses we omit the first
integration step (Equation 4) and instead compute the covariance
of residuals from native EEG data to substantiate the denoising
effect. Second, even though local detrending can eliminate/reduce
non-stationarities, depending on the scale s it can act similar to
a high-pass filter, and thus can also remove valuable information.
Therefore, it is impediment to explore the best choice of s that
indeed improves and not hampers decoding performance.

2.4 Data pre-processing, analysis strategy
and decoding

All data analysis steps were carried out usingMatlab 2021b (The
Mathworks, Nattick, MA, USA) and Python 3.7.3. The BCI user
interface was developed in Python using the PyGame library.

2.4.1 O	ine MI dataset
Raw EEG data was first band-pass filtered using a 3rd order,

zero-phase Butterworth filter with cutoff frequencies 8 and 30 Hz,
as sensorimotor rhythms have been established as being modulated
during MI performance (Yger et al., 2016; Rimbert and Lotte, 2022;
Shuqfa et al., 2023). Active MI periods (6.5-s segments from the
offline, while segments of varying length from the online recording
session) were isolated, and then further segmented into 1-s long
epochs, simulating a sliding window analysis with a step size of 62.5
ms (i.e., 93.75% overlap among consecutive windows in a trial).

We evaluated decoding performance on the MI dataset in three
separate pipelines, where decoders were trained on data from the
first session, and performance was evaluated on data from the
second session:

• Riemannian-MDM: We utilized the standard Riemannian-
MDM classification pipeline as outlined in e.g., Kumar et al.
(2019, 2024). In that, trace-normalized covariance matrices
for each 1 s epoch were estimated as input features using
the shrinkage method proposed by Ledoit and Wolf (2004).
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Decoding was then performed by an MDM classifier, where
class prototypes (Riemannian means of matrices belonging to
each class) were obtained via a gradient descent-based iterative
process (Barachant et al., 2010b).

• DCCA-Riemannian-MDM: In this case features were
estimated using DCCA instead of sample covariance. In order
to assess the plausible effect of scale (as outlined previously),
we completed this analysis at five different scales with s = 32,
64, 128, 256, and 512 data points (corresponding to 62.5
ms, 125 ms, 250 ms, 0. 5 s, and 1 s window sizes for local
detrending). Even though rtDCCA allows for rapid multiscale
estimation (Kaposzta et al., 2022) yielding tensors of size
Nch × Nch × Ns (with Nch and Ns denoting the number of
channels and number of detrending scales, respectively), for
the sake of simplicity in this study we only utilized single-
scale DCCA matrices for epoch classification. Decoding
was performed using an MDM classifier similarly to the
Riemannian-MDM pipeline.

• Cov-CSP-LDA: As a benchmark classification method, we
evaluated decoding performance using common spatial
patterns (CSP) (Blankertz et al., 2007). Specifically, first
the sample covariance matrix of each epoch was estimated
as in the Riemannian-MDM pipeline. Then, spatial filters
were estimated from covariance matrices using the method
proposed by Barachant et al. (2010a). Finally, the three most
discriminative filters were used as features for classification
using linear discriminant analysis (LDA).

Furthermore, to assess how these decoding approaches would
perform not only in an offline but also in an online setting, they
were executed under three evaluation schemes:

• Offline: The obtained features (sample covariance matrices,
DCCA matrices and sample covariance-derived CSPs) were
used unaltered for decoder training and testing.

• Rebiasing: In this scenario, we utilized standard rebiasing
(Zanini et al., 2017) for the initial covariance or DCCA
matrices [see the Rebias MDM pipeline in Kumar et al. (2019)
for details]. Specifically, in each pipeline a global reference
matrix R was obtained as the Karcher mean of all matrices Ci

regardless of class or session (He and Wu, 2019) that was then
used to re-center Ci in the entire dataset according to

Crebias
i = R−

1
2CiR

− 1
2 . (7)

Subsequently, training and testing (including CSP
estimation) were carried out using the rebiased matrices.

• Adaptive rebiasing: This setup was conducted to emulate an
online setting. In that, reference matrices Rtrain were obtained
using only matrices from the training set, and decoders were
trained using data rebiased according to Equation 7. However,
the now unknown referencematrices Rtest for the test sets were
estimated in an adaptive manner, maintaining the temporal
causality of the incoming epochs (Kumar et al., 2019, 2024).
Precisely, Rtest was updated for each incoming test example

Ctest
i according to

Rtesti =



















Rtrain i = 1

Ctest
i−1 i = 2

γ

(

Rtesti−1,C
test
i , 1

i−1

)

i >= 2

(8)

Evaluation (including CSP estimation) was conducted on
adaptively rebiased test data by substituting Rtesti in Equation 7.

2.4.2 Online MI demonstration
Raw EEG and EOG data was received every 62.5 ms (1/16 s)

in packets of 32 data points and band-pass filtered online using
a 2nd order causal Butterworth filter with cutoff frequencies 8–30
Hz and 1–10 Hz for EEG and EOG, respectively. Neural activity
was decoded online at the same rate always using the latest 1 s
of incoming EEG. Incoming trials were rejected from decoding if
blinks or large, sudden eye movements were detected in the EOG
(Perdikis et al., 2018), i.e., if absolute EOG amplitude surpassed
a pre-defined threshold value (320 µV). Note, that this pipeline
implies that all pre-processing steps and the computation of 22×22
DCCA matrices could be completed under 62.5 ms. All recordings
were carried out using a personal computer with Intel Core i7-
8665U CPU (1.90 Ghz × 8) and 16 Gb RAM, running on Ubuntu
18.04 operating system.

EEG classification was carried out using the following decoder
architecture. The offline data was used to train the subject-specific
MDM decoder for each participant using rebiased DCCA matrix
input features as described for the offline dataset. In the online
setting, DCCA was computed using the rtDCCA formula from
each incoming, pre-processed EEG epoch of 1 s using s = 128
data points for local detrending (see results). The obtained matrices
were then adaptively re-centered online according to Equation 8 (as
in Kumar et al. (2024)) and predictions were made by the MDM
decoder. The exponentially smoothed prediction probability Probi
was used as the online visual feedback (Leeb et al., 2013) at time
instance i according to

Probi = (1− α)Probi−1 + αProbi (9)

where the smoothing factor was set as α = 0.05. Initial
probabilities were reset to a uniform distribution (Prob0 = 0.5)
before the start of each trial. A trial terminated and the appropriate
feedback is shown for 2 s if (i) the accumulated prediction evidence
surpassed a pre-defined threshold in the right direction (correct
command), (ii) it surpassed the threshold in the opposite direction
(erroneous command), or (iii) the user was unable to reach any of
the thresholds in 7 s (timeout). Thresholds were set independently
for each run and separately for both directions, adapting to the
user’s performance in order to minimize erroneous command
delivery while at the same time provide enough challenge so that
maintain user involvement (Leeb et al., 2013; Biasiucci et al., 2018).
Each trial was followed by an inter-trial rest period randomized in
the range of 2± 1 s.
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2.4.3 Independent MI dataset
Pre-processing of the independent dataset was carried out

following the same exact steps as described previously for our in-
house offline data. We evaluated these recordings in three settings:
(i) two-class left vs. right hand MI, (ii) two-class both hands vs
both feet MI, and (iii) four-class MI including all conditions. To
remain consistent with our prior analyses, we segmented the pre-
processed recordings the following way. First, active MI periods
were isolated, then epoched into 1-s long segments with a step
size of 62.5 ms (10 data points at 160 Hz). Since these recordings
were performed in a single session, we utilized a leave-one-run
out cross-validation (LORO-CV) scheme for evaluation in case of
every participant individually, where in each iteration all examples
from one run was used as the holdout set for testing, while models
were trained in the examples from the remaining two runs. In
the four-class MI setting, one left/right hand MI and one both
hands and both feet MI runs were used collectively as the holdout
set. Finally, performance measures (see below) were averaged over
the LORO-CV runs to obtain subject-wise outcomes. In all three
settings, data was analyzed employing the same three decoding
approaches (Riemannian-MDM, DCCA-Riemannian-MDM and
Cov-CSP-LDA) and evaluation schemes (Offline, Offline Rebias
and Adaptive Rebias) as described previously, with the adjustment
that when using the DCCA-Riemannian-MDM decoder, DCCA
was computed at detrending scales s = 10, 20, 40, 80, and 160
corresponding to the same window sizes as utilized for 512 Hz data.

2.5 Performance evaluation

We utilized the following metrics to characterize decoder
performances:

• Sample-wise accuracy, Cohen’s Kappa and Bar dynamics:
Accuracy is computed for each 1 s epoch individually as
Equation 10:

Acc =
TP + TN

TP + TN + FP + FN
, (10)

with TP, TN, FP and FN denoting the number of
true positives, true negatives, false positives and false
negatives, respectively (Fawcett, 2006). Note that predictions
are obtained using raw outputs from the decoder, and
not accumulated evidence. Chance levels for accuracy were
computed assuming a binomial distribution of prediction
errors as proposed by Combrisson and Jerbi (2015) at a
confidence level of p = 0.001.

Cohen’s Kappa (κ) also serves as ameasure of classification
accuracy (Cohen, 1960), however, it provides a better
assessment of performance compared to chance level in case
of unbalanced samples, such as in case of online decoding,
where the number of epochs for each MI class depends on
how fast the user reaches the threshold. Cohen’s Kappa ranges
from−1 to 1 with κ = 1 implying perfect classification, while
κ = 0 indicating chance level performance. We characterized
performance according to the ranges suggested by Landis and
Koch (1977), with ranges κ ∈ [−1; 0], (0 − 0.2], (0.2 − 0.4],

(0.4 − 0.6], (0.6 − 0.8] and (0.8 − 1] indicating random,
poor, fair, moderate, substantial and perfect performance,
respectively.

Finally, bar dynamics refer to the proportion of epochs
(given as percentage) when the user was able to drive and keep
the bar on the correct direction in a given trial. In other terms,
bar dynamics is equivalent to sample-wise accuracy estimated
from accumulated evidence instead of raw decoder output.

• Command delivery: This measure characterizes the discrete,
command-level performance of the user based on the
accumulated evidence defined in Equation 9. Command
delivery was characterized by the Kappa value normalized to
the number of timeouts (κnorm); in which κ is computed from
the confusion matrix constructed from correct and incorrect
commands (excluding timeouts) and then normalized
according to Equation 11:

κnorm = κ ∗ (1−
ntimeouts

ntotal
) (11)

where ntimeouts and ntotal denote the number of timeout
and completed trials, respectively.We also computed accuracy
of command delivery with (Accapprox) and without (Acccomp)
including trials resulting in timeout. In the former case, the
command was determined by the direction of the bar at the
instance of the timeout.

Performance in the offline datasets was characterized only
with sample-wise accuracy and Cohen’s κ , while online BCI
control was assessed additionally with sample-wise bar dynamics
and command delivery measures. Note that neither sample-
wise measures, nor normalized command delivery metrics are
affected by the threshold value set throughout the recordings.
When comparing the performance of the various pipelines in the
offline evaluation, the main effect (Riemannian-MDM vs. DCCA-
Riemannian-MDM vs. Cov-CSP-LDA) was assessed via Friedman’s
test, as in most cases data did not satisfy the condition of normality
as confirmed by Lilliefors test. If a main effect was identified, post-
hoc pairwise comparisons were carried out using Wilcoxon signed
rank tests, and outcomes were adjusted for multiple comparisons
using the False Discovery Rate (FDR) method of Benjamini and
Hochberg (1995).

2.6 Extracting neural patterns

The main goal of BCI research is to provide working
applications for individuals in need; however, unveiling the
neurophysiological underpinnings of the utilized paradigms are
just as important. Therefore, we re-analyzed the data collected
in the online MI setting to assess how the brain adapts when
performing left and right imagery of movements. The pre-
processing strategy followed that described for offline data analysis,
with the addition that only successful trials (i.e., trials resulting
in correct left or right command delivery) were considered to
enhance signal-to-noise ratio (Shin et al., 2018). For each subject,
the measures obtained from each epoch were finally collapsed
via averaging to provide the characteristic (subject-specific) grand
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average for both MI classes, that were then subjected to group-
level statistics. Note that during the statistical evaluation we did not
adjust for multiple comparisons, and therefore these results should
be considered as exploratory.

2.6.1 Fractal connectivity patterns during MI task
performance

In general, DCCA, is utilized for two purposes: (i) to assess
the covariance of non-stationary signals and (ii) to characterize
the plausible power-law nature of their long-range dependence
(Podobnik and Stanley, 2008). In this regard, a DCCA matrix can
be understood as estimating the functional connectivity (FC) of
the brain to some extent, i.e., capturing the statistical relationship
between activity of two cortical regions (Bullmore and Sporns,
2009). Therefore, we compared the DCCA structure of left-MI
to right-MI. Keeping in mind, however, that the absolute value
of covariance in itself (and thus DCCA) does not necessarily
reflect the strength of functional cooperation given that the
measure is unbounded and primarily influenced by the variance
of the individual signals. To resolve this issue, DCCA was further
developed into the detrended cross-correlation coefficient (DCCC)
by Zebende (2011). It can be shown that this measure is indeed
bounded between −1 and 1 as a regular correlation coefficient
(Podobnik et al., 2011), and its value is thus proportional to
the strength of coupling. We reconstructed the DCCC networks
for left and right MI at detrending scale s = 128 (as based
on classification results, see below) and compared the obtained
values in a connection-to-connection manner. EEG data was pre-
processed the same as described previously for offline analysis.
Connections in the twoMI conditions were contrasted individually
using paired t-test or Wilcoxon signed rank test, depending on
the normality of the data as assessed via Lilliefors test. We sorted
those connections that were identified as significantly different
into three categories: (i) connections that are positively correlated
(DCCC ∈ [0; 1]) in both left and right MI, (ii) connections that are
negatively correlated (DCCC ∈ [−1; 0]) in both conditions, and
(iii) connections that are positive/negative in one condition, but the
opposite in the other.

2.6.2 Fractal dynamics of regional neural activity
during MI

One of the additional benefits of utilizing rtDCCA to its full,
multiscale extent that it also provides real-time estimates on the
univariate DFA scaling exponents at every time instance (Kaposzta
et al., 2022). Even though the scale-free (i.e., fractal) nature of
neural dynamics is well-known, its neurophysiological relevance
is less understood (He, 2014). Therefore, we explored how the
DFA scaling exponent (characterizing long-range autocorrelation
in the signal) changes over the cortex when performing left and
right MI. For this analysis we evaluated broadband filtered data
(4th order Butterworth filter with cutoff frequencies 1 and 45 Hz)
at scales ranging from s = 16 to s = 256 in dyadic steps.
The DFA scaling exponent was obtained via OLS regression of
log-transformed fluctuation values on log-transformed scale (Peng
et al., 1995; Hartmann et al., 2013). Note that in this analysis

we utilized the traditional DFA formula outlined in Equations 4–
6, including cumulative summation (Equation 4) as the first step
(Peng et al., 1995; Hartmann et al., 2013). DFA exponents were
contrasted on a location-by-location basis using paired t-test or
Wilcoxon signed rank test, depending on the normality of the data
as assessed via Lilliefors test.

3 Results

3.1 O	ine dataset

Results regarding sample-wise Cohen’s κ are summarized
in Table 1, while those for accuracy are presented in
Supplementary Table S1. Highest accuracy and Cohen’s κ

values among the three decoders are highlighted in bold for each
evaluation pipeline. In general, the proposed DCCA-Riemannian-
MDM pipeline yielded the highest grand average performance
metrics in all three evaluation schemes when using detrending
scales larger than s = 64 data points, while for s = 128 and above
performance appeared to be plateauing. Rebiasing boosted the
performance for all methods, while adaptive rebiasing—mimicking
an online scenario—performed almost equally as well. Since
detrending at scales s = 32 and s = 64 eventually hampered
performance compared to Riemannian-MDM and Cov-CSP-LDA,
we do not consider then any further, instead we report statistics
for s = 128, with having found nearly identical results for s = 256
and s = 512 (see Supplementary material). Note that since the
number of test examples was not necessarily balanced, Cohen’s
κ provides a more accurate characterization of classification
performance. Therefore, we present the corresponding p-values
in the main text while those regarding accuracy are reported in
the Supplementary material. We have not found a significant
main effect in the offline evaluation scheme, indicating no
difference between the three decoders (noting that post-hoc

pairwise comparisons indicated a tendency better performance of
the DCCA-based decoder compared to the vanilla Riemannian
approach with p = 0.0386, unadjusted). After rebiasing, however,
Cov-CSP-LDA appeared to underperform the Riemannian
geometry-based classifiers (main effect: p = 0.0124). Pairwise
comparisons indicated that utilizing the DCCA matrix instead of
the SCM provided a significant improvement (0.2190 ± 0.1825
vs. 0.2316 ± 0.1823, p = 0.0324, FDR-asjusted). No difference
was found between Riemannian-MDM and Cov-CSP-LDA
(p = 0.1841, FDR-adjusted), however DCCA-Riemannian-MDM
expressed a tendency for outperforming the latter (p = 0.1061
following FDR-adjustment). Finally, in the pseudo-online case
we again found a significant main effect (p = 0.0242). However,
the improvement over the vanilla Riemannian approach by using
DCCA was in the same range (0.2110± 0.1717 vs. 0.2206± 0.1670)
and not statistically significant (p = 0.1701, adjusted). Also, the two
Riemannian approaches exhibited marginally better performance
than Cov-CSP-LDA following FDR-adjustment (p = 0.0837 and
p = 0.0873 for DCCA-Riemannian-MDM and Riemannian-MDM,
respectively). In summary, these results suggest that replacing the
SCM with the DCCA matrix might introduce a small but stable
improvement, which also outperformed the popular CSP-based
method for MI detection.
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TABLE 1 O	ine performance.

Cohen’s κ

Method Scale O	ine O	ine rebias Adaptive rebias

Riemannian-MDM 0.1533± 0.1455 0.2190± 0.1825 0.2110± 0.1717

DCCA-Riemannian-MDM

s = 32 0.1088± 0.0950 0.1462± 0.1362 0.1406± 0.1301

s = 64 0.1401± 0.1294 0.1889± 0.1619 0.1774± 0.1472

s = 128 0.1647± 0.1546 0.2316± 0.1823 0.2193± 0.1671

s = 256 0.1645± 0.1554 0.2314± 0.1830 0.2206± 0.1670

s = 512 0.1653± 0.1552 0.2318± 0.1826 0.2205± 0.1670

Cov-CSP-LDA 0.1586± 0.1886 0.1853± 0.1929 0.1694± 0.1707

Scales for local detrending are given in data points. Bold indicates the highest performance setting in each column.

3.2 Online performance

According to the outcomes of the offline evaluation,
performance did not improve any further by increasing the
detrending scale beyond s = 128. Therefore, we decided to set
s = 128 in the online evaluation pipeline as well, in order to
maximally exploit the denoising effect of local detrending.

Sample-wise performance results (combining all five runs) for
each participant are presented in Table 2. Overall, the DCCA-
Riemannian-MDM decoder performed at 76.00 ± 8.07% on the
group level. The lowest performance (Subject #5) was 65.41%
sample-wise accuracy and 0.3092 Cohen’s κ , while those of the best
performing subject (#1) were 89.70% accuracy with 0.7942 Cohen’s
κ . Notably, all subjects could operate the BCI well above chance
level (see Table 2), as well as Cohen’s κ indicated fair, moderate and
substantial decoding performance for two (#5 and #6), four (#3,
#4, #7 and #8) and two (#1 and #2) participants, respectively. Bar
dynamics data indicated that users were able to control the BCI
and received consistent feedback, as they were able to drive the bar
toward the correct direction for most of the time (in 82.99± 7.86%
of active epochs).

Command delivery results are summarized in Table 3. All
users were able to successfully deliver commands at a level
surpassing chance by a large margin, with two participants
even achieving perfect command delivery performance when
excluding timeouts (i.e., 100% Acccomp). This also held for
approximated accuracy, as with a total trial number of
n = 100 and a balanced setting (50 − 50 for left and right)
the global chance level was obtained as 65%. Normalized
Cohen’s κ values indicated at least moderate or substantial
(two participants each) performance, while four users
managed to produce κnorm values surpassing 0.8. These results
provide further support to the efficacy and robustness of the
DCCA-Riemannian-MDM decoder.

3.3 Validation on independent MI data

Even though the offline evaluation implied an improvement
in performance by our proposed approach over the vanilla

Riemannian-MDM decoder, some of these results were only
tendential and did not confirm the beneficial effect of using DCCA
in a statistically robust manner. Therefore, it was imperative to
confirm the validity of the DCCA-Riemannian-MDMmethod on a
dataset that has sufficient sample size, as well as do not suffer from
the possible confounding effects of between-session or feedback-
introduced non-stationarities (see Section 4). Sample-wise Cohen’s
κ results obtained on the EEG Motor Movement/Imagery Dataset
v1.0.0 for the left vs. right hand MI scenario are presented
in Table 4, while those regarding both hands vs. both feet
MI and 4-class MI are presented in Supplementary Tables S4,
S5, along with sample-wise accuracy (Supplementary Table S3).
These results show a pattern much similar to that presented in
Table 1. In that, the performance of DCCA-Riemannian-MDM
was inferior/comparable at scales s = 10 and 20 to the other
classifiers, while for s = 40 and above, the DCCA-Riemannian-
MDM outperformed both Riemannian-MDM and Cov-CSP-LDA
in all three evaluation schemes. Precisely, for s = 40 in the
Offline evaluation scheme, we found a significant main effect
of decoder (p < 0.0001), and post-hoc pairwise comparisons
indicated a better performance for DCCA-Riemannian-MDM
(0.2461 ± 0.2293) when compared to both Riemannian-MDM
(0.1979 ± 0.2079, p < 0.0001, FDR-adjusted) and Cov-CSP-LDA
(0.2187 ± 0.2262, p = 0.0405, FDR-adjusted). In the Offline rebias
scheme, along with a significant main effect (p < 0.0001), the
DCCA-Riemannian-MDM decoder performed the best (0.2811 ±

0.2436 vs. 0.2207 ± 0.2297, p < 0.0001, FDR-adjusted against
Riemannian-MDM and 0.2811 ± 0.2436 vs. 0.2414 ± 0.2390,
p = 0.0012, FDR-adjusted against Cov-CSP-LDA). Finally, similar
results were also obtained in the Adaptive Rebias scheme (main
effect: p = 0.0001), with the DCCA-Riemannian-MDM decoder
yielding significantly better performance (0.2630 ± 0.2320) when
compared to Riemannian-MDM (0.2068 ± 0.2213, p < 0.0001,
FDR-adjusted) and Cov-CSP-LDA (0.2237 ± 0.2327, p = 0.0002,
FDR-adjusted). Results at scales s = 80 and s = 160 were
comparable and are presented in the Supplementary material.
Furthermore, results obtained in the both hands vs. both
feet MI and 4-class MI scenarios expressed a similar pattern,
with DCCA-Riemannian-MDM significantly outperforming the
other two approaches under all three evaluation schemes
(see Supplementary material).
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TABLE 2 Sample-wise performance measures.

Sample-wise performance

Subject ID Accuracy Chance level Bar dynamics Cohen’s κ

1 89.70% 52.30% 94.08% 0.7942

2 84.31% 52.22% 91.26% 0.6854

3 74.67% 54.72% 83.92% 0.4945

4 76.92% 58.00% 87.44% 0.5363

5 65.41% 53.89% 73.68% 0.3092

6 67.09% 53.66% 71.97% 0.3414

7 73.87% 59.73% 79.69% 0.4803

8 76.02% 60.76% 81.87% 0.5190

AVG 76.00% 55.66% 82.99% 0.5200

STD 8.07% 3.36% 7.86% 0.1610

fMAX 89.70% 60.76% 94.08% 0.7942

MIN 65.41% 52.22% 71.97% 0.3092

AVG, average; STD, standard deviation; MAX, maximum value; MIN, minimum value.

TABLE 3 Command delivery performance measures.

Command delivery performance

Subject ID Accapprox Acccomp Chance level Timeouts Cohen’s κnorm

1 99% 100% 65.96% 6 0.9400

2 97% 100% 66.67% 19 0.8100

3 94% 98.85% 66.67% 13 0.8498

4 89% 98.55% 68.12% 31 0.6700

5 82% 87.67% 68.49% 27 0.5507

6 82% 83.75% 67.50% 20 0.5377

7 90% 96.00% 68.00% 25 0.6889

8 95% 96.81% 65.96% 6 0.8797

AVG 91.00% 95.20% 67.17% 18.38 0.7409

STD 6.46% 6.11% 0.99% 9.38 0.1515

MAX 99% 100% 68.49% 31 0.9400

MIN 82% 83.75% 65.96% 6 0.5377

Accapprox , approximate accuracy;Acccomp , complete accuracy; Cohen’s κnorm , normalized Cohen’s κ value; AVG, average; STD, standard deviation; MAX, maximum value; MIN, minimum value.

TABLE 4 O	ine performance on the EEG Motor Movement/Imagery Dataset v1.0.0 in case of left vs. right hand MI.

Left vs. right hand MI

Method Scale O	ine O	ine rebias Adaptive rebias

Riemannian-MDM 0.1970± 0.2079 0.2207± 0.2297 0.2068± 0.2213

DCCA-Riemannian-MDM

s = 10 0.1639± 0.1529 0.1759± 0.1571 0.1523± 0.1431

s = 20 0.2184± 0.1958 0.2410± 0.2050 0.2228± 0.1950

s = 40 0.2461± 0.2293 0.2811± 0.2436 0.2630± 0.2320

s = 80 0.2457± 0.2292 0.2813± 0.2436 0.2628± 0.2327

s = 160 0.2456± 0.2290 0.2813± 0.2434 0.2631± 0.2326

Cov-CSP-LDA 0.2187± 0.2262 0.2414± 0.2390 0.2237± 0.2327

Scales for local detrending are given in data points. Bold indicates the highest performance setting in each column.
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3.4 Detrended cross-correlation patterns
during MI

Results of this analysis are shown in Figure 2. All three panels
indicate a strong lateralization: regional fluctuation (as indicated
by the dot color) was found lower on the contralateral hemisphere
(e.g., during left MI detrended fluctuation decreased over the
right hemisphere). These changes were localized mostly over
the sensorimotor regions (C3 and C4), also involving parietal
electrodes (CP1, CP2, P3, P4). These results were expected and
in line with the contralateral ERD established in the literature
and confirmed by the BLP analysis (see Supplementary material).
Regarding connectivity, it appears that during MI, even though
variance in the contralateral motor cortex decreases (as seen at C4
and C3 for left and right MI, respectively), its activity becomes
more positively correlated to that of frontal and temporal regions
of the same hemisphere (Figure 2, left panel). This pattern is
also observable in anticorrelated connections (Figure 2, middle
panel), involving more parietofrontal connections, whose DCCC
became less negative. Finally, the right panel of Figure 2 indicates
that inter-hemispheric connections of motor regions contralateral
to the MI task tend to switch from an anticorrelated to a
positively correlated nature, also indicating that activity of the
ipsilateral motor cortex is negatively correlated to contralateral
brain regions. Additionally, as decoding was based on DCCA and
not DCCC values, we performed the same analysis on DCCA
matrices; the obtained results were in line with those of DCCC (see
Supplementary Figure S3), implying that classification in essence
was based on these emerging neural patterns.

3.5 Regional fractal dynamics

Results are shown in Figure 3. DFA exponents were found
significantly increased/decreased over the contralateral/ipsilateral
motor cortex for the given MI task, i.e., during left MI, the
scaling exponent was higher over C4 when compared to
right MI (0.9278 ± 0.0926 vs. 0.8497 ± 0.1016, respectively,
p < 0.0001), while the opposite was true for C3 (0.8785
± 0.1070 vs. 0.9465 ± 0.0639 for left and right MI,
respectively, p = 0.0348).

4 Discussion

In this study we proposed DCCA to replace the SCM
in Riemannian geometry-based classification schemes.
Results obtained from offline analysis of in-house EEG data
implied that the introduction of DCCA might improve
MI detection accuracy, which was then confirmed on an
independent, publicly available MI dataset in a statistically
robust manner. Furthermore, we demonstrated for the first
time that DCCA can be computed online and thus utilized
in a real-time BCI application, yielding a decoder with
high performance.

4.1 The DCCA-Riemannian-MDM
approach

When analyzing the offline in-house dataset, there was no
significant main effect of decoder in the vanilla pipeline (i.e.,
without rebiasing and assessing the sole effect of DCCA). In
general, performance of all three decoders were modest—with
sample-wise accuracy not even surpassing 60% —, especially in
contrast to what was observed during online testing. Applying
rebiasing (Kumar et al., 2019, 2024) ameliorated this issue to some
extent, boosting the performance of the Riemannian geometry-
based pipelines above 60% and implying the DCCA-Riemannian-
MDM decoder as superior. This effect stems from the structuring
of the dataset analyzed offline in this study; namely, training and
testing data was recorded in two independent sessions, on two
consecutive days. It also highlights one of the main challenges
of non-invasive BCIs: neural data collected on separate sessions
are highly non-stationary, even when obtained from the same
individual (Arvaneh et al., 2013), severely affecting stable long-term
performance (Perdikis et al., 2018). In fact, one of the strengths
of Riemannian geometry-based classification approaches lie in
their allowance for domain matching across various recording
sessions (Zanini et al., 2017; Rodrigues et al., 2018). Furthermore,
this adaptation can be carried out online in a completely
unsupervised manner, i.e., without knowing ground truth labels
of the incoming test examples (Kumar et al., 2024). Combining
rebiasing with DCCA, our proposed approach managed to achieve
a between-session performance comparable to those obtained with
sophisticated deep learning models evaluated on the same exact
dataset (Liu et al., 2023).

Nevertheless, the offline analysis of our dataset with a relatively
low sample size (n = 18) and including between-session non-
stationarities only indicated a tendency, but not confirmation
of performance improvement by introducing the DCCA matrix.
Therefore, to ameliorate this shortcoming and to more robustly
assess its utility, it was important to also evaluate the DCCA-
Riemannian-MDM decoder on a large (n = 103), single-
session dataset (Schalk et al., 2004). Outcomes of this analysis
(Table 4, see also Supplementary material) clearly demonstrated
that replacing the SCM with the DCCA matrix not only results
in a significant improvement in performance in the Riemannian
geometry-based framework, but it also outperforms the popular
CSP-based decoding approach. Finally, we also re-evaluated the
dataset collected for the online demonstration in the same
manner as for the offline data. Results of this analysis (see
Supplementary Table S2) reflected those of the former (presented
in Table 1, with the addition that output measures reflected the
better performance, as expected. Even though statistical evaluation
did not identify significant differences between the methods after
adjusting for multiple comparisons (see Supplementary material).
This was, however, most likely a consequence of the low sample
size (n = 8), as when observing performance measures on the
individual level, Cohen’s κ values were higher in the DCCA-
Riemannian-MDM when compared to the Riemannian-MDM
pipeline for eight out of eight participants. One remark must be
made here: even though this dataset did not contain between-
session non-stationarities, confounding effects could still be
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FIGURE 2

Connections with significantly di�erent DCCC between left and right MI. The (left) panel shows connections characterized by positive DCCC under

both conditions. Orange indicates DCCCleft > DCCCright, while blue the opposite. Similarly, the (middle) panel shows connections where DCCC was

found negative in both left and right MI. Orange links denote connections where DCCCleft < DCCCright (i.e., stronger anticorrelation), while blue links

indicate the opposite case. The (right) panel shows connections that are characterized with DCCC values of opposite sign under the two conditions.

Orange edges denote connections where DCCC was positive during left MI but negative during right MI, and blue edges vice versa. On all three

panels, dots indicate the EEG channels, with orange color indicating higher detrended fluctuation in left compared to right MI, blue color indicating

the opposite, and black color denoting no di�erence at the given cortical region. DCCC, detrended cross-correlation coe�cient; MI, motor imagery;

EEG, electroencephalography; DCCCleft, DCCC value of the connection during left MI; DCCCright , DCCC value of the connection during right MI.

FIGURE 3

DFA scaling exponents over the cortex. The top panel shows the exponents of all cortical locations, with a vertical bar and asterisk symbol denoting

significant di�erence between left and right MI. The bottom panels show the topoplots generated from the scaling exponents under left (left panel)

and right (right panel) MI. DFA, detrended fluctuation analysis; MI, motor imagery.

introduced by the adminstered online feedback, as it is established
that BCI users adapt their mental strategy based on the feedback
they receive (Biasiucci et al., 2018; Perdikis et al., 2018). Varying
the scale parameter of DCCA revealed that it is a hyperparameter

to be tuned, as it harmed classification accuracy by removing
valuable information on smaller scales. Nevertheless, s = 128
(corresponding to 0.25 s) appears as a suitable choice for MI-
based applications, as confirmed by the offline analysis of both
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datasets. Nevertheless, this might be an important aspect and
plausible drawback of the proposed approach, that might limit its
applicability on other BCI modalities utilizing e.g., event related
potentials, where time domain information and waveform features
are key.

Even though the number of studies proposing novel techniques
for improving MI-BCI performance is yet increasing, most of the
results are obtained via offline analysis and only a small proportion
of these methods are tested in a true online environment [see e.g.,
Singh et al. (2021) for a recent review]. In addition with varying
applied MI paradigms among works, therefore, it is difficult to
objectively assess the online performance of our approach and to
put it into perspective regarding the related literature. Furthermore,
in this project we had two main goals: (i) to evaluate the plausible
beneficial effect of utilizing DCCA instead of sample covariance
matrix in the Riemannian framework, and (ii) to demonstrate
that DCCA could be computed in real time using the formula
of Kaposzta et al. (2022). Hence, for the online demonstration
we recruited individuals who had prior experience with MI, most
likely contributing to the high online performance observed, as
well as we did not record a control group using a benchmark
classification pipeline (i.e., vanilla Riemannian-MDM) online.
Regardless, the DCCA-Riemannian-MDM decoder was operated
online with promising performance, validating future research
efforts to redeem the aforementioned limitations. In fact, it has been
stressed previously that operating a BCI itself is a skill to be learned,
with the ability of the user to control the application being just
as important as the decoding algorithm providing online feedback
(Perdikis et al., 2018; Perdikis and Millán, 2020; Silversmith et al.,
2021; Tonin et al., 2022). Therefore, it appears as an interesting
research endeavor to asses how the DCCA-Riemannian-MDM
approach fosters online skill acquisition in comparison to other
methods.

4.2 Neural patterns and DCCA during MI
task performance

It is well established that MI evokes an event-related
desynchronization (ERD) in the α (8–12 Hz) and β (13–30 Hz)
frequency ranges that is most prominent over the contralateral
sensorimotor regions (Pfurtscheller et al., 1997; Hwang et al., 2013).
Therefore, as a proof of concept, we first confirmed this notion on
our dataset via computing integrated band limited power (BLP)
using Welch’s method in the corresponding frequency ranges.
Our results confirmed the expected neural patterns in both cases,
supporting the participants’ correct approach to the MI tasks (see
Supplementary Figures S1, S2).

Regarding fractal connectivity and DCCA/DCCC, numerous
previous studies explored how connectivity changes during MI
performance [see e.g., Hamedi et al. (2016) for a review].
Drawing an exact comparison between our results and those
reported previously is difficult, given that most studies utilized
other connectivity estimators (e.g., phase synchronization or
directed partial coherence), estimating connectivity based on
fundamentally different principles. Nevertheless, several studies
identified increased connectivity in the contralateral hemisphere

during MI performance (Wang et al., 2006; Chung et al., 2011;
Li et al., 2013). In contrast, Zhang et al. (2014) observed that
within-hemisphere connectivity increases on the ipsilateral side
relative to the MI task; however, we only found this pattern for
anticorrelated, while the opposite for positive connections. Brunner
et al. (2006) also stressed the importance of interhemispheric
connections for MI classification, though in our analysis this
pattern appeared most relevant for those connections whose
nature (anticorrelated/correlated) was different during left and
right MI. In summary, our analysis identified strong lateralization
in connectivity patterns, supporting the notion of increased
contralateral connectivity during MI. Furthermore, we revealed
that correlated and anticorrelated patterns expressed markedly
different topologies during left and right MI.

4.3 Fractal dynamics of neural activity
during MI

Even though here we only compared the MI conditions to
each other and not to baseline resting-state, our results are in
line with those found by Wairagkar et al. (2021), reporting on
the increase of the DFA exponent over the contralateral (active)
region during upper limb MI. This pattern is again in line with
the observed contralateral ERD; a decrease in the power of higher-
frequency activity (and equivocally, a decrease in variance of small
time scale fluctuations) will result in a scaling function with steeper
slope/higher scaling exponent (Eke et al., 2000, 2002). Notably, on
Figure 3 it might first appear that there is a decrease in the DFA
exponent in the ipsilateral motor cortex in contrast to surrounding
regions; however, we have to stress that since the primary goal
of this study was not to assess fractal scaling during MI, our
measurement protocol did not include a baseline resting condition.
While Wairagkar et al. (2021) have identified a similar pattern
regarding left vs. right MI, they also found that the DFA exponent
increased during task performance compared to the resting-state
baseline over both hemispheres, rendering an ipsilateral decrease
unlikely in our study. Supporting this notion, previous studies
also reported lower resting-state fractal scaling exponents over
the somatomotor when compared to other cortical networks (He,
2011; Racz et al., 2019) that might also depend of the temporal
scale/frequency range of analysis (Racz et al., 2021). Nevertheless,
this issue must be resolved by future research where fractal scaling
during MI is contrasted with resting-state baseline activity. Other
previous studies also have attempted to characterize and classify MI
data based on the fractal scaling exponent, although with limited
success (Chen et al., 2013; Rodríguez-Bermúdez et al., 2015). Chen
et al. (2013) identified globally increased DFA scaling exponent
in right compared to left MI, not expressing the lateralization
observed in our data. Interestingly, the increase of the DFA
exponent in activated brain regions identified by our analysis and
by that of Wairagkar et al. (2021)—also observed by Wairagkar
et al. (2019) for executed movements—is in contrast with previous
findings to some extent: it has been shown using multiple imaging
techniques that the power-law scaling exponent of neural activity
decreases over cortical regions activated by task performance
(He et al., 2010; He, 2011). However, this difference was only
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statistically significant in frequencies below 10 Hz (Miller et al.,
2009). These inconsistencies among reported findings regarding
fractal scaling might contribute to poor classification performance
of previous attempts. Furthermore, fractal analysis of EEG signals
is computationally expensive in most cases (Racz et al., 2020; Czoch
et al., 2023), diminishing its appeal for online BCI applications. On
the other hand, univariate real-time DFA (Hartmann et al., 2013)
and especially rtDCCA (Kaposzta et al., 2022) provide efficient
ways for obtaining the DFA scaling exponents of multiple channels
simultaneously in real time, allowing for future testing of decoders
utilizing them as features.

As the exact origin and neurophysiological relevance of
scale-free brain activity is not yet fully understood, resolving
contradictions regarding our findings and those of previous studies
requires further research beyond the scope of this current paper.
In general, a higher DFA scaling exponent implies stronger long-
term autocorrelation in neural activity, as well as values above
0.5 indicate a persistent process, i.e., amplitude changes in one
direction in the past are likely to be followed by future changes
in the same direction (Eke et al., 2002). Scale-free activity in
biological systems (also often referred to as the 1/f characteristic)
are hypothesized to originate from stochastic feedback loops of
antagonistic effect (Ivanov et al., 1998). With respect to 1/f
neural dynamics it might reflect the superposition of activity
generated by neuronal populations of varying sizes, inversely
proportional to the characteristic frequency of their activities
(Buzsaki and Draguhn, 2004). With this in mind, an increase
in the DFA exponent in the contralateral hemisphere might
reflect the involvement of larger neuronal assemblies, in line with
the observed increase in large-scale connectivity (see Figure 2,
left panel). The changing balance in incoming inhibitory and
excitatory activity might also be reflected by how connections
tend to turn from anticorrelated to correlated on the cortical
site opposite to the MI task (see Figure 2, right panel). However,
it must be noted that DCCA (DCCC) analysis is unable to
detect directionality of the relationship, as well as the nature of
anticorrelated neural activity between neuronal populatioins is
difficult to interpret (Bullmore and Sporns, 2009). In any case,
our results provide further support for the functional significance
of fractal brain activity, that also appears to be significant in MI
task performance.

4.4 Limitations and future perspectives

The two main goals of this study were to evaluate if DCCA
can improve Riemannian geometry-based classification, and to
test the DCCA-Riemannian-MDM decoder online. The study was
designed accordingly, while keeping complexity of the pipeline
to the minimum in order to avoid confounding factors. In
consequence, our intent was not to propose a decoder with state-
of-the-art best performance. Detection accuracy could likely be
further improved with the introduction of additional processing
steps, such as Fisher Geodesic Filtering (Barachant et al., 2010b), or
utilizing classification schemes more elaborate than simple MDM,
such as RBNNet (Liu et al., 2023). It is widely recognized that
the ability to control a BCI in the BCI-näive population varies

greatly, with often studies retrospectively sorting their cohort as
“good-” and “bad-performing” participants (Ahn and Jun, 2015).
For the online demonstration we recruited individuals with prior
experience in operating an MI-BCI. Although this introduces
a positive bias in the online performance, we wanted to avoid
the confounding effect of recruiting users unable to control the
application immediately. Similarly, we also have not considered
an independent control group utilizing a benchmark Riemannian
decoder for online testing. Comparing online performances on
an absolute scale can be challenging, and a common difficulty in
BCI research. Individual variability in baseline BCI performance
varies greatly among users, with some being unable to gain BCI
control even after practicing (Reichert et al., 2015). Therefore,
a group-level difference in online performance might simply
reflect a different proportion of ’slow BCI learners’ in one group,
a notion that is very hard to control for without arbitrarily
influencing the outcomes. A possible solution would be to have
the same individuals operate both decoders in an alternating
manner; however, this would raise the issues of time dependence
of performance [i.e., learning effect (Perdikis et al., 2018; Tonin
et al., 2022)], as well as inconsistent feedback from different
decoders could confuse the user and thus hamper BCI control
(Biasiucci et al., 2018). Even though we found strong statistical
support for the superiority of the DCCA-Riemannian-MDM
approach over vanilla Riemannian-MDM and Cov-CSP-LDA
when evaluated on the EEG Motor Movement/Imagery Database
(Goldberger et al., 2000), offline analysis of our in-house MI
data mostly revealed tendential improvement in performance
once adjusted for multiple comparisons. One of the possible
reasons behind this could be the relatively low sample size in
our sample. It should be noted, however, that all data (both
offline and online) was recorded in a laboratory environment
with users sitting idly in a comfortable chair, and therefore the
level of artifacts can be assumed to be low. Most likely, the
denoising effect of local detrending would be more prominent
in environments better resembling real-world scenarios, where
data can be contaminated by various sources (such as e.g.,
head movements, sweat, unconstrained eye movements); testing
this is indeed one of our priorities in the future. It has also
been stressed that BCI skill acquisition is a lengthy process that
fundamentally depends on the consistency of the feedback provided
on brain activity (Perdikis et al., 2018). In that regard, it would
be interesting to see if the introduction of the DCCA matrix
could foster faster subject learning by providing more consistent
feedback.

Even though results from the post-hoc evaluation of the online-
collected data convincingly indicated the involvement of relevant
cortical locations (namely, C3 and C4), our analyses on fractal
connectivity and regional activity were largely exploratory and
therefore our interpretations should be treated with caution.
We only had a small sample size of eight participants, as well
as the study design and strategy was focused on online BCI
applicability instead of drawing conclusions on undergoing neural
processes. With this in mind, our results hopefully facilitate
future research aiming on better understanding how functional
connectivity and regional fractal dynamics alter during MI task
performance, as well as how these two aspects of brain function
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might be related. Finally, we only explored the utility of the
proposed DCCA-Riemannian-MDM approach for MI; it would
be also important to assess its performance in other BCI use
cases, such as detecting error related potentials (Barachant, 2014)
or movement-related cortical potentials (Racz et al., 2023), where
Riemannian geometry-based classification is frequently utilized.
Namely, detection of event related potentials is often based on
detecting a waveform in the time domain, which process could
be also hampered by local detrending by removing parts of the
target signal.

5 Conclusions

In this study we proposed DCCA to replace the sample
covariance matrix in Riemannian geometry-based classification
pipelines, using MI as an exemplary case. Offline analysis
indicated consistent improvement in performance compared to
vanilla Riemannian-MDM approach, as well as outperforming
standard CSP-based classifier. Importantly, we successfully tested
the proposed decoder online involving eight participants,
achieving high performance. Post-hoc analysis of EEG
data revealed distinctive connectivity patterns under left
and right MI conditions, while fractal scaling of neural
activity was also shown to alter over the contralateral
motor regions (C3 and C4) during task performance. In
conclusion, we propose the DCCA-Riemannian-MDM decoder
as a suitable, high performing tool for future MI-based
BCI studies.
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