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Monocular reconstruction of 
shapes of natural objects from 
orthographic and perspective 
images
Mark Beers * and Zygmunt Pizlo 
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Human subjects were tested in perception of shapes of 3D objects. The subjects 
reconstructed 3D shapes by viewing orthographic and perspective images. 
Perception of natural shapes was very close to veridical and was clearly better 
than perception of random symmetrical polyhedra. Viewing perspective images 
led to only slightly better performance than viewing orthographic images. 
In order to account for subjects’ performance, we  elaborated the previous 
computational models of 3D shape reconstruction. The previous models used 
as constraints mirror-symmetry and 3D compactness. The critical additional 
constraint was the use of a secondary mirror-symmetry that exists in most 
natural shapes. It is known that two planes of mirror symmetry are sufficient for 
a unique and veridical shape reconstruction. We also generalized the model so 
that it applies to both orthographic and perspective images. The results of our 
experiment suggest that the human visual system uses two planes of symmetry 
in addition to two forms of 3D compactness. Performance of the new model 
was highly correlated with subjects’ performance with both orthographic and 
perspective images, which supports the claim that the most important 3D shape 
constraints that are used by the human visual system have been identified.
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Introduction

Perception of three-dimensional (3D) shapes from a single two-dimensional (2D) image 
is one of the most difficult problems in vision science, a problem which remains unsolved both 
in human and computer vision. 3D vision is an ill-posed inverse problem (Pizlo, 2001). The 
ill-posedness is caused by the fact that the depth dimension is lost in the 2D image and must 
be recovered. Any given 2D image could be a projection of infinitely many 3D objects. So, 
when provided a single image, the human visual system is confronted with great ambiguity 
regarding the 3D scene which generated the image. Yet, our everyday informal observations 
suggest that monocular perception of real objects is often veridical. By veridical, we mean that 
we see 3D shapes the way they are “out there.” Mathematics dictates that the only way to arrive 
at a unique, let alone veridical, 3D interpretation of a 2D image is to impose constraints 
(Poggio et al., 1985). Therefore, the central question is to identify the constraints the human 
visual system employs to achieve unique and often veridical reconstruction of natural objects.

Despite the importance of natural objects, much of the past work on 3D perception has 
only considered very simple objects. Hochberg and McAlister (1953) explored under what 
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viewing directions Necker cubes were perceived as 2D or 3D. Necker 
cubes are always perceived as 3D unless viewed from very specific 
directions, where the 2D image of the Necker cube is very simple. 
Their work and much subsequent work emphasized the role of a 
simplicity principle, where in the presence of ambiguity, the ‘simplest’ 
interpretation of the 2D image is the one selected by a subject 
or model.

Other work has emphasized the role of rectangularity as a 
constraint in 3D monocular perception. Man-made objects such as 
bookshelves and tables often have right angles. Is it the rectangularity 
that is responsible for veridical perception of shapes of natural objects? 
Perkins (1972, 1976) considered images of opaque, deformed, box-like 
objects, and found that subjects indeed often perceived 3D 
interpretations with right angles when the 2D image admitted such 
interpretations. Rectangularity is likely a constraint used by the visual 
system, either explicitly or implicitly.

Perkins’ work provides a good example of an experimental 
technique used to query the 3D percept of a subject. Namely, subjects 
are asked to report some feature of their 3D percept. Perkins (1976) 
asked subjects to report a perceived 3D angle. Attneave and Frost 
(1969) provided images of rectangular stimuli and asked subjects to 
adjust the 3D slant of an edge. Other techniques for investigating a 
subject’s 3D percept exist. Shepard and Metzler (1971) performed an 
experiment in which two images were presented to a subject, where 
the two images were of the same object from a different viewpoint, or 
of different objects. If the subject correctly identified that two different 
images were of the same object, the subject achieved shape constancy. 
By shape constancy we mean the same 3D interpretation is achieved 
despite different 2D views. Human shape constancy is reliable with 
symmetrical, regular objects (Biederman and Gerhardstein, 1993; Li 
et al., 2011) but poor with highly unstructured objects (Rock and 
DiVita, 1987). Shape constancy experiments enable the experimenter 
to identify conditions where 3D shapes are perceived reliably, but do 
not give the experimenter access to the subject’s 3D percept. For this, 
we need shape reconstruction experiments. In shape reconstruction 
experiments, a subject is provided a static image of a 3D shape and a 
set of 3D interpretations of that image. The subject’s task is to identify 
which 3D shape in the provided set they perceive while looking at the 
2D image.

Suppose we  have access to a subject’s 3D percept via a shape 
reconstruction experiment. The goal is to formulate a computational 
model that generates the same 3D reconstruction as a human subject 
given the same 2D information. What constraints other than 
rectangularity could be used as an implementation of a simplicity 
principle? If an object is “simple” perhaps its 3D angles ought to 
be  similar. Marill (1991) proposed a model which selected a 3D 
reconstruction with minimal standard deviation of angles (MSDA). 
This model was able to recover polyhedral shapes to high degrees of 
accuracy. Leclerc and Fischler (1992) showed that combining MSDA 
with planarity produced even more accurate 3D interpretations. 
Biological shapes, such as animal bodies, would seem smooth enough 
that rectangularity, MSDA and planarity no longer function as 
good constraints.

Symmetry has been proposed as a more general alternative, and 
is clearly a version of a simplicity principle. Mirror symmetry has been 
used to achieve good reconstruction results on simple, often 
polyhedral objects (Vetter and Poggio, 1994; Sawada, 2010; Li et al., 
2011; Jayadevan et al., 2018). Many of these models also incorporate 

a compactness constraint, which maximizes volume of a 3D recovered 
shape for a given surface area. Until now, none of these models have 
been tested extensively on natural objects.

In nearly all of the cited experiments, orthographic approximations 
to perspective images were used. In making the transition from simple 
objects to natural objects, it makes sense to investigate what impact 
this approximation has on 3D perception. One of us showed that the 
visual system produces more reliable percepts of 2D slanted shapes 
when an orthographic approximation to a perspective projection is 
used (Sawada and Pizlo, 2008). Will this advantage translate to 
3D shapes?

First, we describe our psychophysical experiment on 3D shape 
reconstruction. Then, we describe a new computational model and 
compare the model performance to the performance of the subjects.

Psychophysical experiment

Methods

Subjects
Three subjects, including one author (S1) participated in this 

experiment. All subjects had normal or corrected-to-normal vision. 
Subject S1 received extensive practice before data collection. Subject 
S3 was naïve with respect to the hypotheses being tested.

Stimuli
Three types of objects were used (see examples in Figure 1). First, 

natural objects (cars, airplanes, chairs, beds, desks, etc.) were selected 
from the ModelNet40 dataset (Wu et al., 2015). These natural objects 
were selected to have one and only one plane of symmetry which 
accounted for the vast majority of points in the mesh defining the 
object. These objects may have contained parts with more than one 
plane of symmetry. For example, a bed may have one global plane of 
symmetry but the mattress atop the bed is a rectangular prism with 
three planes of symmetry. Many of the symmetrical objects in the 
ModelNet40 dataset are aligned such that their primary symmetry 
plane is roughly parallel to the XY, XZ, or YZ plane. Regardless, 
we rotated and translated all these 3D objects such that their primary 
symmetry plane was coplanar with the YZ plane. In our coordinate 
system, Z-axis represents the depth dimension, X-axis is horizontal 
and Y axis is vertical.

Second, random symmetrical polyhedral objects were generated, 
similar to those used in our prior experiments (Li et  al., 2011; 
Jayadevan et al., 2018). These objects were symmetrical about the YZ 
plane, had planar faces, and their aspect ratios did not exceed nine. 
These objects were composed of two appended boxes, such that the 
bottom faces of the two boxes were coplanar. These random polyhedra 
were constructed such that no angle on a face of a random polyhedron 
was 90 degrees, and 95% of these angles differed from 90 deg. by more 
than five degrees. The relative sizes of the two boxes composing a 
random polyhedron varied over a wide range.

Third, rectangular symmetrical polyhedral objects were generated. 
As pointed out in the Introduction, rectangular polyhedra were used 
to evaluate rectangularity as a possible a priori constraint. These 
objects were composed of two appended rectangular prisms, such that 
the bottom faces of the two rectangular prisms were coplanar. The 
rectangular polyhedra were generated such that no aspect ratio could 
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exceed nine. The rectangular polyhedral objects were also mirror 
symmetrical about the YZ plane. The relative sizes of the two boxes 
composing a rectangular polyhedron also varied over a wide range.

Despite the fact that rectangular polyhedra had 90 deg. angles and 
random polyhedra did not have 90 deg. angles, they all were generated 
in a similar way. In both cases, a cross section of an object along its 
symmetry plane was defined first. In the random polyhedra case, this 
looked like two convex quadrilaterals appended. In the rectangular 
polyhedra case, this looked like two rectangles appended. Edge lengths 
in cross sections were sampled from the same distribution in both 
rectangular polyhedra and random polyhedra cases. Then, widths of 
each box were sampled from the same distribution for both random 
polyhedra and rectangular polyhedra. In random polyhedra, three 
widths were sampled for each box and the fourth width was picked to 
ensure that faces of the polyhedron were planar. If this fourth width 
from planarity was too large or caused intersections, new widths were 
sampled. Because the edge lengths of the rectangular polyhedra and 
random polyhedra were sampled from the same distribution, the 
distribution of aspect ratios of the 3D shapes was similar.

Procedure

The subject performed the experiment monocularly in a dark 
room. The subject’s head was supported by a chin-forehead rest 20 
inches from a computer monitor (32″ diagonal, 137 pixels per inch). 
The line connecting the subject’s uncovered eye with the center of the 
monitor was orthogonal to the surface of the monitor.

Six different conditions were used, for each combination of object 
type (natural objects, random polyhedra, rectangular polyhedra) and 
projection type (orthographic, perspective). In each trial of the 

experiment, the subject was shown a 2D image of a stationary reference 
shape and a rotating, symmetrical, adjustable 3D shape consistent with 
an orthographic image of the reference shape. The subject adjusted the 
aspect ratio of the rotating 3D shape until it matched the 3D percept 
produced by the 2D image of the reference shape. Across all 
conditions, no 3D shape was presented more than once. All three 
subjects were tested on the same shapes. This allowed computing 
correlations between pairs of subjects in all 6 experimental conditions. 
The position and size of images and reconstructions during each trial 
of this experiment are described in Figure 2.

Consider first the orthographic projection. It is known that a 2D 
orthographic image of a 3D mirror-symmetrical shape does not allow 
for a unique reconstruction of the 3D shape (Vetter and Poggio, 1994; 
Li et al., 2011). Specifically, the 2D orthographic image determines the 
3D symmetrical shape up to a single free parameter. This parameter is 
the slant angle of the symmetry plane of the 3D reconstructed shape. 
Changing the slant of the symmetry plane of the 3D reconstructed 
shape leads to changes of the aspect ratio of the 3D shape [see Eq. 
B4 in Li et al. (2011)]. The relation between the slant and the aspect 
ratio is one-to-one. On each trial, the subject used two keys on a 
keyboard to change the aspect ratio of the adjustable 3D shape. The 
discrete steps of this adjustment corresponded to changes of the slant 
of the symmetry plane by 0.01 radians per key press. The initial aspect 
ratio of the adjustable 3D shape was random, and it corresponded to 
a slant angle between 0.2 and π/2–0.2.

Next, consider the perspective projection. It is known that a 2D 
perspective image of a 3D mirror-symmetrical shape allows for unique 
reconstruction of the 3D shape (Sawada et al., 2011). So, geometrically, 
reconstruction from perspective images is easier than from 
orthographic images. Will this geometrical fact lead to a more accurate 
percept of a 3D shape? The most direct way to answer this question is 

FIGURE 1

Perspective images of natural objects, random symmetrical polyhedra, and rectangular symmetrical polyhedra.
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to use the same one-parameter family of 3D shapes in the adjustment 
and verify whether there was an improvement in reconstructed 3D 
shapes. Perspective images on the computer monitor were produced 
by placing the center of perspective projection at the subject’s eye. This 
means that the retinal images produced by the perspective images on 
the computer monitor were correct perspective images of the 
simulated 3D shapes. Similarly to what was done in the session that 
used an orthographic projection, the adjustable 3D shape was always 
a member of the one-parameter family of 3D shapes consistent with 
an orthographic image of the reference 3D shape. Note that the 
reference 3D shape was the only member of the one parameter family 
of 3D shapes that could geometrically match the stationary perspective 
image shown on the left, so the perspective projection played a role of 
a constraint in the shape adjustment. This suggests that subject’s 
reconstruction of the 3D shape in perspective projection conditions 
could be  more accurate compared to the orthographic 
projection conditions.

As illustrated in Figure 2, perspective images were larger (by a 
factor of about 3) than orthographic images. The reason for this 
difference is as follows. To make sure that a perspective image of an 
object is clearly different from an orthographic image of the same 
object, the range in depth of the 3D object, when perspective 
projection is used, must be non-negligible relative to viewing distance. 
So, moving a 3D object closer to the viewer (or to the camera) will 
increase perspective distortions as well as the size of the retinal (or 
camera) image. Figure 3 illustrates the perspective distortions of an 
object from our experiment in comparison to an orthographic image. 
We also show a perspective image of the same object when the viewing 
distance was increased by a factor of 3. We equated the sizes of these 
images for easier comparison.

The 3D orientation of the reference shape varied randomly from 
trial to trial. This orientation can be specified by the slant and tilt of its 
symmetry plane. On each trial, tilt (modulo 90 degrees) was 
constrained to lie between 15 and 75 degrees. Slant was constrained 

to be 15, 30, 45, 60, or 75 degrees. Each slant angle was used 20 times 
for a total of 100 trials per condition. On average, each condition took 
subjects about 45 min.

In each trial, the adjustable 3D shape was rotating around the x 
(horizontal) axis. None of the images of the rotating 3D shape was 
identical with the image of the reference 3D shape. This prevented the 
subject from matching 2D features during the adjustment. This was 
accomplished by applying a 3D rotation by 90 deg. around the y 
(vertical) axis to the reference shape before showing it as an adjustable 
shape. In addition, the size of the rotating 3D object was 80% of the 
size of the reference 3D object to encourage the subject to pay 
attention to shape, not size.

Results

As explained in the methods section, a 2D orthographic image of 
a 3D symmetrical shape determines that 3D shape up to a single free 
parameter. The set of 3D shapes generated by different choices of this 
free parameter is termed the one parameter family. Two members of 
the one parameter family are different but related 3D shapes. In 
particular, one can be transformed into the other by stretching or 
compressing along two orthogonal directions. One of these directions 
is the normal of the symmetry plane. The other depends on the 
viewing direction that created the orthographic image. Each member 
of the one parameter family has a unique aspect ratio along these two 
orthogonal directions. Following Li et al. (2011) we define a measure 
of shape dissimilarity between two members of the one parameter 
family based on this unique aspect ratio [refer to Appendix B in Li 
et  al. (2011) for details]. This shape dissimilarity measure will 
be referred to in this paper as dissimilarity. If dissimilarity is equal to 
x, then the aspect ratio of the shape recovered by the subject is 2x 
times the aspect ratio of the reference 3D shape. A dissimilarity of 
zero implies that the subject recovered the reference shape veridically. 

FIGURE 2

The black rectangle represents the boundary of the computer canvas, while the circles represent average image sizes and positions during the 
experiment with perspective and orthographic projection. Images were placed at ±4.5 degrees of visual angle from the center in the orthographic case 
and ±14 degrees of visual angle from the center in the perspective case. On average, the perspective image of the reference object occupied 22.8 
degrees of visual angle, while the perspective image of the adjustable object occupied 18.5 degrees of visual angle. On average, the orthographic 
image of the reference object occupied 7.2 degrees of visual angle, while the orthographic image of the adjustable object occupied 5.8 degrees of 
visual angle.
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A dissimilarity of −1 implies that the subject reconstructed a 3D 
shape which has aspect ratio one half that of the reference shape. In 
order to make the interpretation of the results clearer, let us define 
the shape dissimilarity in terms of the slants of the symmetry plane. 
Remember, the one parameter family can be described either by the 
aspect ratio of the shapes or by the slant of the symmetry plane of the 
shapes. These are two different parameterizations of the same one 
parameter family. Let σ  be the slant of the symmetry plane of the 
reference 3D shape and σ r the slant of the symmetry plane of the 3D 
shape adjusted (reconstructed) by the subject. If the subject 
reconstructed the 3D shape veridically, σ σ= r , and shape 
dissimilarity is zero. Note that the adjustable 3D shape was constantly 
rotating and none of the 3D shapes of the rotating object had the 
same 3D orientation as the reference 3D object. The subjects in the 
experiment were matching the aspect ratios of the 3D shapes, not the 
slants of their symmetry planes. But once the adjustment is done, 
we can represent the shape dissimilarity by comparing the two slants 
from the same one parameter family. So, σ r refers to the adjusted 3D 
shape from the one parameter family defined by the orthographic 
image of the reference shape. Shape dissimilarity is a binary logarithm 
of tan / tanσ σ( ) ( )r . It follows that negative shape dissimilarity 
means that σ σr >  because tangent of an angle is a monotonically 
increasing function of the angle in (0, π/2).

Figure 4 shows subjects’ performance in each of the six conditions. 
The vertical axis of each plot shows shape dissimilarity, while the 
horizontal axis shows the slant angle of the reference shape. A slant 
angle of 15 means that the viewing angle producing the image was 
such that the angular difference between image plane normal and 
symmetry plane normal was 15 degrees. In other words, the symmetry 
plane of the reference object was only 15 degrees off compared to the 
image plane. Li et  al. (2011) used objects similar to the random 
polyhedra used in this experiment. They reported greater absolute 
values of shape dissimilarity for small slant angles than large slant 
angles. This pattern was reproduced in our experiment and holds for 
all types of objects. The most important result of our present 
experiment was that dissimilarity was much lower with natural objects 
and with rectangular polyhedra than with the random symmetrical 
polyhedra condition. This means that subjects were more accurate at 

reconstructing natural and rectangular objects than they were at 
reconstructing random polyhedra. Next, performance of our subjects 
with random polyhedra was similar to the monocular performance of 
subjects in Li et al.’s (2011) experiment. Our random polyhedra were 
not identical to the random polyhedra used by Li et  al., but 
performance of our three subjects was very similar to the performance 
of the four subjects in Li et  al.’s experiment. Finally, monocular 
performance of our subjects with natural objects and with rectangular 
polyhedra was almost as good as binocular performance of subjects 
in Li et al.’s experiment with random polyhedra. This result makes 
sense, intuitively. Objects appear to us the same regardless whether 
we look at them with one or two eyes. Apparently, natural objects have 
enough regularities (constraints) so that the ill-posed inverse problem 
of reconstructing their 3D shapes is solved nearly perfectly by our 
visual system. We will explain the nature of these constraints in the 
model section of our paper.

Next, we will discuss in some more detail the veridicality of the 
perceived shape and the difference between orthographic and 
perspective projection. Figure  5 shows cumulative distribution 
functions summarizing the data shown in Figure  4. Now, shape 
dissimilarity is on the horizontal axis. More precisely, the horizontal 
axis is the absolute value of shape dissimilarity. Let us denote this as 
AD. The vertical axis in Figure 5 shows the proportion of objects with 
absolute value of dissimilarity less than AD. In Figure 5, results from 
orthographic and perspective images are superimposed on the same 
graph. This allows a better comparison of these two experimental 
conditions. Figure 5 shows again that all subjects were much more 
accurate at recovering natural shapes and rectangular polyhedra than 
random symmetrical polyhedra. Performance with natural shapes was 
almost perfect. One way to illustrate this is to look at the 50th 
percentile of AD (these 50th percentiles are shown in each graph in 
Figure 5). The 50th percentile for natural shapes across the 3 subjects 
and two projections (orthographic and perspective) ranges between 
0.15 and 0.3. This corresponds to errors in aspect ratio of the shape 
ranging between 11 and 23%. We can conclude that this performance 
is extremely good. Figure 6 shows examples of the difference in aspect 
ratio 11 and 23%. This shows that even though the reconstructed 3D 
shapes are not identical to the reference 3D shapes, the monocular 

FIGURE 3

(Left) A perspective Image of an object under the viewing conditions in our experiment. Specifically, your viewing distance should be 2.4 times the 
diameter of this image. (Center) A perspective image of the same object at distance three times greater. We enlarged the size of this image to make the 
comparison of images easier. Your viewing distance should now be 7.2 times the diameter of this image, (Right) an orthographic image of the same 
object. All three images used the same slant and tilt of the 3D shape.
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percepts of our subjects are not far from veridical. We  want to 
emphasize that we are evaluating veridicality of metric aspects of 3D 
shapes. To the best of our knowledge, this is the first result 
demonstrating veridicality of shape perception with natural objects. 

Subjects demonstrated a great degree of consistency in their 
reconstructions. Using slant as the dependent variable, the pairwise 
correlations between subjects while viewing natural shapes or 
rectangular polyhedra ranged from 0.91 to 0.97. Pairwise correlations 

FIGURE 4 (Continued)
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between subjects while viewing random polyhedra were lower, 
ranging from 0.75 to 0.82.

Next, Figure  5 shows that reconstructions from perspective 
images tended to be  more accurate than reconstructions from 
orthographic images and performance of all 3 subjects was very 
similar. S1 produced slightly more accurate and reliable results. This 
was not surprising considering the fact that S1 received more practice.

Finally, the graphs in Figure 5 show that subject performance with 
natural objects was similar to subject performance with rectangular 
polyhedra. We know from Perkins (1976) that rectangularity is likely 
a constraint used by the visual system. Rectangularity could explain 
high degrees of reconstruction accuracy on those natural objects 
which were rectangular. However, a number of the natural shapes are 
not rectangular and subjects performed well with these shapes also. 
This suggests that there are additional constraints employed by the 
visual system. This issue will be discussed in the next section.

Model

Symmetry correspondence

We formulated a computational model to emulate subjects’ 
performance with all three types of objects under both orthographic 
and perspective projection. The main question that we are trying to 
answer is which constraints are used by the human visual system. 3D 

mirror symmetry is the main constraint. In order to use mirror 
symmetry in 3D shape reconstruction the model has to know 
symmetry correspondence. Consider first the natural shapes. Given a 
3D mesh, primary and secondary symmetry planes are estimated 
using RANSAC (Fischler and Bolles, 1981). Two random points are 
sampled and the unique symmetry plane bisecting the vector between 
them is computed. Next, the set of points in the mesh which are 
symmetric about this symmetry plane to within a certain tolerance is 
identified. Repeating this procedure N times yields N candidate 
symmetry planes and N sets of correspondences. The primary 
symmetry plane, 1π , is the plane with the greatest number of 
correspondences. The secondary symmetry plane, 2π , is defined as 
the plane (i) whose normal forms the angle equal to or greater than 45 
degrees with the normal of the primary symmetry plane and (ii) 
whose correspondences overlap the most with the correspondences of 
the primary symmetry plane. By “overlapping correspondences” 
we mean triplets of points such that two points are corresponding with 
respect to one symmetry plane and two are corresponding with 
respect to the second symmetry plane. This procedure yields 
consistent estimates of primary and secondary symmetry planes so 
long as N is sufficiently large. In almost all cases, the two symmetry 
planes were orthogonal to each other. Next, consider the random 
symmetrical polyhedra in our experiment. These objects had only one 
plane of symmetry. The secondary plane was identified as the best 
estimate using large tolerance for symmetry correspondence. Finally, 
with the rectangular symmetrical polyhedra consisting of two 

FIGURE 4

Subjects’ performance as a function of slant of the symmetry plane of the reference shape for each of the 6 conditions. The vertical axis denotes shape 
dissimilarity, while the horizontal axis denotes slant angle of the symmetry plane of the reference shape. Shape dissimilarity is the measure of how far 
the subject’s percept was from the reference shape. The data points represent the individual trials. The dashed line indicates average dissimilarity.
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rectangular boxes, two symmetry planes were always well defined. The 
primary symmetry plane was the symmetry plane of the entire object, 
and the secondary symmetry plane was one of the two additional 
symmetry planes of one of the rectangular boxes.

Differences in the input received by model 
versus subject

Note that the model received more information than subjects. On 
each trial, the subject was shown a rendered image of a 3D opaque 
reference object. The model, on the other hand, was provided the (x, 
y) coordinates of the object points in the image assuming that the 
reference object was transparent. In addition, the model was provided 
the two sets of symmetry correspondences. In this work, we are not 
trying to explain how 3D symmetry correspondence is solved in a 
single 2D image, nor how the back invisible part of the object is 
reconstructed. This paper focuses on the nature of constraints that can 

account for near-veridical perception of our subjects. The two aspects 
of the problem, establishing symmetry correspondence and 
reconstructing the back, invisible part of an objects have been 
addressed, at least partially, in our prior work (Pizlo et  al., 2014; 
Sawada et al., 2014).

Image correction

The model forms a one-parameter family of 3D shapes consistent 
with an orthographic image of the 3D reference shape. However, the 
model is given a noisy version of a 2D orthographic or perspective 
image of the shape to emulate the noise in the human visual system. 
For every pair of image points that are projections of mirror 
symmetrical 3D points, we  perturbed the orientation of the line 
segment connecting the image points by a random number generated 
from a normal distribution whose expected value was zero and 
standard deviation was 1 deg. This amount of noise is consistent with 

FIGURE 5

Cumulative distributions of absolute value of shape dissimilarity, by subject (rows) and object type (columns). The numbers inside the graphs are 50th 
percentiles.
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known difference threshold of line orientation discrimination (Orban 
et al., 1984). Once the model is given such a noisy 2D orthographic or 
perspective image, the model must begin with correcting the image 
before the one-parameter family is generated. As a result of this 
correction, all symmetry lines in the image become parallel. Recall 
that the one parameter family is defined only for a noiseless 
orthographic image. In the 3D symmetrical shape, the symmetry line 
segments are parallel and perpendicular to the symmetry plane. This 
parallelism is preserved under orthographic projection, but is not 
preserved under perspective projection or when noise is added to the 
image. When given a noisy perspective or orthographic image, the 
image must be corrected in order to become a valid orthographic 
image of a symmetrical 3D shape, which enables the generation of the 
one parameter family. The model makes all symmetry line segments 
parallel to each other in the least-squares sense (see Sawada, 2010).

Constraints

Once the one parameter family of 3D symmetrical shapes 
consistent with the corrected image is generated, the model’s task is to 
select a single member from the one parameter family. This is 
accomplished by using constraints. Li et al. (2009) discussed a variety 
of constraints based on the idea of maximum compactness. 
Compactness, based on the volume and surface area of an object is 
defined in Equation 1. In practice, it may be difficult to calculate the 
volume and surface area of an object. For example, the wings of a bird 
have some volume, but the estimation of the volume will never 
be reliable. Therefore, it is preferable to compute compactness of the 
convex hull of an object. In all objects that we tested, there was a single 
member O* of the one parameter family which maximizes C1(O) of 

the convex hull of the object and therefore, maximum compactness is 
a valid constraint (selection rule). The maximally compact 3D shape 
is a sphere (Pólya and Szegö, 1951). As an object becomes increasingly 
elongated, compactness decreases. The maximum compactness rule 
encodes the idea that the 3D reconstruction should not be overly 
stretched out. Because the reconstructed 3D shape must be consistent 
with the 2D retinal image, the uncertainty about the stretch of an 
object refers to the uncertainty about the range of the object in depth 
direction. We  discovered in our simulations that maximum 
compactness leads to what Leclerc and Fischler (1992) called 
“consistency criterion,” which is conceptually similar to shape 
constancy (see Appendix).

Li et al. (2009) also considered modified versions of compactness, 
V O S On m( ) ( )/ , and found that subject’s performance was best 
replicated when n = 1, m = 3, as shown in Equation 2. Our simulations 
showed that the constraint represented by maximum of C2 is highly 
correlated with minimizing the range of the 3D object in depth 
direction (see Appendix).
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We also used an additional constraint based on the two symmetry 
planes described earlier. Many objects which are globally mirror 
symmetrical have parts which are approximately mirror symmetrical 
about two planes of symmetry. See Figure 7. Two planes of mirror 

FIGURE 6

The leftmost column contains images of two reference shapes used in the experiment. The middle and right columns show images of shapes which 
have dissimilarities of 0.15 or 0.3 relative to the reference shape. A shape difference of 0.15 corresponds to a difference in aspect ratio of 11% while a 
shape difference of 0.3 corresponds to a difference in aspect ratio of 23%. The object in the top row has been stretched horizontally and compressed 
vertically. The object in the bottom row has been stretched vertically and compressed horizontally.
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symmetry produce two sets of symmetry correspondences and 
therefore two one-parameter families. If the images are orthographic 
and noiseless, the subset of points shared by the two one parameter 
families will perfectly overlap at the true shape, up to a constant shift 
in depth. With a corrected noisy image, the two one parameter 
families will have members which are “closest” to each other. The 
selection rule (constraint) C O3 ( ) selects the member of the one 
parameter family associated with the primary symmetry plane which 
is closest to a member of the one parameter family associated with a 
secondary symmetry plane. A metric defining the distance between 
two symmetrical 3D shapes associated with the corrected images is 
defined in Equation 3. This equation is described next.

Each set of correspondences of a one parameter family has a 
symmetry plane kπ  at slant θk , where θk  can range from zero to 
ninety degrees. Different choices of slant will yield different depth 
values. A loss function L over depth values generated by the two one 
parameter families is shown in Equation 3. In all cases that we tested, 
L generated a unique minimum. Minimizing L corresponds to finding 
depth values for parts of an object such that those parts are maximally 
symmetrical about two planes of symmetry in 3D. The selection rule 
C O3 ( ) returns slant angle θ1

∗ which is the slant of the primary 
symmetry where L is minimal, for some θ2∗.
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In Equation 3 ,θk iz  is the depth value associated with vertex 
i from symmetry plane .kπ  Ideally, the depth value from symmetry 
plane 1π  will be the same as the depth value from 2.π  Parameters 

1 2,θ θ are slants of symmetry planes 1 2,π π .
The three constraints, C1, C2 and C3, each select a member of the 

one parameter family of a corrected image. If present, the perspective 
information in an image is also useful in choosing the unique 3D 
shape from the one parameter family of shapes. A perspective image 
of a 3D symmetrical shape allows for unique reconstruction of that 

symmetrical shape. This is achieved by relating the vanishing point of 
the symmetry line segments to the slant of the symmetry plane as 
described by Sawada et al. (2011). The vanishing point provides the 
fourth estimator of the slant of the symmetry plane as follows. 
We consider all pairs of symmetry line segments in the 2D image and 
estimate the vanishing point for each pair of symmetry lines as the 
intersection of these lines. The vector connecting the center of 
perspective projection of the camera used by the model and the 
vanishing point is normal to the symmetry plane of the 3D shape. As 
a result, from each pair of symmetry lines we obtain an estimate of the 
slant of the symmetry plane. We then take the median of these. Note 
that in an orthographic image, parallelism of symmetry line segments 
is preserved so the vanishing point always lies at infinity. It follows that 
the estimated slant of the symmetry plane is 90 deg. in such a case. The 
estimate of slant from perspective information is likely to be wrong 
when an orthographic image is used and so, the weight of this estimate 
should be close to zero. But when the 2D image is a perspective image, 
the vanishing point does provide a useful estimate and its weight 
should be  positive. Therefore, any model which seeks to use 
perspective information needs some way to quantify the reliability of 
perspective information in the 2D image.

Model definition

For each trial, we have four point estimates of slant of the primary 
symmetry plane. We combine these estimates using the model shown 
in Equations 4, 5. In this model, the slant predicted by perspective 
information is given weight λ, and the slant predicted by constraints 
C1, C2 and C3 is given weight 1− λ .

 ( )ˆ 1persp LMθ λθ λ θ= + −
 (4)

 θ β β β θ β θ β θLM v s s v sym= + + + +0 0 1 2 3 2 3 3 2 (5)

The weight given to perspective estimate of slant should 
be  related to the reliability of perspective information. As an 

FIGURE 7

(A) and (B) each show two partial symmetry planes detected in 3D models. Both models are globally mirror symmetrical about the green plane and 
both have parts symmetrical about both green and purple planes. For example, the wheels of the car are symmetrical about both green and purple 
planes. Plot (C) shows the cost surface defined in Equation 3 for the car shown in (A). Dark blue corresponds to points close to the minimum and the 
red dot is the global minimum.
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estimate of the reliability of perspective information, we  use a 
function of the angular size of the image. Conventionally, the degree 
of perspective distortion has been related to the range in depth of 
the object relative to the viewing distance. For any 3D object, the 
ratio of range in depth to viewing distance will increase as the 
object is brought closer to the observer. The image size will also 
increase as the object is brought closer to the observer. It turns out 
that the image size is also correlated with degree of perspective 
distortion. To quantify the strength of perspective distortion in the 
image, consider Figure 8. Figure 8A shows four rectangles in a plane 
parallel to the image plane. All four rectangles have identical height 
but different widths. If the vertical sides of these rectangles are 
treated as symmetry lines in 3D, the symmetry plane is orthogonal 
to the image and has slant 90 deg. Figure 8B shows a perspective 
image of these rectangles after these rectangles were rotated 75 
degrees about their bottom edge. This results in the slant of the 
symmetry plane of the rectangles being 15 degrees. The vanishing 
point is easier to estimate if the angle between the symmetry line 
segments is larger. The formula for the angle between the symmetry 
line segments, ϕ, is given in Equation 7. Note that this equation is 
a function of the tangent of the angular image size gamma 
(Equation 6). In this equation there is a free parameter, t, 
corresponding to the degree of rotation about the horizontal axis 
the rectangle. We used t = 75 deg. because it led to the best fit of the 
model to the subjects’ data. Finally, the weight λ (Equation 8) of 
perspective information is defined as a monotonically increasing 
function over the range (0, π) that maps the range of ϕ to [0,1]. This 
results in a model for which perspective information is weighted 
more as the angular size of the image increases. The weight assigned 
to perspective information is grounded in the geometry of the 
perspective image, rather than in the geometry of the 3D 
reconstructed shape.

 α γ= ( )tan / 2  (6)

 φ α= ( )( )−
2

1
tan tan t  (7)

 
λ

φ
=

− ( )1

2

cos

 (8)

Coefficients β0 – β3 in the linear model in Equation 5 are selected 
to minimize the sum of squared errors between subject slants and 
model slants. We fit a linear model separately for each of the 3 types of 
shapes: natural objects, random symmetrical polyhedra and 
rectangular symmetrical polyhedra composed of two rectangular 
boxes. It was natural to expect different coefficients across these three 
object types. For example, the constraint produced from two symmetry 
planes was expected to have large weight with natural objects and 
rectangular polyhedra, but not with random polyhedra that had only 
one symmetry plane. This indeed was the case. The model was fit to 
each individual subject to account for individual differences. We want 
to emphasize, however, that we used the same model for orthographic 
and for perspective images. The model’s reconstructions were different 
when orthographic vs. perspective images were used because the 
contribution of θpersp was modulated by the parameter λ that 
represented the reliability of perspective information.

Model results

Recall from our psychophysical experiment that subjects’ 
performance with random polyhedra was different than with 
rectangular polyhedra and with natural objects. Also, subject S1 
produced more accurate reconstructions than the other two subjects. 
In this section, we report model fit for every combination of subject 
and object type (Natural Objects, Random Polyhedra, 
Rectangular Polyhedra).

FIGURE 8

(A) Shows a set of rectangles of equal height in a plane parallel to the image plane. If we treat the vertical sides of the rectangles as symmetry lines in 
3D, then the slant of the symmetry plane is 90  deg. – the symmetry plan is orthogonal to the image. (B) Shows the perspective images of those 
rectangles (solid lines) after rotating the rectangles by 75  deg. away from the frontoparallel plane. In this case, the slant of the symmetry plane is 15  deg. 
Note that the angular width of the perspective image is related to the angle between symmetry line segments in the image. The angular size of 
orthographic images in our experiment was around 7 degrees, corresponding to −3.5 to 3.5 on the plot. The angular size of perspective images in our 
experiment was around 20 degrees, corresponding to −10 to 10 on the plot. Perspective images in our experiment had strong perspective information.
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In Figure 9 we show cumulative functions for the model. Figure 9 
is directly comparable to Figure 5, but where Figure 5 compared the 
subjects’ reconstructions to the true shapes, Figure  9 compares  
the model reconstructions to the true shapes. Figures  5, 9 show  
similar median shape dissimilarities. Also, the model shows  
better performance with perspective images compared to 
orthographic images.

There appear to be discrete steps present in some of the cumulative 
functions of Figure 9, particularly for rectangular polyhedra. These 
step functions can be  explained by considering Figure  10, which 
directly shows the shape dissimilarities between true shape and model 
shape. Some of the panels in Figure  10 show that the model’s 
predictions are clustered around the mean for individual veridical 
slants. This tight clustering can result in steps when the dissimilarities 

are replotted as a cumulative curve. The plots in Figure 10 are directly 
comparable to the plots in Figure 4. The mean subject performance 
shown in Figure 4 is reproduced well by the model, but the model 
tends to have lower variability.

Figure 11 shows cumulative plots for the dissimilarities between 
shapes reconstructed by the model and shapes reconstructed by 
subjects. These graphs represent direct comparison between the 
subject’s reconstructed shape and model’s reconstructed shape. Recall 
that the subjects and the models were tested with the same 3D shapes 
shown at the same 3D orientations. For each trial the aspect ratio of 
the reconstructed shape by the subject was compared to the aspect 
ratio of the reconstructed shape by the model. The median shape 
difference between subject and model is around 0.3, for all 
combinations of subject, object type and projection type. A shape 

FIGURE 9

Cumulative distributions of dissimilarity between model reconstruction and true shape, by subject and condition. The numbers inside the graphs are 
50th percentiles.
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dissimilarity of 0.3 corresponds to the model reconstructing a shape 
with an aspect ratio which is 23% different compared to the aspect 
ratio selected by the subject. To further evaluate the similarity between 

the model and subject’s reconstructions, we computed correlation 
coefficients between the slants reconstructed by the subject and the 
slants reconstructed by the model, the same way we  computed 

FIGURE 10 (Continued)
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correlations between pairs of subjects when we  described our 
psychophysical results. The pairwise correlations between the subject 
and the model while viewing natural shapes or rectangular polyhedra 
ranged from 0.92 to 0.98. Pairwise correlations between the subject 
and the model while viewing random symmetrical polyhedra were 
lower, ranging from 0.74 to 0.93. These correlations are almost 
identical to the pairwise correlations between subjects.

Summary and discussion

Previous studies have explored monocular 3D perception of 
many types of objects (polyhedra, objects composed of geons, planar 
symmetrical figures and highly irregular shapes), but not natural 
objects. To our knowledge, this is the first study on monocular 3D 
perception of natural objects, and our results suggest that monocular 
perception of natural objects is very accurate. Our shape 
reconstruction experiment considered perspective and orthographic 
images of natural objects, random symmetrical polyhedra and 
rectangular polyhedra. We  observed a marked decrease in 
reconstruction accuracy with random symmetrical polyhedra 
compared to the other categories. We also observed a slight increase 
in reconstruction accuracy with perspective, compared to 
orthographic images.

These results can only be  explained by the application of 
constraints by the human visual system. We modelled subject’s 

performance on orthographic and perspective images, employing 
mirror symmetry and compactness constraints. Specifically, 
we  employed an implicit constraint of mirror symmetry and 
explicit constraints of compactness, modified compactness and a 
search for parts of objects which have two planes of symmetry. 
We also added an estimate of the slant based on the vanishing 
point when perspective information was available. Each of these 
constraints generated an estimate of 3D shape, parameterized by 
the slant of its symmetry plane. The slants from the four estimates 
were combined using a linear model fit to subject data. Putting 
these four estimates together allowed us to fit subject responses 
fairly accurately for all three object types and both types 
of projection.

One of the reviewers asked about possible extensions of the 
model to binocular viewing and viewing of a rotating object. The 
case of binocular viewing was examined in Li et al. (2011). In that 
model, the binocular depth order was used as an additional 
constraint in reconstructing the 3D shape. The same can be done 
with our new model. When a rotating 3D shape is shown, the 3D 
reconstruction can be improved by adding a 3D rigidity constraint 
in a way analogous to Ullman’s (1984) maximizing rigidity 
algorithm worked. We will address both these extensions in our 
future work.

To conclude, the human visual system is remarkable in its 
ability to accurately reconstruct 3D natural objects. In our 
experiment with perspective and orthographic images, the median 

FIGURE 10

Dissimilarities between true shape and model shape, for all three subjects. Note that in some panels there is less variability in the model than in 
subject’s responses which are plotted in Figure 4.
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error between reconstructed aspect ratio and true aspect ratio 
ranged between 11 and 23% with natural objects. Subjects are 
familiar with airplanes, cars, guitars and toilets, but are they 
sufficiently familiar with, say, airplanes to reconstruct a particular 
airplane’s aspect ratio to within 23% of its true value? We believe 
there is much more to 3D perception than familiarity. An 
explainable and interpretable model of the visual system must 
combine knowledge of projective geometry with constraints used 
by the visual system, as revealed by psychophysical experiments. 
The fact that the model proposed here produces reconstructions 
that are highly correlated with human reconstructions strongly 
suggests that we  have identified the most important 3D shape 
constraints that are used by the human visual system. The 
remaining challenge is to explain how the visual system establishes 

3D symmetry correspondence in a single 2D skew-
symmetrical image.
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Appendix

Our work emphasizes the role of symmetry and compactness as 
constraints the visual system imposes in order to arrive at a unique 
and accurate 3D reconstruction from a single image. Leclerc and 
Fischler (1992) considered the same problem and introduced the 
idea of a “consistency criterion” for deciding whether one 
reconstruction model was superior to another. The “consistency 
criterion” is the idea that the best model (shape constraint) is the 
model which generates the most consistent 3D reconstructions 
across many different views of an object. In other words, whatever 
constraints the model uses, the model which produces the most 
shape constancy is the best model. In Figure 12, we considered many 
models which selected a member of the one parameter family of 3D 
symmetrical shapes by maximizing the ratio V O S On m( ) ( )/ . 
We  considered the performance of these various models in a 
simulation experiment based on the same 600 objects used in the 
experiment. Specifically, we  used 200 random symmetrical 
polyhedra, 200 rectangular symmetrical polyhedra and 200 natural 
objects. Orthographic images of these objects were taken at identical 
viewpoints to those in the experiment. Given an m, n pair and an 
orthographic image of one of the 600 objects, we selected a member 
of the one parameter family maximizing V O S On m( ) ( )/ . We then 
rotated the 3D reconstructed shape by 7.5 degrees about the y-axis, 
took an orthographic image, generated a new one parameter family 
based on the new image, selected a member of this new one 
parameter family using the same m, n pair and finally, computed a 
difference (non-rigidity) between the two reconstructions. This 
non-rigidity was computed as follows. Both 3D reconstructions 
could have generated the second orthographic image and differ only 
in the depth they assign to points in this second orthographic image. 
The distance measure we used was the average absolute difference in 
depth between points in one reconstruction to the corresponding 
points in the other reconstruction, after both reconstructions have 
been shifted to the same mean depth. A distance of zero corresponds 
to perfectly rigid reconstructions. Averaging over all 600 images 
(one image per object) for a particular choice of m, n yields the first 
plot in Figure 12. This first plot shows that constraint C1 produces 

the most rigid (consistent) 3D reconstructions. Similar results were 
produced for rotations other than 7.5 deg.

The second plot in Figure 12 illustrates the minimum range in 
depth constraint. Here, we selected the member of the one parameter 
family which had minimal range in depth. This second plot shows that 
constraint V O S O( ) ( )/

3  produces results that are similar to the 
minimum range in depth constraint. The vertical axis in this plot is 
the difference between the slant selected by constraint V O S On m( ) ( )/  
and the slant selected by the minimum depth constraint, averaged 
across all 600 trials. The second plot shows that, on average, the slant 
selected by minimum depth constraint is most similar to the slant 
selected by V O S O( ) ( )/

.2 7.

FIGURE 12

We used a range of cost functions of the type V O S On m( ) ( )/ . This 
plot shows that V O S O( ) ( )2 3

/  produces the most rigid (consistent) 
reconstructions, while V O S O( ) ( )/

3 produces reconstructions that 
are closest to the minimum range in depth. The specific distance 
measures used on the vertical axes of the plots are described in the 
main body of text.
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