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Deep brain stimulation of the subthalamic nucleus (STN) has become the gold 
standard surgical treatment for Parkinson’s disease and is being investigated 
for obsessive compulsive disorders. Even if the role of the STN in the behavior 
is well documented, its organization and especially its division into several 
functional territories is still debated. A better characterization of these territories 
and a better knowledge of the impact of stimulation would address this issue. 
We aimed to find specific electrophysiological markers of motor, cognitive and 
limbic functions within the STN and to specifically modulate these components. 
Two healthy non-human primates (Macaca fascicularis) performed a behavioral 
task allowing the assessment of motor, cognitive and limbic reward-related 
behavioral components. During the task, four contacts in the STN allowed 
recordings and stimulations, using low frequency stimulation (LFS) and high 
frequency stimulation (HFS). Specific electrophysiological functional markers 
were found in the STN with beta band activity for the motor component of 
behavior, theta band activity for the cognitive component, and, gamma and theta 
activity bands for the limbic component. For both monkeys, dorsolateral HFS 
and LFS of the STN significantly modulated motor performances, whereas only 
ventromedial HFS modulated cognitive performances. Our results validated the 
functional overlap of dorsal motor and ventral cognitive subthalamic territories, 
and, provide information that tends toward a diffuse limbic territory sensitive to 
the reward within the STN.
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Introduction

Interactions between animals and their environment is achieved through behavior and 
controlled by cerebral structures. Among them, the basal ganglia contribute to the selection of 
motor, cognitive and limbic components that define behaviors. As part of the basal ganglia network, 
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the subthalamic nucleus (STN), with its direct connections to the cortex, 
plays a crucial role in goal-directed behavior (Albin et al., 1989). The STN 
involvement in the motor component has been largely documented from 
rodents to non-human primates (NHPs). STN focal inhibition with 
GABA receptor agonists induced postural asymmetry in rodents (Dybdal 
and Gale, 2000), and dyskinetic movements or motor stereotypies when 
injected in the middle part of the STN in NHPs (Hamada and DeLong, 
1992; Karachi et al., 2009). More recently, a study in mice using selective 
optogenetic techniques has demonstrated that inhibition of the STN 
enhances locomotion while its excitation reduces it (Guillaumin et al., 
2021). Other preclinical studies have highlighted the STN cognitive and 
limbic roles. Naïve rats with STN lesions or inhibition by GABAergic 
agonists developed impulsive-like behavior with deficit in response 
inhibition and motivational exacerbation (Baunez and Robbins, 1997; 
Phillips and Brown, 2000; Baunez et al., 2005). A study with manipulation 
using optogenetic techniques demonstrated that brief activation of the 
STN is sufficient to interrupt or pause behavior reenforcing its cognitive 
role in response suppression and stopping behavior (Fife et al., 2017). 
Moreover, it has been shown that deep brain stimulation (DBS) of the 
STN (STN-DBS), inducing inhibition of the STN, modulates reward-
related behavior in rodents (Baunez et al., 2007; Baunez and Gubellini, 
2010; Rouaud et al., 2010; Vachez and Creed, 2020). Similarly, injection of 
muscimol into the lateral portion of the sensorimotor territory in the 
dorsolateral STN of NHPs induced circling and atypical behavior mainly 
characterized by hypervigilance (Baron et al., 2002). Besides preclinical 
studies, clinical outcome also confirms this STN differential implication. 
STN-DBS widely used to improve motor symptoms in Parkinson’s disease 
(PD), also improves symptoms in refractory obsessive-compulsive 
disorder (OCD) (Mallet et al., 2002; Chabardes et al., 2020). Analysis of 
STN neuronal activity of parkinsonian patients showed an inhibition of 
beta oscillations (13-30 Hz) during movement, in the more dorsal 
territory of the STN (Morelli and Summers, 2023; van Wijk et al., 2023). 
Other studies have found cognitive behavioral involvement of the STN 
with an increase in alpha and theta oscillations in middle and ventral parts 
during decision-making tasks (Fumagalli et al., 2011; Bastin et al., 2014; 
Benis et al., 2020). Moreover, in parkinsonian patients, the STN limbic 
involvement has been illustrated by a decrease in alpha oscillations during 
reward-related processing (Kühn et al., 2005; Brücke et al., 2007; Eitan 
et al., 2013) and an increase in theta and gamma oscillations in the more 
medial part when receiving a reward (Rosa et al., 2013; Huebl et al., 2014). 
These results led to the investigation of the impact of theta-alpha band 
frequency stimulation on non-motor symptoms of Parkinson’s disease. 
Notably, Kelley and colleagues found that 4 Hz stimulation improved 
cognitive processes in parkinsonian patients (Kelley et  al., 2018). 
Subsequent research provided further insights, showing that 10 Hz 
stimulation, in contrast to 130 Hz stimulation, decreased negative biases 
in parkinsonian patients, when applied intermittently in the right 
ventromedial STN (Mandali et  al., 2020), and increased arousal and 
positive valence rating when applied bilaterally (Wang et al., 2023). These 
finding were supported by MRI and tracing studies of STN functional 
connectivity in NHPs and humans with healthy volunteers and 
parkinsonian patients: STN dorsal territory receives motor connections 
from the premotor cortex, supplementary motor area and primary motor 
cortex, and ventro-medial territory receives cognitive and limbic 
connections from the prefrontal, the orbitofrontal and anterior cortices 
(Levesque and Parent, 2005; Karachi et al., 2009; Lambert et al., 2012; 
Haynes and Haber, 2013; Plantinga et al., 2018; Petersen et al., 2019; 
Emmi et al., 2020). Based on those evidence, the tripartite model, dividing 

the STN into a motor, cognitive and limbic territory, has been proposed 
in primates but is still being discussed (Parent and Hazrati, 1995; Hamani 
et al., 2004, 2017; Mathai and Smith, 2011; van Wijk et al., 2020). Indeed, 
the number of territories, their sizes and their degree of segregation are 
still not well known (Keuken et al., 2012; Alkemade, 2013; Alkemade 
et al., 2015; Lambert et al., 2015), which remains a critical issue for patients 
undergoing STN-DBS. Non-motor effects have been reported in 
parkinsonian patients with hypomania when implanted in a more ventral 
position (Welter et al., 2014), or decline in verbal fluency when implanted 
in a more anterior location (Greif et al., 2021; Vos et al., 2021). Despite the 
recent development of segmented electrodes, designed to steer current in 
specific directions, some studies have questioned the clinical relevance of 
current steering and its potential clinical improvement of DBS (Ineichen 
et  al., 2018; Abdollahifard et  al., 2023). These results confirm the 
importance of electrode localization within the STN, and STN-DBS can 
still be responsible for unpredictable long-term side effects, depending on 
the location of active contacts into the STN (Rodriguez-Oroz et al., 2005; 
Frank et al., 2007; Temel et al., 2007; Hälbig et al., 2009; Okun et al., 2009; 
Bronstein et al., 2011; Zarzycki and Domitrz, 2020; Vinke et al., 2022; 
Kremer et al., 2023). A better understanding of the distribution of motor, 
cognitive, and limbic functions within the STN may help to further 
optimize electrode placement and thus the efficacy of STN-DBS. To 
address this issue, we  investigated electrophysiological biomarkers 
through four contacts in the STN, using local field potential recordings 
from directional electrodes, in two healthy NHPs performing a task 
designed to specifically tease apart these three functions. We also studied 
the effects of directional stimulation of these contacts on the same 
behavioral components.

Materials and methods

Animals

This study was conducted with one male (M1) and one female 
(M2), 8 years old (Macaca fascicularis, CRP, Port Louis, Mauritius). 
They were pair housed in a temperature (22 ± 1°C) and humidity 
(50 ± 5%) controlled facility with a 12 h light–dark cycle. They had free 
access to primate chow and water, and supplemental fruits were given 
once a day. All procedures followed the European Communities 
Council Directive of 2010 (2010/63/UE) for care of laboratory animals 
with the recommendations of the French National Committee 
(2013/113) and were approved by the local Ethical Committee (#04; 
authorization n°2019013116115695).

Behavioral task

A manual counter demanding task, involving strategic decision-
making, was adapted from prior studies (Everling and DeSouza, 
2005; Isoda and Hikosaka, 2008; Stoll et  al., 2016). This task 
specifically assessed motor, cognitive and limbic (reward-related) 
components of the behavior (Figure 1A). Monkeys were habituated 
to sit in a primate chair (Crist Instrument Co., MD, United States) 
in front of a touch screen (Elo Touch Solutions, Inc.). An open 
window allowed them to use their preferred hand (the right) to 
interact with stimuli presented on a grey background screen. At the 
beginning of each trial, monkeys had the choice to select either a 
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triangle to “Work” and perform a switching task, or a cross to 
“Check” and see an increasing gauge informing of the proximity of 
a bonus reward. Those stimuli were always displayed at the same 
positions (at the upper center and at the bottom center respectively). 
The Work option consisted in a switching task with two different 
targets, a blue square (Non-Switch), or an orange star (Switch), 
which appeared in the periphery (randomly left or right side). 
Monkeys were required to touch the blue square while they had to 
touch on the opposite side of the orange star. Targets were randomly 
determined trial to trial, with a higher probability for Non-Switch 
than Switch (80–20%) to induce automatic behavior. In both cases, 
monkeys had to respond within 2000 ms and correct responses were 
rewarded (sweet liquid, 1 mL) by a computer-controlled system 
(Crist Instrument Co.). Then, a red circle appeared for 1,000 ms, 
indicated the End of the trial and the beginning of a new one with 
the Work or Check option. Instead of selecting the Work option, 
monkeys could choose to Check. A gauge was displayed for 5,000 ms, 
indicating the proximity of a bonus reward. Represented by a large 
green circle, the gauge was filled proportionally to the number of 
correct responses performed on the Work option (an inner green 
disk filled the large green circle). Incorrect responses did not affect 
the gauge. To avoid any anticipation, the number of correct responses 
required to fill the gauge was randomly selected from 8, 16, 24 or 32. 
To receive the bonus reward (sweet liquid, 5 mL), monkeys had to 
choose to Check when the gauge was full (same size of the inner 
green disk and the large green circle). This bonus reward remained 
available until the Check option was chosen, and once delivered, the 
gauge size was reset and a new random number was picked (8, 16, 
24, 32).

Behavioral analyses

Only sessions with more than four earned bonus rewards were 
included. Response times (RT), defined as the time between appearance 
of the stimulus and the touching response, were measured from correct 
trials only. They were termed motor RT (mRT, motor component of 
the task) and cognitive RT (cRT, cognitive component of the task) for 
non-switch (>1,700 trials, Supplementary Table S1) and switch (>300 
trials, Supplementary Table S1) trials, respectively. Differences between 
all cRT and all mRT represented the Switch-Cost, i.e., time needed to 
adapt behavior to a change of rules and represent the cognitive 
component of the task (Supplementary Table S1; Figure  1B). 
Probabilities to Check when the gauge was full and the bonus reward 
was available were calculated in relation to the probabilities to Work 
and represent the limbic motivation to get the reward (Check Reward, 
>500 trials, Supplementary Table S1; Figure 1C).

Surgery

After a training period of the task (5 days a week for 4 months), 
a directional lead was implanted. Surgery was performed under 
aseptic conditions and general anesthesia. Monkeys were first 
anesthetized with injection of ketamine (7 mg.kg−1) and xylazine 
(0.6 mg.kg−1), and, maintained under general anesthesia with 
isoflurane. Lidocaine 1% was used for local anesthesia. Saline 
solution (NaCl 0.9%, Sigma-Aldrich) was continuously infused 
intravenously during the operation for drug access and hydration. 
Analgesic/anti-inflammatory therapies (Ketoprofen 2 mg.kg−1) were 

FIGURE 1

Behavioral task and leads location. (A) Rewarded task enabling the study of behavioral motor (green), cognitive (pink) and limbic (gold) components. 
On each trial, monkeys decided to “Work” on the main switching task, or “Check” the size of a gauge informing about the proximity of a bonus reward 
(see Methods). (B) Average response times (RT) in ms plotted against trial positions (n represents switch trials) *p  <  0.05, and (C) probabilities to check 
when the reward is available (check reward) expressed in percentage (%). (D) lead location for M1 on MRI scans on sagittal and coronal view (E) lead 
location for M2 on MRI scans on sagittal and coronal view. (F) Coronal section with electrode trace (*) for M1 after cresyl violet immunostaining (left) 
compared with atlas (right). A, anterior; AC, anterior commissure; D, dorsal; ic, internal capsule; L, lateral; M, medial; PC, posterior commissure; Put., 
putamen; SN, substantia nigra; SNC, pars compacta; SNR, pars reticulata; STN, subthalamic nucleus.
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delivered during the one-week post-operative period. Pre-operative 
7 T MRI was acquired to identify the STN and per-operative 
radiographic X-rays allowed the localization of ventriculographic 
bi-commissural landmarks (anterior and posterior commissures 
-ACPC), obtained using a cannula stereotactically placed on the left 
lateral ventricular through which 2 mL of ventricular contrast 
(Iopamiron 200, iodine 200 mg/mL, Bracc) was injected. Micro-
recordings (microelectrode of 250 μm diameter, 0.8–1.2MOhm, 
FHC) were used to locate borders of the STN, using specific firing 
rate and pattern. Right STN was implanted with segmented leads 
(Heraeus ©  - United  States). Electrodes of 0.8 mm diameter 
consisted in four 0.5 mm contacts arranged in two rows (0.5 mm 
apart) and two columns. For both monkeys, the electrode was 
placed at the following stereotactic coordinates: anterior 6/12th of 
the ACPC line, 4–5 mm from the midline, with deepest contacts at 
the lower border of the STN. Segmented leads allowed directional 
recordings and stimulations of four contacts in the STN: 
dorsolateral (DL), dorsomedial (DM), ventrolateral (VL) and 
ventromedial (VM). The reference was fixed on the skull at the left 
occipital level. The implantation was verified by radiography of the 
final implantation merged to the pre-operative MRI (Figures 1D,E). 
A stainless-steel head holder (Crist Instruments, MD) was placed 
at the back of the skull to maintain monkey’s heads.

Recordings analyses

Recordings began after a post-operative period of 2 weeks. 
Electrophysiological activity of four contacts in the STN (DL, DM, VL, 
VM) was recorded simultaneously using a common reference located at 
the occipital level using a multichannel system (AlphaOmega 
Engineering, Israel). Signals were sampled at 1375 Hz, clipped around 
specific events (±1,000 ms) and analyzed using MATLAB (The 
Mathworks, Natick MA, United States) and ImaGIN toolbox. Time-
frequency representations of spectral power between 2 and 200 Hz were 
obtained using a multitaper sliding window. Orthogonal discrete prolate 
Slepian spheroidal (DPSS) tapers were applied in a frequency-dependent 
manner and according to the length of the sliding window. Single-trial 
power spectra were averaged for each valence condition and normalized 
on a pre-stimulus baseline interval (−1,000 to −250 msec) by calculating 
the base-10 logarithm of the ratio LdB (peristimulus power/baseline 
power (P/B)) and multiplying it by 10 to return decibel (dB) values: 
LdB = 10 log10 (P/B). Power values are denoted as LdB power ± SEM. Specific 
frequency bands have been selected with band filters (theta, 4–8 Hz; 
alpha, 8–12 Hz; beta, 12–35 Hz; gamma, 35–200 Hz) and are represented 
as average power versus baseline over time (mean ± SEM).

Directional stimulation

The opposing effects of continuous bipolar low frequency [LFS: 
4 Hz, based on cognitive improvement with 4 Hz STN-DBS (Kelley 
et al., 2018)] and high frequency [HFS: 130 Hz, based on inhibition 
effect of STN-DBS in parkinsonian patients (Benabid et al., 2009)] 
stimulations were tested on four contacts in the STN (DL, DM, VL, 
VM). For each frequency and contact, ranges of stimulations were 
performed until side effects occurred (e.g., monocular and ipsilateral 
deviation, head rotation, lip contraction). Intensities were applied at 
80% of the threshold of onset of side effects (from 0.08 mA to 0.2 mA), 

with a fixed width pulse (60 μs). Number of trials for each stimulated 
contacts at both frequencies are presented in Supplementary Table S2.

Immunohistochemistry

M1 was deeply anesthetized with ketamine (10 mg/kg) and killed 
by an overdose of pentobarbital (25 mg/kg i.v.). The brain was removed 
from the skull and frozen using liquid nitrogen vapor before being 
stored at −80°C. To locate the electrode, 20 μm thick sections with its 
trace were mounted on silanized slides and marked with Cresyl violet. 
The sections were stained in a 1% cresyl violet solution (Sigma, 
C5042), dehydrated in baths of increasing concentrations of alcohol 
and then degreased in a xylene bath. M2 is still involved in a project, 
so immunochemistry could not be achieved.

Statistical analyses

Behavioral data
Standard statistical methods using GraphPad Prism 8 were 

applied for all data comparisons (GraphPad Software Inc., 
United States). After testing the normal distribution of the data with 
a Shapiro test, one-way non-parametric ANOVA, Kruskal–Wallis 
tests, followed by Dunn’s multiple comparisons were applied for all 
behavioral data and comparison between ON and OFF stimulation 
condition (cRT, mRT, Switch-Cost, Check Reward). Statistical results 
for all trials across sessions are reported in Supplementary Tables S1, S2. 
Data are represented as mean ± SEM and a difference was considered 
statistically significant for a value of p < 0.05.

Statistical parametric maps
Post-hoc t-tests for time-frequency representations were Bonferroni 

corrected, with “one-sample” t-test to compare signal of one event, and 
“two-sample” t-test allowed the discrimination of significant differences 
between two events (T-values). Those analyses were plotted as statistical 
parametric maps (SPM) with significant statistical value of p < 0.05. 
When a cluster of interest was found on SPM, Shapiro’s test was used to 
test normality and repeated-measures analysis of variance (ANOVA) 
followed by Tukey’s test were performed using average power changes 
within the identified windows and frequency band, i.e., at the 
presentation of the motor cue and the beginning of the movement 
compared to a resting state (motor SPM), around the touch to either 
choose to work compared to check and, response to a Switch compared 
to a Non-Switch trials (cognitive SPMs), at the significant changes for 
the reward delivery with the full gauge compared to the gauge being 
filled (emotive SPM) (Relative power, LdB). Statistical results are reported 
in Supplementary Table S3. Data are represented as mean ± SEM and a 
difference was considered statistically significant for a value of p < 0.05.

Results

General behavior

Motor response times (mRT) on Non-Switch trials were similar 
for both monkeys (447.9 ± 2.1 ms for M1; 445.6 ± 3.1 ms for M2). 
Switching from automatic to controlled behavior led to significant 
longer cognitive response times (cRT) than mRT with a similar 
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switch-cost for all monkeys (cRT-mRT = 51.4 ± 5.0 ms for M1 
p < 0.0001; 45.1 ± 7.4 ms for M2 p < 0.0001; Kruskal–Wallis) 
(Supplementary Table S1; Figure 1B). Probabilities to check the gauge 
when the reward bonus was available, representing motivation to get 
the reward, were similar for M1 and M2 (19.8 ± 0.1% for M1; 
22.0 ± 0.2% for M2) (Figure 1C).

Recordings and stimulations

Segmented leads for NHPs allowed recordings and stimulation of 
four contacts in the STN: dorsolateral (DL), dorsomedial (DM), 
ventrolateral (VL) and ventromedial (VM). Low frequency (LFS) and 
high frequency (HFS) stimulations were applied during the task and 
intensities were previously determined with ranges of stimulations for 
each contact in both frequencies. Typical side effects (e.g., monocular 
and ipsilateral deviation with medial contacts and head rotation or lip 
contraction with lateral contacts) confirmed the lead position verified 
with MRI merged with implantation scans (Figures 1D,E). Finally, for 
M1, the precise location of the electrode was confirmed postmortem 
showing implantation in the STN (Figure 1F).

Motor component

For technical and ethical reasons, ipsilateral STN activity were 
recorded during the execution of the behavioral task with the right 
hand. For M1 and M2, beta power (12-35 Hz) significantly decreased 
at the onset of Non-Switch stimulus corresponding to the motor 
component to touch the screen, and increased after the movement 
(p < 0.05, one-sample t-test) (Figures 2A,B). DL contacts were more 
impacted by the beta power decrease than VM ones (M1: 
−1.2 ± 0.03LdB for DL vs. 3.8 ± 0.08LdB for VM, p < 0.0001; M2: 
−0.38 ± 0.07LdB for DL vs. 1.0 ± 0.14LdB for VM, p < 0.0001, 
ANOVA). Specifically applied on DL contacts, HFS induced 
significantly faster automatic mRT compared to the OFF-stimulation 
condition (−37.9 ± 5.3 ms for M1; −60.5 ± 6.6 ms for M2, Kruskal–
Wallis) (Figures  2C,D). LFS induced significantly faster mRT 
compared to OFF-stimulation condition for all contacts, except DM 
for M2 (M1: −38.0 ± 4.8 ms for DL; −51.2 ± 5.2 ms for DM; 
−54.9 ± 5.8 ms for VL; −40.2 ± 6.6 ms for VM, p < 0.0001; M2: 
−35.5 ± 5.7 for DL; −22.5 ± 6.2 for VL; −17.2 ± 5.5 for VM, p < 0.0001, 
Kruskal–Wallis) (Figures 2C,D). The overall success was not impacted 
by stimulations (Supplementary Table S2).

Cognitive component

When monkeys chose to Work rather than Check, a significant 
increase in theta band (4–8 Hz) was observed around the decision 
time (at 0) in all contacts, except DL for M1 (p < 0.05, two-sample 
t-test) (Figures 3A,B). This cognitive marker was more present in 
medial contacts, DM for M1 and VM for M2 (M1: 2.2 ± 0.08LdB for 
DM vs. 1.2 ± 0.06LdB for VL, p < 0.0001; M2: 7.3 ± 0.05LdB for VM vs. 
5.3 ± 0.6LdB for DL, p < 0.0001, ANOVA). Opposite theta oscillations 
were observed when comparing the response to Switch and 
Non-Switch trials for the animals. For M1, an increase in theta band 
was observed in all contacts except VM, while a decrease in the same 

band was observed in all contacts but VM for M2 (p < 0.05, two-sample 
t-test) (Figures 3C,D). Overall cRT was not impacted by stimulations, 
but a decrease was observed with both LFS and HFS when applied in 
DL for M2 (436.2 ± 9.43 ms at LFS, p = 0.0002 and 407.7 ± 12.61 ms at 
HFS, p < 0.0001, vs. 490.7 ± 6.67 ms OFF-stimulation, Kruskal–Wallis) 
(Figures 3E,F). Switch-Cost decreased for both monkeys when HFS 
was applied in VL contacts, compared to OFF-stimulation condition 
(−29.5 ± 12.5 ms for M1, p = 0.0003; −28.0 ± 16.4 ms for M2, p = 0.0006, 
Kruskal–Wallis) (Figures 3G,H). The overall success was not impacted 
by stimulations (Supplementary Table S2).

Reward-related component

For both monkeys, a significant increase in gamma oscillations 
(>35 Hz) followed by a significant decrease in theta oscillations were 
observed when the reward bonus was delivered (p < 0.05, two-sample 
t-test) (Figures 4A,B). This pattern was found in all contacts, except 
DL for M1. However, the timing was slightly different between 
monkeys, with an increase in gamma oscillations during the reward 
delivery for M1, whereas it appeared before the reward was obtained 
for M2. Stimulation modulated differently the motivation to get the 
reward in M1 and M2. However, for both monkeys, HFS applied in 
VL contacts decreased the check for the bonus reward compared to 
OFF stimulation (−6.8 ± 0.3% for M1, p < 0.0001; −3.7 ± 0.4% for M2, 
p < 0.0001, Kruskal–Wallis) (Figures 4C,D).

Discussion

In this study, we characterized markers within the STN by using 
directional LFP recordings and stimulations. Beta oscillations, mainly 
observed in the dorsolateral STN, were associated with motor 
component of behavior; theta oscillations, more present in the 
medioventral STN, were associated with cognitive processes, and 
gamma-theta oscillations were found throughout the STN, correlating 
with the reward-related limbic component. Furthermore, our study 
demonstrated that STN-HFS improved motor reaction times when 
applied in the dorsolateral part, as well as the STN-LFS, applied 
throughout the STN. Only STN-HFS applied in the ventrolateral part 
modified cognitive performances. Finally, both HFS and LFS, when 
applied globally to the whole STN, were able to modify reward-related 
limbic behavior. These findings were observed in healthy macaques 
and provide novel information to understand the effect of STN-DBS, 
considering both frequency and stimulated contact, which is a critical 
research goal for clinical application.

Motor component

The STN involvement in motor behavior have already been 
described in rodents (Dybdal and Gale, 2000) and NHPs (Hamada 
and DeLong, 1992; Karachi et al., 2005). Moreover, other studies with 
parkinsonian patients have shown a decrease in beta band activity 
during movement, followed by an increase known as rebound (Alegre 
et al., 2013; Zavala et al., 2013; Pötter-Nerger et al., 2017; Alhourani 
et al., 2020). This can be considered as electrophysiological markers of 
motor behavior for planification and execution and was found 
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throughout the STN but more present in the DL contact compared to 
VM, in agreement with the dorsolateral-ventromedial gradient 
hypothesis (Hamani et al., 2004; Mallet et al., 2007). Furthermore, 
mRT was improved, by HFS in DL contacts for both monkeys. The 
hyperdirect pathway, which anatomically connects somatosensory and 
motor cortices to the dorsal STN territory supports this finding 
(Litvak et  al., 2012; Haynes and Haber, 2013; Fischer et  al., 2017; 
Alhourani et  al., 2020). LFS had the same effect regardless of the 
contact stimulated. Interestingly, low frequency coherence was found 
in the top-down functional coupling of the hyperdirect pathway 
between cortex and STN, in NHP and parkinsonian patients (Haynes 
and Haber, 2013; Alkemade et al., 2015). In physiological context, LFS 
may amplify this connection, leading to faster mRT. However, this 
improvement may reflect cognitive processes related to impulsivity, 
known to be modulated with LFS (Kelley et al., 2018), but the lack of 
increase in error rate and ease of the task cannot lead to conclusions. 
Moreover, it should be  emphasized that right STN activity was 
recorded while using the ipsilateral limb (right) to perform the task. 
Indeed, technical reasons linked to the set-up of our operating room 
and ethical and animal welfare reasons related to a manual preference 
for the right hand explain the recordings made on the ipsilateral side. 
Numerous studies in NHPs have shown that the primary motor cortex 
and basal ganglia are involved in the control of movements 
predominantly on the contralateral side of the body (Matsumura et al., 

1992; Dum and Strick, 1996; Lacroix et al., 2004;  Rosenzweig et al., 
2009; Polyakova et al., 2020). However, several subsequent studies 
highlight M1 activity in relation to ipsilateral and contralateral 
movements in NHP and humans (Donchin et al., 1998; Cisek et al., 
2003; Diedrichsen et al., 2013; Bundy and Leuthardt, 2019; Heming 
et al., 2019; Gardner et al., 2022). Heming and colleagues found that 
contralateral responses tended to be larger and earlier than ipsilateral 
responses, and that disruption activity in M1 related to the ipsilateral 
limb also reflected features related to motor output in rhesus macaques 
(Heming et al., 2019). Similarly, Gardner and colleagues observed a 
comparable, but weaker and shorter, response between ipsi- and 
contralateral M1 during hand reaching and grasping movements in 
NHP (Gardner et al., 2022). Furthermore, a study in rats recorded 
changes in ipsi- and contralateral STN during ipsilateral 
microinjection of excitatory or inhibitory drugs into the parafascicular 
nucleus, highlighting the importance of this thalamic structure in the 
bilateral regulation of basal ganglia activity (Mouroux et al., 1995). 
Finally, Alegre and colleagues found bilateral beta changes in the 
human STN during movements of either hand, suggesting that 
movement-related activity in the STN has, by and large, a bilateral 
representation and probably reflects cortical input (Alegre et al., 2005). 
Overall, these studies consolidate the results obtained in the STN with 
ipsilateral limb movements, although it would be interesting to carry 
out recordings of the contralateral STN, which should show a stronger 

FIGURE 2

Motor component with statistical parametric maps (SPM) of the activity of subthalamic contacts for M1 (A) and M2 (B), centered on the appearance of 
non-switch stimulus (vertical line at 0) relative to a resting state (T-value). Beta frequency range (𝛽) decreased during movement (dotted windows) with 
beta power values displayed on the right, expressed in LdB and mean  ±  SEM. Significant values are encircled with solid lines p  <  0.05. (C) M1 and (D) M2 
representation of the distribution of motor response times (mRT) in milliseconds (ms) with low (LFS, white) and high (HFS, black) frequency 
stimulations, compared to OFF-stimulation condition (OFF, gray), for each contact in the subthalamic nucleus. The large dotted lines represent the 
median and small dotted lines represent the quartiles. *p  <  0.05. DL, dorsolateral; DM, dorsomedial; VL, ventrolateral; VM, ventromedial.
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FIGURE 3

Cognitive component with statistical parametric maps (SPM) of the activity of subthalamic contacts, centered on the cognitive to work relative to 
check, and on the switch relative to non-switch trials (vertical line at 0, T-values), for M1 [(A,C) respectively] and for M2 [(B,D) respectively]. An increase 
in the theta frequency range (𝜃) is observed during the choice (dotted windows) with theta power values displayed on the right, expressed in LdB and 
mean  ±  SEM. Opposite theta changes are observed on switch compared to non-switch trials between M1 and M2. Significant values are encircled with 
solid lines p  <  0.005. (E) M1 and (F) M2 representation of the distribution of cognitive response time (cRT) and, (G) M1 and (H) M2 switch-cost in 
milliseconds (ms) expressed in mean  ±  SEM; with low (LFS, white) and high (HFS, black) frequencies stimulation, compared to OFF-stimulation 
condition (OFF, gray), for each contact in the subthalamic nucleus. The large dotted lines represent the median and small dotted lines represent the 
quartiles. *p  <  0.05. DL, dorsolateral; DM, dorsomedial; VL, ventrolateral; VM, ventromedial.
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and longer motor response and would also provide further temporal 
knowledge of these bilateral movement-related activity.

Cognitive component

Theta oscillations throughout the STN along a medioventral-
laterodorsal gradient were recorded when monkeys had to choose 
between Work or Check. This increase in theta oscillations appeared 
mainly during the decision processes and before the decision action 
of touching the stimulus, in the DM contact for M1 and in all 
contacts except the VL for M2. For both monkeys, this marker 
appeared during the decision action in the VL. This event can 
be considered as electrophysiological marker of decision-making 
processes in this task. Other studies have shown similar changes in 
theta activity, which could be a physiological marker of the conflict 
state in parkinsonian patients (Cavanagh et al., 2011; Alegre et al., 
2013; Herz et al., 2016). Isoda and Hikosaka showed that cognitive 
processes for switching from automatic to adapted behavior 
implicated “switch neurons” in the STN of NHP, which were mainly 
located in the ventral territory (Isoda and Hikosaka, 2007, 2008). It 
has been proposed that direct anatomical connections between 
prefrontal cortex and ventral STN would facilitate a more 

deliberative response process to choose the most appropriate 
behavior during a conflict state (Miller, 2000; Cavanagh et al., 2011; 
Alegre et al., 2013; Haynes and Haber, 2013). In line with these 
previous studies, a change in theta oscillations was observed during 
cognitive processes when comparing responses on Switch and 
Non-Switch trials. However, animals showed opposite changes. 
Indeed, M1 presented an increase in theta oscillations, representing 
conflict processes and cognitive control, as previously described in 
the literature (Zavala et al., 2013, 2018). M2, on the other hand, 
presented a decrease in theta oscillations that could be due to the 
small number of trials with switching compared to the number of 
trials without switching, to a learning phenomenon, or to the 
simplicity of the task after this many trials. We also showed that 
cognitive Switch-Cost was decreased with HFS in VL contacts for 
both monkeys, demonstrating improved cognitive performance. 
We hypothesized that HFS could inhibit the STN, bypassing its 
“break” role and making faster cRT even with a switching rule. No 
significant effect was observed with LFS, while an improvement in 
cognitive performance was expected. This was recently 
demonstrated with 4 Hz stimulation of STN dorsal contacts, 
consistent with the hyperdirect pathway in cognitive control, which 
improved cognitive deficits in parkinsonian patients (Kelley 
et al., 2018).

FIGURE 4

Reward-relative component with statistical parametric maps (SPM) of the activity of subthalamic contacts for M1 (A) and M2 (B), centered on the full 
gauge with reward delivery (vertical line at 0) relative to the gauge view without the reward (T-values). An increase in gamma frequency range (𝛾) 
followed by a decrease in theta frequency range (𝜃) are observed when receiving the reward (dotted windows) with theta and gamma power values 
displayed on the right, expressed in LdB and mean  ±  SEM. Significant values are encircled with solid lines p  <  0.005. (C) M1 and (D) M2 representation of 
the distribution of probability to check when the bonus reward is available (check reward), in percentage (%) with low (LFS, white) and high (HFS, black) 
frequency stimulations, compared to OFF-stimulation condition (OFF, gray), for each contact in the subthalamic nucleus. The large dotted lines 
represent the median and small dotted lines represent the quartiles. Values are expressed in mean  ±  SEM and *p  <  0.05. DL, dorsolateral; DM, 
dorsomedial; VL, ventrolateral; VM, ventromedial.
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Reward-related component

The STN role in the behavioral limbic component was investigated 
using single unit recordings in rodents (Baunez et al., 2002; Lardeux 
et al., 2009) and NHPs (Darbaky et al., 2005; Espinosa-Parrilla et al., 
2013; Nougaret et al., 2022), with distinction between reward delivery, 
reward expectation and integration of the motivational value of the 
stimulus. Interestingly, these studies revealed motivation-responsive 
neuronal activities throughout the STN, without specific localization. 
This is in line with our study demonstrating changes, early in gamma 
and followed by theta frequency bands associated with the delivery of 
the reward bonus, throughout the STN and not in specific contacts. 
Early gamma band response was also found in the STN of Dopa-
treated parkinsonian patients and may represent local encoding of 
increased attention, which varies with stimulus arousal (Huebl et al., 
2014). Early gamma activity could increase limbic attention as a 
reward approaches, representing the reward expectation, as observed 
for M2. The amygdala has been shown to be involved in stimulus 
arousal in studies with amygdala-lesioned patients (Bechara et al., 
1995; Gläscher and Adolphs, 2003) and is associated with emotional 
intensity, regardless of stimulus valence (Lin et al., 2020). Thus, the 
role of the STN in limbic attention could be driven by its functional 
connection from the amygdala, either directly (Shi et al., 2007; Péron 
et al., 2015) or indirectly through ventral striatum, putamen, and 
ventral pallidum (Amaral and Insausti, 1992), explaining the lack of 
clear gradient in the STN. Changes in theta band activity during the 
reward delivery have also been found throughout the STN in rodents 
(Degoulet et  al., 2021) and patients with PD (Benis et  al., 2020), 
pathological gambling (Rosa et al., 2013) or OCD (Bastin et al., 2014). 
Other studies showed theta oscillations associated with limbic 
processing in ventrolateral STN, in parkinsonian patients (Rappel 
et al., 2020) and in Dopa-treated parkinsonian patients with impulse 
control disorder (Rodriguez-Oroz et  al., 2011). These results are 
coherent with the gamma and theta oscillations associated to limbic 
processes found in our study. However, an early increase in gamma 
oscillations was observed for M2, suggesting a role for this marker in 
the reward expectation, whereas it appeared later for M1, during the 
reward delivery. This distinction between monkeys is part of the inter-
individual variability underlying the reward-related behaviors, 
involving the cortico-subcortical connection with the STN, and 
influenced by the internal state of the individual (Paulus, 2007; 
Keramati and Gutkin, 2014; Morris et al., 2017; Lewis et al., 2021). 
Furthermore, we showed that LFS and HFS modulate motivation to 
check for the bonus reward in a heterogeneous manner, depending on 
the frequency, stimulated contact, and monkey. Since we hypothesized 
a diffuse limbic territory in the STN, it is possible that behavioral 
impacts differ among stimulated neurons, depending on contact and 
frequency. Similarly, STN-DBS can lead to various limbic side effects 
such as apathy, depression, or mania in PD, specifically with more 
ventral stimulations (Houeto et al., 2002; Temel et al., 2006; Krack 
et al., 2010), but can improve limbic symptoms of OCD (Mulders 
et al., 2017; Voon et al., 2017).

HFS versus LFS

Although underlying mechanisms of DBS remain unclear, 
different hypotheses have been proposed to explain the effect of HFS 
and the most common is known as “information lesion” in stimulated 

neurons. Indeed, HFS is thought to induce action potentials that 
suppress the transmission of low-frequency signals, overriding other 
intrinsic activities of stimulated neurons, thus, limiting the 
propagation of activity throughout the network (Grill et al., 2004; 
Lozano et al., 2019). HFS at 130 Hz improves behavioral symptoms 
such as motor impairment in PD or cognitive/limbic impairment in 
OCD but, for unclear reasons, may also induce motor, cognitive and 
limbic side effects (Houeto et al., 2002; Temel et al., 2006; Mulders 
et  al., 2017). Therefore, recent studies have tried alternative 
frequencies, such as 4 Hz, leading to improved cognitive performance 
in parkinsonian patients (Kelley et al., 2018). Here, we did not replicate 
this effect. Since cognitive processes regroup a set of mechanisms, 
including executive functions, attention, or switching for example, 
the difference in the cognitive processes studied could explain the 
difference in results. Another hypothesis may be  inherent to the 
healthy compared to the pathological state. Behavioral modulation by 
stimulation may be different depending on the affected components 
in pathologies. Further studies, in a pathological context, using 
directional DBS lead and this behavioral task, could reinforce the 
specific behavioral effects of HFS or LFS.

Functional organization

Even if the recordings did not cover the entire nucleus and were 
performed in the ipsilateral STN of the limb who performed the task, 
our results suggest an overlapping bipartite model of functional STN 
with a more dorsolateral motor territory, consistent with the classical 
tripartite model (Alexander et al., 1986; Albin et al., 1989; Parent and 
Hazrati, 1995; Nambu et al., 2002; Hamani et al., 2004), supporting a 
dorsolateral-ventromedial gradient (Mallet et al., 2007), and, a more 
ventral cognitive territory as a brake during decision conflict 
(Alexander et al., 1986; Parent and Hazrati, 1995; Hamani et al., 2004), 
supporting a ventromedial-dorsolateral gradient. However, unlike the 
classic tripartite model, we found a diffuse distribution of the reward-
related marker reflecting limbic function in the whole STN (Figure 5).

Limitation of our study

The localization of electrodes could be  supplemented by 
histological analysis for M2, which could provide more accurate 
information on the exact position of the contacts and a better 
comparison between the animals. However, intraoperative single unit 
micro-recordings and ventriculography co-registered with 
pre-operative MRI, allowed us to validate the position and orientation 
in the STN. Moreover, the specific type of stimulation direction-
related side effects observed during the stimulation ranges of each 
contact were also consistent with the electrode orientation (e.g., 
monocular, and ipsilateral deviation, head rotation or lip contraction 
when HFS was applied in the lateral contacts). However, the 
differences in the electrophysiological recordings between the animals 
could be  explained by a different location of the electrode in the 
STN. We assume that the electrodes were not located exactly at the 
same place within the STN with a more posterior position for M1 and 
a more medial position for M2, because such surgery is never 
replicable to perfection (differences of implantation are also found in 
human), and because M1 and M2 are not of the same sex. Indeed, the 
sexual dimorphism present in the macaque at morphological level 
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(Ravosa, 1991) induces a smaller size in the female (M2) with a 
smaller STN and therefore different recorded territories from M1 
(AC-PC in M1: 11.2 mm; AC-PC in M2: 9.2 mm). Nevertheless, the 
more medial location of the electrode for M2 may explain why 
we observed less beta desynchronization for the motor component in 
DL for M2 compared with M1 and more theta oscillations for the 
cognitive component in the lateral contacts for M2 compared with 
M1. Finally, directional stimulation induced similar results between 
the two animals, except for the motivation to check the reward. 
Disparate effects were observed between M1 and M2 as a function of 
stimulated contact and frequency. This could reinforce the STN 
organization with a more lateral involvement in the motor component, 
a more medial involvement in the cognitive component and a global 
involvement of the STN in the limbic component. The use of single 
unit recordings could provide better spatial resolution of the STN 
activity correlated with motor and cognitive components.
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FIGURE 5

Schematic representation of the study-based bipartite functional organization of the subthalamic nucleus. Representation of the oscillations with 
motor beta-gamma (green, 𝛽 𝛾) and cognitive theta (pink, 𝜃) gradients and a diffuse reward-related theta-gamma (gold, 𝜃 𝛾) distribution; and 
representation of the behavioral effect of directional low (4  Hz, LFS) and high (130  Hz, HFS) stimulation. D, dorsal; M, medial; L, lateral; V, ventral; mRT, 
motor response time.
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