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Introduction: Physiological nuisance contributions by cardiac and respiratory 
signals have a significant impact on resting-state fMRI data quality. As these 
physiological signals are often not recorded, data-driven denoising methods are 
commonly used to estimate and remove physiological noise from fMRI data. To 
investigate the efficacy of these denoising methods, one of the first steps is to 
accurately capture the cardiac and respiratory signals, which requires acquiring 
fMRI data with high temporal resolution.

Methods: In this study, we  used such high-temporal resolution fMRI data to 
evaluate the effectiveness of several data-driven denoising methods, including 
global-signal regression (GSR), white matter and cerebrospinal fluid regression 
(WM-CSF), anatomical (aCompCor) and temporal CompCor (tCompCor), ICA-
AROMA. Our analysis focused on the consequence of changes in low-frequency, 
cardiac and respiratory signal power, as well as age-related differences in terms 
of functional connectivity (fcMRI).

Results: Our results confirm that the ICA-AROMA and GSR removed the most 
physiological noise but also more low-frequency signals. These methods are 
also associated with substantially lower age-related fcMRI differences. On 
the other hand, aCompCor and tCompCor appear to be  better at removing 
high-frequency physiological signals but not low-frequency signal power. 
These methods are also associated with relatively higher age-related fcMRI 
differences, whether driven by neuronal signal or residual artifact. These results 
were reproduced in data downsampled to represent conventional fMRI sampling 
frequency. Lastly, methods differ in performance depending on the age group.

Discussion: While this study cautions direct comparisons of fcMRI results based 
on different denoising methods in the study of aging, it also enhances the 
understanding of different denoising methods in broader fcMRI applications.
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Introduction

It has become established that for a method aiming to quantify 
brain function, resting-state blood-oxygenation level-dependent 
(BOLD) fMRI (rs-fMRI) metrics is exquisitely sensitive to underlying 
brain physiology, embodied in such variables as cerebrovascular 
reactivity (Golestani et al., 2016; Chu et al., 2018; Tsvetanov et al., 
2020). Moreover, physiological contributions from cardiac and 
respiratory frequencies constitute a major source of noise in the BOLD 
fMRI data (Liu, 2016). Providing that the sampling rate of the fMRI 
data is sufficiently high to faithfully capture the fundamental cardiac 
and respiratory frequencies, the time-locked components of these 
noise sources can be largely reduced by a notch filter (Chen et al., 
2019). However, the sampling rate of a typical fMRI data is not 
sufficiently high, resulting in aliasing of the physiological signals into 
lower frequencies, rendering the application of notch filters 
impractical. Alternatively, methods have been developed to model and 
remove phase-locked physiological on the BOLD fMRI signal based 
on recorded physiological signals (Glover et  al., 2000). For these 
purposes, cardiac and respiratory recordings should be  obtained 
during the fMRI data acquisition. However, this can be challenging, 
unreliable, and in some cases impossible due to experimental 
limitations (Agrawal et al., 2020). Data-driven methods represent an 
alternative, whereby estimates of the physiological effects are 
generated from the fMRI data itself.

One of the oldest data-driven denoising approaches is to regress 
out the global BOLD signal (GS), calculated by averaging signals of 
the voxels within the brain. Global-signal regression (GSR) assumes 
that because the effect of physiological signals on the fMRI data is 
widespread, regressing out the GS will remove physiological and other 
noise sources. However, GSR remains controversial as it can also 
remove information relevant to brain function and connectivity (Liu 
et al., 2017). Brain states such as arousal and vigilance can also alter 
the GS through whole-brain effects (Wong et al., 2013; Gu et al., 2019). 
Nonetheless, GSR remains widely used for datasets with a high level 
of global noise (Chen et al., 2012), as it improves anatomical specificity 
of the connectivity maps (Fox et al., 2009) and increases the behavioral 
correlations with connectivity patterns (Li et al., 2019).

An alternative to GSR is to regress out the average signals derived 
only from the white matter (WM) and cerebrospinal fluid (CSF), 
where neuronal contributions are thought to be negligible (Bartoň 
et al., 2019). The WM-CSF regression approach found considerable 
application (Satterthwaite et al., 2013; Parkes et al., 2018; He et al., 
2020; Scheel et al., n.d.). However, there is evidence that WM also 
contains information about brain function (Ding et  al., 2013; 
Mazerolle et al., 2013; Peer et al., 2017; Wang et al., 2022). Moreover, 
the average signal across WM and CSF cannot account for regional-
specific temporal variations of the physiological effects (Attarpour 
et al., 2021).

Alternatively, the CompCor family of methods applies principal 
component analysis (PCA) on a collection of signals from “noise” 
regions of interest (ROIs) to decompose them into uncorrelated 
components, such that only a specific number of components with the 
highest variance are removed (Behzadi et al., 2007). CompCor has two 
variants; anatomical CompCor (aCompCor) defines noise sources 
anatomically, by focusing on signals within WM and CSF anatomical 
masks, whereas temporal CompCor (tCompCor) defines noise 
sources temporally, by focusing on signals with high temporal 

standard deviation irrespective of their spatial origin. The aCompCor 
method is built into software packages as the CONN Toolbox 
(Whitfield-Gabrieli and Nieto-Castanon, 2012), and has been 
widely applied.

As a departure from these conventional model-driven methods, 
independent component analysis (ICA) has been used to spawn a 
family of techniques for extracting representatives of the physiological 
noise from the fMRI data (Thomas et al., 2002; Glasser et al., 2018; 
Golestani and Chen, 2022). ICA decomposes the fMRI data into 
spatially independent components, and assuming that the 
physiological noise and neuronally driven signals are spatially 
independent, ICA can separate them into different components. The 
noise-related components can be manually identified based on their 
spatial, temporal, and spectral features, especially as physiological 
noise can manifest as semi-regular head motion with distinct spatial 
patterns. Nonetheless, this process is subjective, which can introduce 
inter-cohort and inter-study variability. To address this issue, a series 
of ICA variants, such as ICA-FIX (semi-automatic noise classification) 
and ICA-AROMA (Automatic Removal of Motion Artifacts) have 
been developed that allow noise-related components to be spatially 
and temporally identified automatically (Salimi-Khorshidi et al., 2014; 
Pruim et al., 2015b). An advantage of ICA-AROMA over ICA-FIX is 
that the former makes use of spatiotemporal features to identify noise 
components, and thus does not require training of the noise classifiers 
with each new data set while retaining much of the functionally 
relevant correlational structure structure in the data. The performance 
of ICA-AROMA has been compared favorably against that of ICA-FIX 
(Pruim et al., 2015a; Dipasquale et al., 2017), and ICA-AROMA has 
become increasingly adopted in rs-fMRI analysis (Dipasquale et al., 
2017; Cohen et al., 2021).

Despite widespread application of the data-driven noise removal 
methods, a thorough understanding of the efficacy of these noise 
removal techniques remains unclear. A number of recent studies made 
valuable contributions to such an understanding. For instance, 
Dipasquale et al. (2017) compared regression of motion parameters, 
the WM-CSF regression method, ICA-FIX, ICA-AROMA and multi-
echo ICA, and found multi-echo ICA to be best at decoupling motion 
and neuronal effects. Scheel et  al. compared censoring, GSR, 
ICA-AROMA (aggressive and non-aggressive) and SOCK (an 
AROMA variation), and found aggressive ICA-AROMA to provide the 
highest network reproducibility (Scheel et  al., 2022). Moreover, 
Kassinopoulos et al. compared GSR and aCompCor in terms of a set 
of quality metrics including functional-connectivity repeatability and 
modularity (Kassinopoulos and Mitsis, 2022), and found a combination 
of aCompCor and GSR to provide the best outcomes. While these 
studies provide compelling comparisons of some of the methods 
introduced herein, they are based largely on repeatability of the 
connectivity maps instead of evaluations of the denoised signals 
themselves. In this sense, a systematic evaluation of efficacy faces a 
number of challenges. First, since the typical sampling rate of the fMRI 
data is above the Nyquist frequency of the respiration and heartbeat, 
these physiological signals alias into low frequencies, and therefore 
investigating the efficacy of the noise removal techniques is challenging. 
Thus, it is typically impossible to quantify the amount of major 
physiological noise sources in the signal. Second, the biggest roadblock 
for the application for rs-fMRI is in clinical translation, and it remains 
unclear whether superior sensitivity or repeatability translate into 
superior reflection of biological differences. Third, when assessing 
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biological differences using rs-fMRI functional connectivity (fcMRI), 
there is no ground truth to compare against. In this regard, the sole 
dependence on conventional MRI quality metrics, such as sensitivity 
and reproducibility, may not be  ideal for rs-fMRI, as the latter is 
expected to be variable with time (Tailby et al., 2015; Aedo-Jury et al., 
2020). In this regard, it is intriguing to compare the effect of different 
denoising methods on a biologically interpretable effect such as that of 
age. Although age-related differences in fcMRI can be influenced by a 
combination of neuronal and physiological signals, comparing the 
effects of denoising methods on age-related differences can help to 
identify methodological sources of variability in research findings.

In this study, to address these challenges, we adopt the following 
methodological choices. First, we  examined the BOLD signal’s 
frequency spectra. The signal power spectra have been used as quality 
metrics in previous work. For instance, using ultra-fast fMRI 
acquisitions, Agrawal et al. demonstrated the removal of physiological 
noise while retaining low-frequency signal power (Agrawal et  al., 
2020). On the other hand, using conventionally-sampled fMRI data, 
Dipasquale et al. (2017) showed that ICA-AROMA (non-aggressive) 
retained more low-frequency spectral power while more significantly 
reducing high-frequency power relative to other ICA-based methods, 
and in contrast to WM-CSF, which retained more higher-frequency 
noise. In our work, the power-spectral approach is facilitated by our 
high temporal-resolution fMRI data and simultaneously recorded 
physiological signals to accurately assess the location and contribution 
of physiological frequencies with minimal aliasing. Second, 
we examine the effect of age on fcMRI measures as a variable of the 
denoising method. It is important to note that signal and noise 
structures alter in aging (Van Dijk et al., 2012; Makedonov et al., 2013; 
Tsvetanov et al., 2015) including the frequency composition of the 
fMRI signal (Yang et al., 2018; Ao et al., 2022), which may be related 
to physiological processes and to neurovascular coupling changes 
(Yang et al., 2018). In fact, Geerligs et al. (2017) suggested that head-
motion effects can change with age, and that motion regression may 
erase some of the age-relevant functional differences, highlighting the 
importance of appropriate physiological denoising. Third, instead of 
relying on sensitivity and reproducibility as metrics of denoising 
quality, we compared denoising methods by the extent to which the 
output of each denoising technique can alter age-related functional-
connectivity (fcMRI) differences. We use these approaches to evaluate 
all data-driven denoising methods available through the commonly 
used fMRIPrep pipeline. We hypothesized that methods that removed 
more low-frequency signal power also resulted in a loss of sensitivity 
to age-related resting-state fcMRI (rs-fcMRI) differences.

Method

Participants and data acquisition

18 healthy young subjects (age = 26.7 ± 6.5 years, 9F/9M) and 18 
healthy older subjects (age = 74.2 ± 7.0 years, 11F/7M) were imaged 
using a Siemens TIM Trio 3 T scanner (Siemens Healthineers, 
Erlangen, Germany). All participants were recruited from the Greater 
Toronto Area, and provided written informed consent as per the 
policy of our institutional research ethics board. rs-fMRI scans were 
collected with a 32-channel head coil using simultaneous multi-slice 
(SMS) echo-planar imaging (EPI) BOLD (TR/TE = 380/30 ms, 

FA = 40°, 21 5-mm slices, 64×64 matrix, 4x4x5 mm voxels, multiband 
factor = 3, 1,950 volumes, left–right phase encoding direction, 
in-plane acceleration of 2). During each scan, cardiac pulsation was 
recorded using the scanner pulse oximeter, whereas the respiratory 
signal was recorded using a Biopac™ system (Biopac Systems Inc. 
California, United States). A T1-weighted 3D anatomical data set 
(1 mm isotropic resolution) was also acquired for each participant 
(MPRAGE, TR = 2,400 ms, TE = 2.43 ms, field-of-view = 256 mm, 
voxel size = 1 mm isotropic, TI = 1,000 ms, BW = 180 Hz/vox).

Data preprocessing and physiological 
denoising

The anatomical segmentation was performed using fMRIPrep, as 
shown in Figure 1. Specifically, the T1 anatomical images were skull-
stripped using a Nipype implementation of Advanced Normalization 
Tools (ANTs) (Avants et  al., 2011), following which tissue 
segmentation was performed using FMRIB Software Library (FSL) 
and spatial normalization to standard MNI152 space was performed 
using ANTs. This step resulted in grey matter (GM), WM and CSF 
segmentations for each data set.

fMRI data preprocessing was performed using fMRIPrep (Version 
22.0) (Esteban et al., 2019), and includes motion correction, spatial 
smoothing (5 mm FWHM), high-pass filtering (>0.01 Hz) and brain 
extraction. This is a common processing pipeline applied prior to all 
physiological denoising methods (no correction), though we  also 
obtained framewise displacement (FD) time series for each data set 
based on Power et  al. (2012). Temporal SNR (tSNR) on the 
preprocessed data (pre-denoising) was also computed for each subject, 
as the ratio between the mean and standard deviation of each time 
series. The preprocessed data was channeled separately through five 
data-driven denoising methods for comparison, as implemented 
through fMRIPrep. These methods include:

 • Global signal regression (GSR): the global signal is generated by 
averaging signals within the brain mask (excluding CSF).

 • White matter and CSF signal regression (WM-CSF): WM and 
CSF ROIs were obtained from the segmentation of the 
T1-weighted anatomical image of each subject, as explained 
above. WM and CSF signal is generated by averaging the signals 
within the anatomically-derived eroded masks.

 • Anatomical CompCor (aCompCor): the five principal 
components (PCs) with the highest explained variance are used 
as confounders.

 • Temporal CompCor (tCompCor): all PCs identified by 
tCompCor are regressed out.

 • AROMA (ICA-AROMA): based on ICA, AROMA exploits a 
small set of four robust theoretically motivated temporal and 
spatial features associable to head motion, and all independent 
components exhibiting these features are identified as nuisance 
and removed. Though devised for head-motion correction, 
AROMA has found success for physiological denoising more 
broadly (Griffanti et al., 2017). In this work, the non-aggressive 
version of ICA-AROMA was implemented, and all identified 
components were regressed out.

 • No correction: all methods were also compared to the case of no 
physiological denoising for reference.
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Regressors of each method are estimated using fMRIprep (Esteban 
et al., 2019), publicly available at fmriprep.org. We did not regress out 
estimated motion parameters in addition to the noise regressors.

Evaluation metrics

BOLD-signal spectral power
In order to identify the BOLD signal spectral peaks associated with 

time-locked physiological processes, subject-specific heartbeat and 
respiration frequencies were estimated based on the peak in the spectrum 
of their physiological recordings. Then, for each data set, the frequency 
spectra of fMRI signals are obtained, and then averaged separately across 
the gray matter and white matter, respectively, for each individual and 
the spectrum of the averaged signals is calculated. We computed the total 
fMRI signal power pre- and post-denoising in three frequency bands:

 1. Cardiac band: a 0.1 Hz-wide band centered at the subject-
specific heartbeat;

 2. Respiratory band: a 0.2 Hz-wide band centered around each 
subject’s respiration frequency;

 3. Low-frequency band: the frequency band between 0.01 and 
0.1 Hz, commonly used for fcMRI assessments.

A successful denoising technique should maximally remove the 
frequencies associated with the cardiac and respiratory bands while 
preserving information in the low-frequency band. To evaluate the 
extent to which each denoising method alters the power contribution 

of these frequency bands, we computed the fractional power change 
with Eq. (1):

 

P P
P

uncorrected corrected

uncorrected

−

 
(1)

where Puncorrected is the power of the fMRI signal before noise 
correction in one of the three frequency bands and Pcorrected is the 
power of the fMRI signal after noise correction in these frequency 
bands. The use of fractional spectral-power change allows direct 
comparison across methods and age groups.

We subsequently performed formal statistical testing using multi-
factor ANOVAs and paired/unpaired t-tests. ANOVAs were conducted 
using generalized linear mixed-effects models to analyze fractional 
spectral power, including age group, tissue type, and method as 
variables of interest. Each frequency band (low frequency, respiratory, 
and cardiac frequency bands) were analyzed separately. Follow-up 
t-tests were performed to compare fractional power changes 
associated with each factor. All comparisons were corrected for false 
discovery using the Benjamini-Hochberg method (Benjamini and 
Hochberg, 1995). All statistical analyses were performed using Matlab 
(Mathworks, Natick, United States).

rs-fcMRI metrics
For each processed fMRI dataset, template-based rotation (TBR) 

was used to generate fcMRI maps using Yeo functional network 
parcellations templates (Yeo et  al., 2011). TBR is a new analytic 
technique that was designed for utilizing a priori functional 

FIGURE 1

Summary of preprocessing steps (figure adapted from www.fmriprep.org). All illustrated preprocessing steps were applied to the fMRI and T1-weighted 
data as relevant. The tissue segmentation required for denoising is performed through FreeSurfer. In particular, the fMRI data underwent slice-timing 
correction, alignment to the T1 images, head motion estimation, susceptibility-distortion correction and confound estimation. The confounds 
produced by this pipeline are in turn used by some of the denoising strategies.
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parcellations to guide the analysis of individual sessions. TBR is 
similar to dual regression, but reverses the direction of prediction such 
that instead of individual volumes (time points) being predicted as 
linear sums of templates, templates are predicted as linear sums of 
volumes (Schultz et al., 2014). The TBR step produced fcMRI strengths 
quantified as t-maps, which were used in subsequent analyses without 
thresholding. First, we divided the GM into 200 ROIs based on the 
gradient weighted Markov Random field proposed by Schaefer et al. 
(2018), and generated Pearson’s correlation matrices for each subject 
and each denoising method. We then divided the ROIs based on the 
7 functional networks, and computed the network-mean Pearson’s 
correlation within each network. A denoising method that exhibits a 
higher network-mean Pearson’s correlation tends to generate stronger 
resting-state functional connectivity. Secondly, we utilized functional-
connectivity contrast (FCC) to evaluate network segregation. FCC is 
characterized as the z-statistic derived from the Wilcoxon rank-sum 
test, evaluating the null hypothesis that in a fcMRI map, connectivity 
values within a network and connectivity values between networks are 
drawn from distributions with identical medians (Kassinopoulos and 
Mitsis, 2022). Elevated FCC values indicate stronger connectivity 
within a network in contrast to between networks. We used FCC to 
compare the denoising methods in their effectiveness to distinguish 
resting-state networks from background processes. We evaluated FCC 
by individually computing it for each network and subsequently 
averaging the FCC values across the seven networks. Third, as a 
measure of the distinguishability of young and old groups based on 
their fcMRI maps, we also computed modularity, which assesses the 
strength of within-group coupling relative to the coupling between 
groups. To compute the modularity index, an adjacency matrix is 
generated by comparing the similarity of the connectivity maps using 
the cosine similarity index. Modularity (Q) is calculated using Eq. (2).

 
Q
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k k
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i j

ij
i j
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4 2
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where A is the similarity matrix, m is the number of connections, 
ki is the degree of node i (i.e., sum of all connectives to node i), and si 
is 1 if subject i is young and − 1 otherwise. A high Q indicates high 
observability of age-related differences, irrespective of the directions 
of the difference. Subsequently, the modularity index was calculated 
for each network and each denoising method. The values are then 
compared between denoising methods to understand their impact on 
the distinguishability of the two age groups. A higher modularity 
index indicates that the connectivity maps of young and old subjects 
are more distinguishable from each other. This does not imply a bigger 
distinction in neuronal activity between age groups, but serves to 
showcase the effect of each denoising method on detectable 
age-related differences.

Testing the generalizability of findings across 
sampling rates

To establish the generalizability of our results in highly sampled 
rs-fMRI data, we  simulated the effect of conventional sampling 
(TR ~ 2 s) by downsampling the rs-fMRI data by a factor of 5, resulting 
in an effective TR of 1.9 s. We repeated the analyses on the resultant 
rs-fcMRI results (as power analysis on slowly-sampled fMRI data is 
not informative). While downsampling of data acquired at short TR 

likely does not represent the higher image SNR and tSNR of data 
acquired at longer TRs, this approach provides a “worst-case” 
representation of slowly sampled data.

Statistical testing
Both network-wise correlation and FCC (for both the original and 

downsampled data) were submitted to a mixed ANOVA with age 
group as the between-group factor and denoising method as the 
within-group factor. We executed follow-up t-tests for factors that 
displayed significance, employing paired t-tests between denoising 
methods and unpaired t-tests between age groups. All statistical 
analyses were performed using MATLAB (Version R2019b, 
Mathworks, Natick, United States).

Results

In Figure 2 are shown the fractional power changes in the cardiac-
frequency, respiration-frequency and low-frequency bands for the 
whole GM (Figures 2A–C) and WM signals (Figures 2D–F). Results 
for young and older adults are shown in gray and black, respectively. 
In the GM, all denoising methods resulted in spectral-power reduction 
in all three frequency bands of the BOLD signal, removing as much 
as 60%–70% of the signal power in the respiratory and cardiac bands. 
GSR and AROMA removed the highest percentages of cardiac and 
respiratory BOLD-signal power, followed by aCompCor. However, 
GSR and AROMA also removed the largest percentages of the BOLD 
signal from the low-frequency band (up to 80%). In the WM, all 
methods appear less effective in removing cardiac power, with 
AROMA removing the most signal from (>70%). These differences 
are statistically significant, as shown in Table 1, which also shows there 
are significant age-method interactions in terms of power removed for 
all frequency bands except for the cardiac band.

Table 1 represents results for multi-factorial ANOVA tests with 
age, tissue type, and denoising method as factors. The results of the 
statistical tests are summarized below.

 1. By frequency: young subjects showed significantly greater 
removal of low-frequency signals compared to old subjects. No 
significant difference was observed in the signal removed for 
cardiac and respiratory frequencies between young and 
old subjects.

 2. By tissue type: the removal of signal in low and cardiac 
frequencies was significantly larger in the gray-matter 
compared to the white matter. There was no significant effect 
observed for the respiratory frequency band.

 3. By denoising method: since the objective of this manuscript is 
to compare different denoising methods, a more comprehensive 
investigation of the denoising methods’ effect is conducted.

The ANOVA results also indicate that with the exception of power 
in the cardiac band, there are significant method x age interactions.

Taking Figure 2 and Tables 2A,B in conjunction, we observe that 
In young adults than older adults, for GM, GSR and AROMA removed 
significantly more signal power in the cardiac frequency band than all 
methods, and more signal power in the respiratory frequency band 
than all but WM-CSF regression. GSR and AROMA removed more 
low-frequency signal than all other denoising methods. For WM, 
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AROMA removed the most power in the cardiac, respiratory and 
low-frequency bands, followed by aCompCor. GSR removed the least 
low-frequency power in the WM. GSR and WM-CSF regression 
introduced increases to cardiac power. For the older-adult data, 
WM-CSF regression performed worse, adding to rather than 
removing power from the cardiac and respiratory bands. Other trends 
are similar as in the young group. Moreover, across all noise bands, all 
methods appear to remove less noise power from the BOLD signals of 
young adults compared to those of older adults. Across both age 
groups, aCompCor and tCompCor performed similarly for removing 
signals in the cardiac frequency band, but aCompCor is more effective 
than tCompCor for reducing respiratory power.

We additionally performed spectral analysis for different networks 
to explore potential regional heterogeneity in the denoising 
performance. The results of this analysis are presented in Figure 3. The 
effects of denoising methods on spectral power in the three frequency 
bands are relatively uniform across all resting state networks.

As a surrogate of data quality, tSNR was found to be consistently 
higher with denoising than without, irrespective of the method 
(Supplementary Figure S2). Moreover, the tSNR associated with 
ICA-AROMA was significantly higher than those of all other methods 
examined. Also, we found the pre-denoising tSNR to be lower in the 

old subjects for Networks 2, 3, 4, and in the white matter region, as 
documented in Supplementary Tables S1, S2. In Network 5, the tSNR 
was lower in young subjects when compared to the old subjects. This 
indicates that, in general, older subjects exhibit lower tSNR. However, 
magnitudes of bulk head motion (through FD) and cardiac/respiratory 
contributions to the fMRI spectra (in the cardiac and respiratory 
bands) do not significantly differ between age groups (see 
Supplementary Table S3).

In Figure 4 we demonstrate the age-related fcMRI differences, 
shown here for the case of the default-mode network (DMN) using 
different denoising methods. Qualitatively, the maps generated from 
aCompCor, tCompCor and WM-CSF appear to be the most similar 
to each other. Quantitatively, values from the age-related fcMRI 
difference t-maps generated using different denoising methods are 
shown in different rows of Supplementary Figure S1, which shows that 
all denoising methods resulted in visually similar connectivity 
differences, with connectivity in older adults lower than in young 
adults (median t-value differences <0).

Figure 5 demonstrates the results of the age-related modularity 
and FCC analysis. There is no significant age-related difference in the 
correlation or FCC values. Statistical results of the pairwise 
comparisons in Table 3B show that the application of aCompCor 

FIGURE 2

The effect of denoising strategies on the BOLD signal spectral power in young and older adults. Fractional power changes in cardiac (A,D), respiratory 
(B,E), and low-frequency bands (C,F) for the gray matter (A–C) and white matter (D–F) signals. Young and older adults are shown gray and black, 
respectively. Note that a positive power change represents a reduction in the spectral power due to denoising, and vice versa. Error bars represent the 
group-wise standard deviation. Asterisks indicate significant power differences from zero.

TABLE 1 Results for multi-factorial ANOVA test using generalized linear mixed-effect models with fractional power change as the dependent variable, 
age, tissue type, and denoising method as factors.

Multi-factorial 
ANOVA results

Cardiac frequency Respiratory frequency Low frequency

F stat p-value F stat p-value F stat p-value

By age 0.0076 0.93 0.022 0.88 0.387 0.53

By tissue type 86.59 4.1e-18 0.15 0.70 20.38 3.4e-6

By method 9.05 7.0e-7 12.40 2.3e-9 19.98 1.2e-14

Age-method interaction 1.15 0.33 2.40 0.049 5.25 0.00040

The ANOVA tests were conducted for fractional power changes in the respiratory, cardiac, and low-frequency bands separately. p values with those that are statistically significant shown in bold face.
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TABLE 2 Pairwise comparisons of fractional power changes associated with different denoising methods.

(A)

Young

Cardiac Respiratory Low-frequency

p values GSR
WM-
CSF

aCompCor tCompCor GSR
WM-
CSF

aCompCor tCompCor GSR
WM-
CSF

aCompCor tCompCor

GM WM-CSF 0.0004< 0.0002< 0.0002<

aCompCor 0.0004< 0.0262> 0.0003< 0.0002> 0.0002< 0.0009>

tCompCor 0.0004< 0.5014 0.1089 0.0002< 0.0707 0.0139< 0.0002< 0.0043< 0.0007<

AROMA 0.0437< 0.0004> 0.0004> 0.0004> 0.0096< 0.0002> 0.0002> 0.0002> 0.3061 0.0002> 0.0002> 0.0002>

WM WM-CSF 0.1337 0.0084< 0.0084<

aCompCor 0.0019> 0.0787 0.0778 0.0002> 0.0778 0.0002<

tCompCor 0.0027> 0.0299> 0.7960 0.0854 0.3491 0.0029< 0.0854 0.3491 0.0029<

AROMA 0.0004> 0.0004> 0.0019> 0.0072> 0.0038> 0.0003> 0.0429> 0.0003> 0.0038> 0.0003> 0.0429> 0.0003>

(B)

Old

Cardiac Respiratory Low-frequency

p values GS
WM-
CSF

aCompCor tCompCor GS
WM-
CSF

aCompCor tCompCor GS
WM-
CSF

aCompCor tCompCor

GM WM-CSF 0.0005< 0.0001< 0.0001<

aCompCor 0.0002< 0.8926 0.0023< 0.0906 0.0002< 0.1353

tCompCor 0.0681 0.1909 0.0574 0.0001< 0.3258 0.0017 0.0001< 0.0676 0.0031<

AROMA 0.0942 0.0002> 0.0002> 0.1272 0.1937 0.0006> 0.0001> 0.0001> 0.0017< 0.0001> 0.0001> 0.0001

WM WM-CSF 0.2734 0.0085< 0.0166>

aCompCor 0.0024> 0.0007> 0.2412 0.0017> 0.0002< 0.0203<

tCompCor 0.0007> 0.0007> 0.4973 0.0166> 0.7148 0.0002< 0.8077 0.0017> 0.0001<

AROMA 0.0002> 0.0002> 0.0002> 0.0574 0.0785 0.0012> 0.2676 0.0001> 0.0001> 0.0002> 0.0040> 0.0001>

Follow up comparisons for the multi-factorial ANOVA (Table 1) for (A) Data from young cohort; (B) data from older cohort. p values for GM and WM pairwise comparisons in different frequency bands, with those that are statistically significant shown in bold face. 
Underlining indicates where GSR and WM-CSF resulted in an increase rather than a decrease in fractional spectral power. “<” indicates where the denoising method on the row label removed a lower fractional power than the method on the column label, and “>” 
indicates the opposite.
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resulted in significantly higher FCC than “no correction,” while 
WM-CSF and aCompCor are both associated with higher FCC than 
GSR. The application of AROMA denoising is associated with a 
substantial reduction in FCC. Conversely, the tCompCor, GSR, and 
WM-CSF denoising methods correspond to higher FCC. These 
differences were supported by the ANOVA results, which showed a 
significant effect of the denoising method on FCC (p = 2.5e-8). There 

were no significant effects of age (p = 0.096) and age-method 
interaction (p = 0.87) on FCC. Moreover, the ANOVA showed no 
significant age difference in mean Pearson’s correlation, but a 
significant effect of denoising method (p = 9.5e-44) and a significant 
age x method interaction (p = 0.0019). Furthermore, Figure 5C reveals 
that GSR and AROMA methods significantly reduce modularity, a 
metric that quantifies the observability of age-related differences. On 

FIGURE 3

The effect of denoising strategies on the BOLD signal spectral power in different brain networks. Fractional power changes in (A) cardiac, 
(B) respiratory, and (C) low-frequency bands. N1: Visual, N2: Somatomotor, N3: Dorsal Attention, N4: Ventral Attention, N5: Limbic, N6: Frontoparietal, 
N7: DMN. Error bars represent the group-wise standard deviation.
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the other hand, tCompCor exhibited the highest modularity values, 
followed by no-correction, aCompCor, and WM-CSF, as shown in 
Table 3C. The results corresponding to the downsampled data are 
shown in Supplementary Figure S3 and Supplementary Table S4. 
Taken together, the findings here appear to be consistent across the 
two and thus independent of fMRI sampling rate.

Discussion

In this work, we assessed the influence of a variety of popular 
data-driven denoising methods on resting-state BOLD signal-power 
and on rs-fcMRI maps in commonly observed resting-state functional 
networks. We specifically assess the impact of denoising choice on the 
resultant age-related fcMRI differences in these networks. Using a 
fMRI dataset acquired at high sampling rate, we were able to directly 
calculate the amount of spectral power altered by each method at each 
subject’s cardiac and respiratory frequencies. To summarize, in the 
GM, all methods reduced the BOLD spectral power in these 
physiological frequency ranges, albeit the degree of removed spectral 
power is significantly different among the methods, with GS and 

AROMA removing the most power. These methods, however, also 
removed the greatest amount of low-frequency power (0.1 Hz band). 
In contrast, CompCor (aCompCor and tCompCor) seems to result in 
an intermediate outcome in terms of both noise removal and retention 
of age-related differences. In the WM, all methods reduced the signal 
power in the respiratory frequency ranges. However, the performance 
of the methods in removing cardiac frequencies is more variable 
across subjects (see Figure 1). Comparisons on downsampled fMRI 
data delivered similar results.

Physiological noise power spectrum

Cardiac pulsation and respiration are the two chief sources of 
physiological noise in the fMRI signal, especially problematic in 
rs-fMRI. Cardiac pulsations generate localized brain motion as well as 
creating inflow effects in and around blood vessels and CSF. On the 
other hand, thoracic movement during breathing results in magnetic 
field alteration and phase shift in the image. Moreover, respiration 
induces fluctuation in the level of arterial CO2, which has a 
vasodilating effect and can induce changes in the fMRI BOLD signal. 

FIGURE 4

Sample age-related connectivity-difference maps for the default-mode network. Each row shows the difference t-map generated from each of the 
denoising methods. The color bar represents the range of t-values for the t-maps.
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The frequency of physiological signals in an adult human typically 
falls within the range of 0.2 to 0.3 Hz for respiratory and 0.8 to 1.2 Hz 
for cardiac signals. In a conventional fMRI scan with a TR of 2 s, these 
signals alias into the low-frequency range (0.01 to 0.1 Hz), which is 
known to contain information about fcMRI (Cordes et al., 2001). 
Physiological denoising in a conventional fMRI dataset may result in 
a decrease in signal power in the low-frequency range. However, it is 
impossible to determine whether the removed power is related to the 
respiratory and cardiac contributions or to neuronal connectivity. The 
low-frequency range of fMRI signals has signatures of several 
non-neuronal sources, including systemic low frequency oscillations 
(Tong et al., 2015, 2019), respiratory variations (Birn et al., 2006), and 
cardiac rate variations (Chang et al., 2009). Also, the fact that most of 
the denoising methods exhibit the highest impact on signal spectrum 
in the low-frequency band may be due to the nature of ROI-based 
noise regressor generation, whereby high-frequency regressor content 
may be averaged out through different phase shifts across the ROIs, 
leading to the retention of low-frequency regressor power.

Choice of denoising methods

For context, the methods evaluated in this study are among the 
most commonly used in the resting-state fMRI literature. Specific to 
the study of the effect of aging on resting-state connectivity, all of the 
denoising methods have found broad application, including GSR 
(Betzel et al., 2014; Chan et al., 2014; Zhang et al., 2014; Geerligs et al., 

2015; Siman-Tov et al., 2016; Stumme et al., 2020), WM-CSF (Koch 
et al., 2010; Betzel et al., 2014; Chan et al., 2014; Song et al., 2014; 
Zhang et al., 2014; Grady et al., 2016; Siman-Tov et al., 2016; Farras-
Permanyer et al., 2019; Varangis et al., 2019; Mancho-Fora et al., 2020; 
Xie et  al., 2020; Zhong and Chen, 2022), CompCor (Onoda and 
Yamaguchi, 2013; Hausman et al., 2020; Hamada et al., 2021; Patil 
et al., 2021; Podgórski et al., 2021), and ICA-AROMA (Stumme et al., 
2020). Moreover, some recent studies of aging used no physiological 
denoising (Damoiseaux et al., 2008; Huang et al., 2015; Ao et al., 2022).

Impact on BOLD signal spectrum

Owing to the high sampling rate of our fMRI data, we were able to 
dissect the differential effect of different denoising methods by 
examining the resultant fcMRI signal power spectrum. All methods 
resulted in spectral-power reduction in all three frequency bands of the 
GM signal, removing as high as 60–70% of the signal in the respiratory 
and cardiac bands. The amount of the removed power spectrum is 
vastly different among the methods, with GS and AROMA removing 
the most power followed by aCompCor. ICA-AROMA also removed 
more signal power in the physiological frequency bands compared to 
all other denoising methods. These findings are consistent with the 
finding of signal quality improvement by GSR and ICA-FIX by a 
previous study (Geerligs et al., 2017). Moreover, consistent with this 
finding, aCompCor was previously found to be  less effective than 
ICA-FIX at reducing motion artifacts (Scheel et al., 2022).

In our findings, aCompCor and tCompCor removed significantly 
less power than GS and AROMA in all three frequency bands in both 
the GM and WM of both age groups, with only WM-CSF regression 
showing less power change (Tables 2A,B). This finding for aCompCor 
is in contrast to the findings of Agrawal et  al. (2020) who found 
aCompCor to reduce low-frequency power while adding high-
frequency noise power. Conversely, Muschelli et al., found aCompCor 
to remove more head-motion related signal contribution than 
alternatives such as WM-CSF regression (Muschelli et  al., 2014). 
However, these latter findings were restricted to young adults, which 
suggests these discrepancies in findings may be  related to the 
significance of age x denoising-method interactions reported in 
Table 1. Indeed, as reported in Supplementary Table S2, both mean 
and max FD were higher in the older adults. Nonetheless, no 
physiological frequency or head motion differences across age groups 
reached statistical significance.

Also, as mentioned earlier, Dipasquale et  al. (2017) found 
ICA-AROMA to retained more low-frequency spectral power while 
reducing more high-frequency noise power than WM-CSF, which is 
in contrast to our findings. However, we wish to highlight that in order 
to isolate the effect of physiological-denoising, we did not regress out 
motion alongside the physiological noise regressors in this study, in 
contrast to previous studies (Dipasquale et al., 2017; Geerligs et al., 
2017; Kassinopoulos and Mitsis, 2022). Thus, we  cannot directly 
compare our results to those of Dipasquale et al., which included 
WM-CSF alongside motion regression. The interaction between 
motion and noise is complex (Jones et al., 2008), and the order of each 
type of correction as well as the number of motion regressors can sway 
the results (Ciric et  al., 2017; Parkes et  al., 2018), and thus these 
questions are beyond the scope of this work. Moreover, additional 
differences in findings could be attributed to the major differences in 
the TR of the BOLD acquisition. In the Dipasquale study, TR was 

FIGURE 5

Quantitative comparison of rs-fMRI metrics across denoising 
methods, including (A) the network-mean Pearson’s correlation, 
(B) the functional-connectivity contrast (FCC) and (C) modularity 
index of the brain networks. GSR and AROMA methods considerably 
reduced modularity compared to other methods. Error bars 
represent standard deviation and significant differences, if any, are 
indicated by asterisks.

https://doi.org/10.3389/fnins.2024.1223230
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Golestani and Chen 10.3389/fnins.2024.1223230

Frontiers in Neuroscience 11 frontiersin.org

2.75 s, while in our study, it was 0.38 s. This difference in BOLD signal 
sampling rate could affect the performance of regression-based 
approaches such as WM-CSF, which do not discriminate between 
different temporal and spatial constituents in the WM and CSF ROIs. 
The evaluation of the effects of sampling rate and head motion on 
different denoising methods is a promising future direction.

Compared to the GM, the results in the WM are more variable 
across subjects, and WM denoising is much less examined in the 
literature. Notably, among all the methods, only AROMA appeared to 
reduce cardiac power (Figure 1D). All methods reduced power in the 
respiratory and low-frequency frequency bands (Figures 1E,F), with 
aCompCor and AROMA leading the other methods in this regard. 
Nevertheless, the power-reduction variability in the WM is much 
larger than that in GM, especially for GSR, WM-CSF and aCompCor. 
GSR is also very effective at suppressing the contribution of 
physiological frequencies in the GM, but not very effective in the 
WM. Unsurprisingly, both GSR and WM-CSF regression introduced 
increases to cardiac power, and are thus inappropriate for WM fMRI 
denoising. This observation could be  attributed to the manner in 
which the noise regressors are derived for these methods, in which the 
WM signal is indiscriminately designated as noise. Interestingly, 
WM-CSF did not significantly reduce WM BOLD signal power in the 
cardiac and respiratory power, although this method can be viewed as 
involving regressing the WM signal out of itself. Although aCompCor 
also derives regressors from WM, its performance is superior to that 

of WM-CSF, as it only designated the leading principal components 
of the WM signal (and CSF) signal as noise regressors (Figure 1E).

Interaction between head motion, fast 
sampling and the BOLD signal spectrum

It has been established that head-motion effects interact with 
physiological denoising (Jones et al., 2008) and age-related fcMRI 
differences (Mowinckel et  al., 2012; Geerligs et  al., 2017). Lesser 
known, but critical, is the additional influence of fMRI sampling rate, 
especially with the advent of fast fMRI (Chen et al., 2019; Power et al., 
2019). We  found a sub-significant age-group difference in head 
motion (FD), with older adults associated with higher FD 
(Supplementary Table S2).

Given our high sampling rate, we will elaborate on the unique 
effect of fast sampling on the treatment of head motion and the 
measurement of denoising outcome. In the acquisition used in this 
study, we  used an SMS acceleration factor of 3 and 21 slices at 
TR = 0.38 ms, translating into a maximum samplable frequency of 
1.3 Hz. This frequency is sufficient to capture the fundamental cardiac 
frequency, preventing its aliasing into lower-frequency bands. The 
SMS acquisition scheme also results in the shuffling of slice acquisition 
ordering across 7 slice groups. If residual head motion chiefly 
manifests as through-plane movement between neighboring voxels, 

TABLE 3 Pairwise comparison of (A) Pearson’s correlation, (B) FCC associated and (C) modularity index with different denoising methods, 
corresponding to values in Figure 5.

(A)

p-values No correction GSR WM-CSF aCompCor tCompCor

GSR 5.1e-17<

WM-CSF 3.8e-8< 2.0e-10>

aCompCor 2.0e-8< 1.1e-13> 0.0002>

tCompCor 5.0e-7< 9.2e-12> 0.0064> 0.0366<

AROMA 4.8e-14< 1.8e-5> 8.9e-7< 6.7e-11< 1.7e-9<

(B)

p-values No correction GSR WM-CSF aCompCor tCompCor

GSR 0.05099

WM-CSF 0.1935 0.0005>

aCompCor 0.0080> 0.0003> 0.7591

tCompCor 0.0483 0.1346 0.0358< 2.1e-7<

AROMA 2.7e-7< 3.0e-7< 1.1e-9< 2.2e-8< 2.2e-7<

(C)

p-values No correction GSR WM-CSF aCompCor tCompCor

GSR 0.0006<

WM-CSF 0.58 0.0012>

aCompCor 0.14 0.0004> 0.96

tCompCor 0.0467 0.0003> 0.26 0.0073<

AROMA 0.018< 0.023> 0.020< 0.021< 0.0092<

The modularity index is compared across the seven networks between all pairs of denoising methods using paired t-test. The superscript “<” indicates where the value associated with the 
method in the row header is lower than that associated with the method in the column header, whereas the superscript “>” indicates the opposite. p values with those that are statistically 
significant shown in bold face.

https://doi.org/10.3389/fnins.2024.1223230
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Golestani and Chen 10.3389/fnins.2024.1223230

Frontiers in Neuroscience 12 frontiersin.org

then all slices in each slice group would shift simultaneously, 
expanding the influence of motion across the brain volume. 
Additionally, Power et al. (2019) reported on lower-frequency motion 
being subdivided by fast sampling (TR of 720 ms) and thus appearing 
as lower-amplitude higher-frequency FD that overlaps in frequency 
with respiratory noise. This effect of fast sampling is further 
complicated by slice groups being ordered in an interleaved fashion. 
That is, the slice group ordering was [1, 8, 15], [3, 10, 17], [5, 12, 19], 
… [2, 9, 16], [4, 11, 18], and so on, such that physiological and motion 
effects that should be similar across neighboring slices are sub-sampled 
at up to TR/2 apart. Each slice group would thus sub-sample the head-
motion time course with a different phase shift, resulting in potentially 
elevated within-ROI signal heterogeneity for methods such as GSR 
and WM-CSF regression.

Relating this to different sampling rates, note that the use of a TR 
of 720 ms in Power et al.’s work sets the maximum samplable BOLD 
signal frequency at 0.7 Hz. At this sampling rate, the cardiac frequency 
(typically ~1 Hz) would alias into the 0.3 Hz frequency band, which 
coincides with the typical respiratory frequency. Thus, manifestation 
of fast-sampled motion, and consequently the effect of different 
denoising methods on the fast-sampling related motion-subsampling 
effects, which has previously been reported (Burgess et al., 2016; Ciric 
et  al., 2017; Dipasquale et  al., 2017), also depends on the actual 
sampling frequency and SMS factor.

Impact on fcMRI strength

The low-frequency band’s interpretation remains complex, 
however. On the one hand, it is the established spectral location for 
the majority of the neurovascular contribution to brain functional 
connectivity (Cordes et al., 2001), and retention of fcMRI strength has 
been used as a metric for evaluating retention of meaningful BOLD 
signal (Dipasquale et  al., 2017). Nonetheless, variability in the 
respiratory and cardiac pattern can also induce BOLD signal 
variations in the low-frequency frequency band (Wise et al., 2004; 
Birn et  al., 2006; Chang et  al., 2013). Recent work, however, 
demonstrated that respiratory-volume variability may have neuronal 
associations (Yuan et  al., 2013; Shams et  al., 2021), rendering its 
interpretation uncertain.

Our results showed that GSR and AROMA removed the most 
low-frequency BOLD signal power. Although low-frequency power 
did not significantly modulate GSR-based functional connectivity 
(Pearson’s correlation) or FCC as a measure of network segregation 
(Kassinopoulos and Mitsis, 2022), GSR and AROMA resulted in two 
of the lowest FCC values in comparison to the other methods (see 
Table 3B). Our downsampled data (Supplementary Figure S3 and 
Supplementary Table S4) followed very similar trends as the original 
data, suggesting that our findings are generalizable to different 
sampling rates, and that the effects of band-limited noise, once shifted 
to different frequency bands due to aliasing, may retain the same 
impact on functional connectivity metrics.

Moreover, AROMA-based Pearson’s correlation was significantly 
mediated by both cardiac and low-frequency power 
(Supplementary Table S5A). In contrast, WM-CSF and aCompCor 
were associated with the highest FCC values as demonstrated in 
(Figure 5B; Table 3B). Still, based on the power spectral analysis alone, 
it is impossible to understand whether the removed low-frequency 

spectrum can alter brain connectivity as measured by 
rs-fMRI. Furthermore, it is possible that a higher fcMRI measurement 
does not result from higher low-frequency power or lower noise 
power (Agrawal et  al., 2020). Lastly, the reduced observable 
age-related differences in fcMRI measures associated with GSR and 
AROMA was not significantly mediated by spectral-power changes 
in any of the three frequency bands (Supplementary Table S5C), 
despite strong correlations between low-frequency power change and 
modularity in both GSR and AROMA (0.46 and − 0.74, respectively). 
Interestingly, in aCompCor alone, was spectral power change 
significantly associated with modularity index (positively for 
respiratory power change, and negatively for both cardiac and 
low-frequency power). These correlations are reflected also in the 
findings for tCompCor and AROMA, suggesting that these methods 
may share the property whereby higher age-related differences in 
connectivity may be linked to lower reductions in low-frequency and 
cardiac power and greater reduction in respiratory power. This is an 
interesting scenario for future investigations.

Impact on age-related fcMRI differences

We also evaluated the denoising methods based on their effects on 
the observable age-related rs-fcMRI differences. Although aCompCor 
and tCompCor did not result in the greatest retention of low-frequency 
BOLD signal power (Figure 2; Table 2), they generated maps with the 
highest modularity indices (a measure of sensitivity to age-related 
differences), as demonstrated in Figure 5A and Table 3A. Moreover, 
we observe a significant age x denoising-method interaction when 
examining the fractional spectral power changes in the low-frequency 
and respiratory bands (Table 1).

In aging studies of fcMRI, rs-fcMRI reduction in the DMN is the 
most commonly reported finding [for a review please refer to Jockwitz 
and Caspers (2021)], although the extent and location of the 
connectivity reduction differ among the studies, consistent with our 
finding (Figure 2). For instance, Stumme et al. (2020) used AROMA 
denoising and reported reduced connectivity in the visual network 
and no changes in the DMN and somatomotor networks, whereas 
other studies that used tCompCor or WM-CSF denoising have 
reported no change (Zhang et  al., 2014) or reduced (Onoda and 
Yamaguchi, 2013; Chan et al., 2014; Zhang et al., 2014) connectivity 
in the visual network and reduced connectivity in the DMN (Onoda 
and Yamaguchi, 2013; Betzel et al., 2014; Chan et al., 2014; Zhang 
et al., 2014; Grady et al., 2016), as well as no connectivity change in 
the somatomotor network (Onoda and Yamaguchi, 2013; Betzel et al., 
2014; Chan et  al., 2014). Here, we  demonstrate that one possible 
source of the inconsistencies across studies is the choice of method for 
physiological denoising. Despite the fact that the spectral power 
removed by different denoising methods were at times not significantly 
different, these differences resulted in observable differences in the 
resultant observable age-related fcMRI differences. Specifically, as 
shown in Figure  5A and Table  3A, the GSR method also visibly 
reduced the observable age difference in fcMRI, while CompCor and 
WM-CSF minimally impacted the observable age difference in 
connectivity. Nonetheless, the ability to detect age differences does not 
equate that of detecting neuronally-driven age differences.

In the systematic comparison of WM-CSF and aCompCor reported 
by Geerligs et  al. (2017), WM-CSF regression was associated with 
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higher connectivity strength and reliability as well as reliability of age 
effects than aCompCor. Moreover, Geerligs et  al. showed that the 
WM-CSF regression resulted in a negative age-fcMRI association, while 
aCompCor resulted in a positive age-fcMRI association. We did not test 
for reliability of our fcMRI metrics, preventing a direct comparison of 
results in that regard. However, we  did not observe a significant 
difference in modularity index between WM-CSF and aCompCor.

Limitations

This study presents several limitations. Firstly, we focused only on 
the denoising methods implemented in fmriprep. More advanced 
methods have been developed recently (Agrawal et al., 2020; Shin 
et  al., 2022; Bancelin et  al., 2023) wechose to compare only the 
methods implemented in fmriprep, as they may be more commonly 
used. The same methodology can be  used to compare other 
physiological denoising techniques. Moreover, we only evaluated the 
methods in their ability to remove physiological signals. The methods 
can perform differently in removing other types of noise. For example, 
ICA-AROMA has been shown to be more successful in removing 
head motion compared to aCompCor (Pruim et  al., 2015a). The 
removed head motion may affect high-frequency as well as 
low-frequency bands, depending on the head motion type. 
Low-frequency head motion has been associated with rhythmic 
motion related to breathing (Power et al., 2019), and may be addressed 
by physiological regression, while random abrupt motion can be a 
more broadband disruption that is not captured in physiological noise 
time courses. In fact, these high-frequency motion signatures have 
also been associated with useful between-group effects (Yuan 
et al., 2016).

Secondly, in the absence of a ground-truth, we simply showcase a 
comparison of different denoising methods for revealing the 
age-related fcMRI differences. Indeed, head motion (both bulk and 
localized) differs between age groups, with older adults known to 
exhibit greater degrees of movement (Van Dijk et al., 2012; Pardoe 
et  al., 2016; Savalia et  al., 2017; Madan, 2018; Saccà et  al., 2021), 
although in this study head motion is not significantly different 
between our young and old subjects (see Supplementary Table S2). 
Furthermore, we did not include head motion as regressor in our 
pipeline, fully recognizing the likely complex interactions between 
motion regression and denoising. Thus, a bigger separation between 
ages does not imply greater ability to detect functional differences, but 
may rather serve as a marker of age-related difference, which has 
applications in its own right. Moreover, we did not formally test BOLD 
fractional power change in any of the three frequency bands as a 
mediator of the fcMRI differences associated with the different 
denoising methods.

Thirdly, we did not explicitly remove head motion as we did not 
record head motion independently of the image acquisition. The effect 
of bulk and regional head motion can be profound to our ability to 
discern neuronally specific connectivity patterns, and will be the focus 
of our future work.

Lastly, hybrid approaches that combine the test methods are 
becoming increasingly recognized (Li et al., 2019; Van Schuerbeek 
et al., 2022; Weiler et al., 2022). While a thorough investigation 
of these potentially powerful combinations is beyond the scope 
of this work, we  trust that in order to effectively combine 

different methods, it is even more important to understand the 
effect of each denoising method in isolation. Alternatively, a 
multiverse approach (Dafflon et al., 2020; Chen et al., 2023) can 
be used to systematically explore a diverse range of denoising 
methods and explore the robustness and reproducibility of 
findings corresponding to different methodological choices.

Conclusion

In this study, we compared the outcomes of several data-driven 
noise removal methods in altering power spectra in the 
physiological noise and low-frequency bands, as well as their 
impact on age-related differences in functional connectivity. GSR 
and AROMA excel in removing signals in frequency bands 
corresponding to cardiac and respiratory frequencies, but were also 
associated with lower age-related connectivity differences. In 
comparison, aCompCor and tCompCor were associated with 
greater observable age-related connectivity differences. It is 
important to note that not all age-related differences are driven by 
neuronal differences, and that the denoising methods tested in this 
work performed differently for different age groups. The roles of 
head motion and sampling rate are important considerations when 
comparing denoising methods.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Baycrest Research 
Ethics Board. The studies were conducted in accordance with the local 
legislation and institutional requirements. The participants provided 
their written informed consent to participate in this study.

Author contributions

AG: conceptualization, data acquisition, data analysis, and 
manuscript preparation. JC: data acquisition, supervision of data 
analysis, and manuscript preparation. All authors contributed to the 
article and approved the submitted version.

Funding

The authors would like to acknowledge financial support from 
Canadian Institutes of Health Research (FRN# 126164) and the 
Canada Research Chairs Program (JC).

Acknowledgments

We thank Jonathan Kwinta for assistance in data collection.

https://doi.org/10.3389/fnins.2024.1223230
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Golestani and Chen 10.3389/fnins.2024.1223230

Frontiers in Neuroscience 14 frontiersin.org

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnins.2024.1223230/
full#supplementary-material

References
Aedo-Jury, F., Schwalm, M., Hamzehpour, L., and Stroh, A. (2020). Brain states govern 

the Spatio-temporal dynamics of resting-state functional connectivity. Elife 9:e53186. 
doi: 10.7554/eLife.53186

Agrawal, U., Brown, E. N., and Lewis, L. D. (2020). Model-based physiological noise 
removal in fast fMRI. Neuroimage 205:116231. doi: 10.1016/j.neuroimage.2019.116231

Ao, Y., Kou, J., Yang, C., Wang, Y., Huang, L., Jing, X., et al. (2022). The temporal 
dedifferentiation of global brain signal fluctuations during human brain ageing. Sci. Rep. 
12:3616. doi: 10.1038/s41598-022-07578-6

Attarpour, A., Ward, J., and Chen, J. J. (2021). Vascular origins of low-frequency 
oscillations in the cerebrospinal fluid signal in resting-state fMRI: interpretation using 
Photoplethysmography. Hum. Brain Map. 42, 2606–2622. doi: 10.1002/hbm.25392

Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., and Gee, J. C. (2011). A 
reproducible evaluation of ANTs similarity metric performance in brain image 
registration. Neuroimage 54, 2033–2044. doi: 10.1016/j.neuroimage.2010.09.025

Bancelin, D., Bachrata, B., Bollmann, S., de Lima Cardoso, P., Szomolanyi, P., 
Trattnig, S., et al. (2023). Unsupervised physiological noise correction of functional 
magnetic resonance imaging data using phase and magnitude information (PREPAIR). 
Hum Brain Mapp. 44, 1209–1226.

Bartoň, M., Mareček, R., Krajčovičová, L., Slavíček, T., Kašpárek, T., Zemánková, P., 
et al. (2019). Evaluation of different cerebrospinal fluid and white matter fMRI filtering 
strategies—quantifying noise removal and neural signal preservation. Hum. Brain Mapp. 
40, 1114–1138. doi: 10.1002/hbm.24433

Behzadi, Y., Restom, K., Liau, J., and Liu, T. T. (2007). A component based noise 
correction method (comp Cor) for BOLD and perfusion based fMRI. Neuroimage 37, 
90–101.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a 
practical and powerful apprach to multiple testing. J. Royal Stat. Soc. L Series B 
(Methodological) 57, 289–300. doi: 10.1111/j.2571-6161.1995.tb02031.x

Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., and Sporns, O. (2014). Changes in 
structural and functional connectivity among resting-state networks across the human 
lifespan. Neuroimage 102 Pt 2, 345–357. doi: 10.1016/j.neuroimage.2014.07.067

Birn, R. M., Diamond, J. B., Smith, M. A., and Bandettini, P. A. (2006). Separating 
respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in 
fMRI. Neuroimage 31, 1536–1548. doi: 10.1016/j.neuroimage.2006.02.048

Burgess, G. C., Kandala, S., Nolan, D., Laumann, T. O., Power, J. D., Adeyemo, B., et al. 
(2016). Evaluation of Denoising strategies to address motion-correlated artifacts in 
resting-state functional magnetic resonance imaging data from the human connectome 
project. Brain Connect 6, 669–680. doi: 10.1089/brain.2016.0435

Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., and Wig, G. S. (2014). 
Decreased segregation of brain systems across the healthy adult lifespan. Proc. Natl. 
Acad. Sci. USA 111, E4997–E5006. doi: 10.1073/pnas.1415122111

Chang, C., Cunningham, J. P., and Glover, G. H. (2009). Influence of heart rate on the 
BOLD signal: the cardiac response function. Neuroimage 44, 857–869. doi: 10.1016/j.
neuroimage.2008.09.029

Chang, C., Metzger, C. D., Glover, G. H., Duyn, J. H., Heinze, H.-J., and Walter, M. 
(2013). Association between heart rate variability and fluctuations in resting-state 
functional connectivity. Neuroimage 68, 93–104. doi: 10.1016/j.neuroimage.2012.11.038

Chen, G., Chen, G., Chunming Xie, B., Ward, D., Li, W., Antuono, P., et al. (2012). A 
method to determine the necessity for global signal regression in resting-state fMRI 
studies. Magn. Reson. Med. 68, 1828–1835. doi: 10.1002/mrm.24201

Chen, X., Lu, B., Wang, Y.-W., Li, X.-Y., Wang, Z.-H., Li, H.-X., et al. (2023). The 
complexity of functional connectivity profiles of the Subgenual anterior cingulate cortex 
and dorsal lateral prefrontal cortex in major depressive disorder: a DIRECT consortium 
study. bioRxiv. doi: 10.1101/2023.03.09.531726

Chen, J. E., Polimeni, J. R., Bollmann, S., and Glover, G. H. (2019). On the analysis of 
rapidly sampled fMRI data. Neuroimage 188, 807–820. doi: 10.1016/j.neuroimage.2019.02.008

Chu, P. P. W., Golestani, A. M., Kwinta, J. B., Khatamian, Y. B., and Chen, J. J. (2018). 
Characterizing the modulation of resting-state fMRI metrics by baseline physiology. 
Neuroimage 173, 72–87. doi: 10.1016/j.neuroimage.2018.02.004

Ciric, R., Wolf, D. H., Power, J. D., Roalf, D. R., Baum, G. L., Ruparel, K., et al. (2017). 
Benchmarking of participant-level confound regression strategies for the control of 
motion artifact in studies of functional connectivity. Neuroimage 154, 174–187. doi: 
10.1016/j.neuroimage.2017.03.020

Cohen, A. D., Chang, C., and Wang, Y. (2021). Using multiband multi-Echo imaging 
to improve the robustness and repeatability of co-activation pattern analysis for dynamic 
functional connectivity. Neuroimage 243:118555. doi: 10.1016/j.neuroimage.2021.118555

Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz, C. H., 
et al. (2001). Frequencies contributing to functional connectivity in the cerebral cortex 
in ‘resting-state’ data. AJNR Am. J. Neuroradiol. 22, 1326–1333.

Dafflon, J., Da Costa, P. F., Váša, F., Monti, R. P., Bzdok, D., Hellyer, P. J., et al. (2020). 
Neuroimaging: into the multiverse. bioRxiv. doi: 10.1101/2020.10.29.359778

Damoiseaux, J. S., Beckmann, C. F., Arigita, E. S., Barkhof, F., Scheltens, P., Stam, C. J., 
et al. (2008). Reduced resting-state brain activity in the “default network” in normal 
aging. Cereb. Cortex. 18, 1856–1864.

Ding, Z., Newton, A. T., Ran, X., Anderson, A. W., Morgan, V. L., and Gore, J. C. 
(2013). Spatio-temporal correlation tensors reveal functional structure in human brain. 
PLoS One 8:e82107. doi: 10.1371/journal.pone.0082107

Dipasquale, O., Sethi, A., Laganà, M. M., Baglio, F., Baselli, G., Kundu, P., et al. (2017). 
Comparing resting state fMRI de-noising approaches using multi- and single-Echo 
acquisitions. PLoS One 12:e0173289. doi: 10.1371/journal.pone.0173289

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Ilkay Isik, A., Erramuzpe, A., 
et al. (2019). fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. 
Methods 16, 111–116. doi: 10.1038/s41592-018-0235-4

Farras-Permanyer, L., Mancho-Fora, N., Montalà-Flaquer, M., Bartrés-Faz, D., 
Vaqué-Alcázar, L., Peró-Cebollero, M., et al. (2019). Age-related changes in resting-state 
functional connectivity in older adults. Neural Regen. Res. 14, 1544–1555. doi: 
10.4103/1673-5374.255976

Fox, M. D., Zhang, D., Snyder, A. Z., and Raichle, M. E. (2009). The global signal and 
observed Anticorrelated resting state brain networks. J. Neurophysiol. 101, 3270–3283. 
doi: 10.1152/jn.90777.2008

Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., and Lorist, M. M. (2015). A 
brain-wide study of age-related changes in functional connectivity. Cereb. Cortex 25, 
1987–1999. doi: 10.1093/cercor/bhu012

Geerligs, L., Tsvetanov, K. A.Cam-Can, and Henson, R. N. (2017). Challenges in 
measuring individual differences in functional connectivity using fMRI: the case of 
healthy aging. Hum. Brain Mapp. 38, 4125–4156. doi: 10.1002/hbm.23653

Glasser, M. F., Coalson, T. S., Bijsterbosch, J. D., Harrison, S. J., Harms, M. P., 
Anticevic, A., et al. (2018). Using temporal ICA to selectively remove global noise while 
preserving global signal in functional MRI data. Neuroimage 181, 692–717. doi: 
10.1016/j.neuroimage.2018.04.076

Glover, G. H., Li, T. Q., and Ress, D. (2000). Image-based method for retrospective 
correction of physiological motion effects in fMRI: RETROICOR. Magn. Res. Med. 44, 
162–167. doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E

Golestani, A. M., and Chen, J. J. (2022). Performance of temporal and spatial 
independent component analysis in identifying and removing low-frequency 
physiological and motion effects in resting-state fMRI. Front. Neurosci. 16:867243. doi: 
10.3389/fnins.2022.867243

Golestani, A. M., Kwinta, J. B., Strother, S. C., Khatamian, Y. B., and Chen, J. J. (2016). 
The association between cerebrovascular reactivity and resting-state fMRI functional 
connectivity in healthy adults: the influence of basal carbon dioxide. Neuroimage 132, 
301–313. doi: 10.1016/j.neuroimage.2016.02.051

Grady, C., Sarraf, S., Saverino, C., and Campbell, K. (2016). Age differences in the 
functional interactions among the default, Frontoparietal control, and dorsal 

https://doi.org/10.3389/fnins.2024.1223230
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnins.2024.1223230/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2024.1223230/full#supplementary-material
https://doi.org/10.7554/eLife.53186
https://doi.org/10.1016/j.neuroimage.2019.116231
https://doi.org/10.1038/s41598-022-07578-6
https://doi.org/10.1002/hbm.25392
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1002/hbm.24433
https://doi.org/10.1111/j.2571-6161.1995.tb02031.x
https://doi.org/10.1016/j.neuroimage.2014.07.067
https://doi.org/10.1016/j.neuroimage.2006.02.048
https://doi.org/10.1089/brain.2016.0435
https://doi.org/10.1073/pnas.1415122111
https://doi.org/10.1016/j.neuroimage.2008.09.029
https://doi.org/10.1016/j.neuroimage.2008.09.029
https://doi.org/10.1016/j.neuroimage.2012.11.038
https://doi.org/10.1002/mrm.24201
https://doi.org/10.1101/2023.03.09.531726
https://doi.org/10.1016/j.neuroimage.2019.02.008
https://doi.org/10.1016/j.neuroimage.2018.02.004
https://doi.org/10.1016/j.neuroimage.2017.03.020
https://doi.org/10.1016/j.neuroimage.2021.118555
https://doi.org/10.1101/2020.10.29.359778
https://doi.org/10.1371/journal.pone.0082107
https://doi.org/10.1371/journal.pone.0173289
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.4103/1673-5374.255976
https://doi.org/10.1152/jn.90777.2008
https://doi.org/10.1093/cercor/bhu012
https://doi.org/10.1002/hbm.23653
https://doi.org/10.1016/j.neuroimage.2018.04.076
https://doi.org/10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
https://doi.org/10.3389/fnins.2022.867243
https://doi.org/10.1016/j.neuroimage.2016.02.051


Golestani and Chen 10.3389/fnins.2024.1223230

Frontiers in Neuroscience 15 frontiersin.org

attention networks. Neurobiol. Aging 41, 159–172. doi: 10.1016/j.neurobiolaging. 
2016.02.020

Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., 
Glasser, M. F., et al. (2017). Hand classification of fMRI ICA noise components. 
Neuroimage 154, 188–205. doi: 10.1016/j.neuroimage.2016.12.036

Gu, Y., Han, F., and Liu, X. (2019). Arousal contributions to resting-state fMRI 
connectivity and dynamics. Front. Neurosci. 13:1190. doi: 10.3389/fnins.2019.01190

Hamada, C., Kawagoe, T., Takamura, M., Nagai, A., Yamaguchi, S., and Onoda, K. 
(2021). Altered resting-state functional connectivity of the frontal-striatal circuit in 
elderly with apathy. PLoS One 16:e0261334. doi: 10.1371/journal.pone.0261334

Hausman, H. K., O’Shea, A., Kraft, J. N., Boutzoukas, E. M., Evangelista, N. D., 
Van Etten, E. J., et al. (2020). The role of resting-state network functional 
connectivity in cognitive aging. Front. Aging Neurosci. 12:177. doi: 10.3389/
fnagi.2020.00177

He, Y., Byrge, L., and Kennedy, D. P. (2020). Nonreplication of functional connectivity 
differences in autism Spectrum disorder across multiple sites and Denoising strategies. 
Hum. Brain Mapp. 41, 1334–1350. doi: 10.1002/hbm.24879

Huang, C. C., Hsieh, W. J., Lee, P. L., Peng, L. N., Liu, L. K., Lee, W. J., et al. (2015). 
Age‐related changes in resting‐state networks of a large sample size of healthy elderly. 
CNS Neurosci. Ther. 21, 817–825.

Jockwitz, C., and Caspers, S. (2021). Resting-state networks in the course of aging-
differential insights from studies across the lifespan vs. amongst the old. Pflugers Arc. 
473, 793–803. doi: 10.1007/s00424-021-02520-7

Jones, T. B., Bandettini, P. A., and Birn, R. M. (2008). Integration of motion correction 
and physiological noise regression in fMRI. Neuroimage 42, 582–590. doi: 10.1016/j.
neuroimage.2008.05.019

Kassinopoulos, M., and Mitsis, G. D. (2022). A multi-measure approach for assessing 
the performance of fMRI preprocessing strategies in resting-state functional 
connectivity. Magn. Reson. Imaging 85, 228–250. doi: 10.1016/j.mri.2021.10.028

Koch, W., Teipel, S., Mueller, S., Buerger, K., Bokde, A. L. W., Hampel, H., et al. (2010). 
Effects of aging on default mode network activity in resting state fMRI: does the method 
of analysis matter? Neuroimage 51, 280–287. doi: 10.1016/j.neuroimage.2009.12.008

Li, J., Kong, R., Liégeois, R., Orban, C., Tan, Y., Sun, N., et al. (2019). Global signal 
regression strengthens association between resting-state functional connectivity and 
behavior. Neuroimage 196, 126–141. doi: 10.1016/j.neuroimage.2019.04.016

Li, Y., Saxe, R., and Anzellotti, S. (2019). Intersubject MVPD: empirical comparison 
of fMRI Denoising methods for connectivity analysis. PLoS One 14:e0222914. doi: 
10.1371/journal.pone.0222914

Liu, T. T. (2016). Noise contributions to the fMRI signal: an overview. Neuroimage 143, 
141–151. doi: 10.1016/j.neuroimage.2016.09.008

Liu, T. T., Nalci, A., and Falahpour, M. (2017). The global signal in fMRI: nuisance or 
information? Neuroimage 150, 213–229. doi: 10.1016/j.neuroimage.2017.02.036

Madan, C. R. (2018). Age differences in head motion and estimates of cortical 
morphology. PeerJ 6:e5176. doi: 10.7717/peerj.5176

Makedonov, I., Black, S. E., and Macintosh, B. J. (2013). BOLD fMRI in the white 
matter as a marker of aging and small vessel disease. PLoS One 8:e67652. doi: 10.1371/
journal.pone.0067652

Mancho-Fora, N., Montalà-Flaquer, M., Farràs-Permanyer, L., Bartrés-Faz, D., 
Vaqué-Alcázar, L., Peró-Cebollero, M., et al. (2020). Resting-state functional dynamic 
connectivity and healthy aging: a sliding-window network analysis. Psicothema 32, 
337–345. doi: 10.7334/psicothema2020.92

Mazerolle, E. L., Gawryluk, J. R., Dillen, K. N. H., Patterson, S. A., Feindel, K. W., 
Beyea, S. D., et al. (2013). Sensitivity to white matter FMRI activation increases with field 
strength. PLoS One 8:e58130. doi: 10.1371/journal.pone.0058130

Mowinckel, A. M., Espeseth, T., and Westlye, L. T. (2012). Network-specific effects of 
age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults. 
Neuroimage 63, 1364–1373. doi: 10.1016/j.neuroimage.2012.08.004

Muschelli, J., Nebel, M. B., Caffo, B. S., Barber, A. D., Pekar, J. J., and Mostofsky, S. H. 
(2014). Reduction of motion-related artifacts in resting state fMRI using aCompCor. 
Neuroimage 96, 22–35. doi: 10.1016/j.neuroimage.2014.03.028

Onoda, K., and Yamaguchi, S. (2013). Small-Worldness and modularity of the resting-
state functional brain network decrease with aging. Neurosci. Lett. 556, 104–108. doi: 
10.1016/j.neulet.2013.10.023

Pardoe, H. R., Hiess, R. K., and Kuzniecky, R. (2016). Motion and morphometry in 
clinical and nonclinical populations. Neuroimage 135, 177–185. doi: 10.1016/j.
neuroimage.2016.05.005

Parkes, L., Fulcher, B., Yücel, M., and Fornito, A. (2018). An evaluation of the efficacy, 
reliability, and sensitivity of motion correction strategies for resting-state functional 
MRI. Neuroimage 171, 415–436. doi: 10.1016/j.neuroimage.2017.12.073

Patil, A. U., Madathil, D., and Huang, C.-M. (2021). Healthy aging alters the functional 
connectivity of creative cognition in the default mode network and cerebellar network. 
Front. Aging Neurosci. 13:607988. doi: 10.3389/fnagi.2021.607988

Peer, M., Nitzan, M., Bick, A. S., Levin, N., and Arzy, S. (2017). Evidence for functional 
networks within the human Brain’s white matter. J. Neurosci. Off. J. Soc. Neurosci. 37, 
6394–6407. doi: 10.1523/JNEUROSCI.3872-16.2017

Podgórski, P., Waliszewska-Prosół, M., Zimny, A., Sąsiadek, M., and Bladowska, J. 
(2021). Resting-state functional connectivity of the ageing female brain—differences 
between young and elderly female adults on multislice short TR Rs-fMRI. Front. Neurol. 
12:645974. doi: 10.3389/fneur.2021.645974

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., and Petersen, S. E. (2012). 
Spurious but systematic correlations in functional connectivity MRI networks Arise 
from subject motion. Neuroimage 59, 2142–2154. doi: 10.1016/j.neuroimage.2011.10.018

Power, J. D., Lynch, C. J., Silver, B. M., Dubin, M. J., Martin, A., and Jones, R. M. 
(2019). Distinctions among real and apparent respiratory motions in human fMRI data. 
Neuroimage 201:116041. doi: 10.1016/j.neuroimage.2019.116041

Pruim, R. H. R., Mennes, M., Buitelaar, J. K., and Beckmann, C. F. (2015a). Evaluation 
of ICA-AROMA and alternative strategies for motion artifact removal in resting state 
fMRI. Neuroimage 112, 278–287. doi: 10.1016/j.neuroimage.2015.02.063

Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., and 
Beckmann, C. F. (2015b). ICA-AROMA: a robust ICA-based strategy for removing 
motion artifacts from fMRI data. Neuroimage 112, 267–277. doi: 10.1016/j.
neuroimage.2015.02.064

Saccà, V., Sarica, A., Quattrone, A., Rocca, F., Quattrone, A., and Novellino, F. (2021). 
Aging effect on head motion: a machine learning study on resting state fMRI data. J. 
Neurosci. Methods, January, 109084 352, 109084. doi: 10.1016/j.jneumeth.2021.109084

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L., and 
Smith, S. M. (2014). Automatic Denoising of functional MRI data: combining 
independent component analysis and hierarchical fusion of classifiers. Neuroimage 90, 
449–468. doi: 10.1016/j.neuroimage.2013.11.046

Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., 
Calkins, M. E., et al. (2013). An improved framework for confound regression and 
filtering for control of motion artifact in the preprocessing of resting-state functional 
connectivity data. Neuroimage 64, 240–256. doi: 10.1016/j.neuroimage.2012.08.052

Savalia, N. K., Agres, P. F., Chan, M. Y., Feczko, E. J., Kennedy, K. M., and Wig, G. S. (2017). 
Motion-related artifacts in structural brain images revealed with independent estimates of 
in-scanner head motion. Hum. Brain Mapp. 38, 472–492. doi: 10.1002/hbm.23397

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., et al. 
(2018). Local-global Parcellation of the human cerebral cortex from intrinsic functional 
connectivity MRI. Cereb. Cortex 28, 3095–3114. doi: 10.1093/cercor/bhx179

Scheel, N., Keller, J. N., Binder, E. F., Vidoni, E. D., Burns, J. M., Thomas, B. P., et al. 
(2022). Evaluation of noise regression techniques in resting-state fMRI studies using 
data of 434 older adults. Front. Neurosci. 16:1006056. doi: 10.3389/fnins.2022.1006056

Scheel, N., Tarumi, T., Tomoto, T., Cullum, C. M., Zhang, R., and Zhu, D. C. (n.d.). 
Resting-state functional MRI signal fluctuations are correlated with brain amyloid-β 
deposition. medRxiv. doi: 10.1101/2021.04.22.21255924

Schultz, A. P., Chhatwal, J. P., Huijbers, W., Hedden, T., van Dijk, K. R. A., 
McLaren, D. G., et al. (2014). Template based rotation: a method for functional 
connectivity analysis with a priori templates. Neuroimage Rep. 102, 620–636. doi: 
10.1016/j.neuroimage.2014.08.022

Shams, S., LeVan, P., and Chen, J. J. (2021). The neuronal associations of respiratory-
volume variability in the resting state. Neuroimage 230:117783. doi: 10.1016/j.
neuroimage.2021.117783

Shin, W., Koenig, K. A., and Lowe, M. J. (2022). A comprehensive investigation of 
physiologic noise modeling in resting state fMRI; time shifted cardiac noise in EPI and 
its removal without external physiologic signal measures. Neuroimage 254:119136. doi: 
10.1016/j.neuroimage.2022.119136

Siman-Tov, T., Bosak, N., Sprecher, E., Paz, R., Eran, A., Aharon-Peretz, J., et al. (2016). 
Early age-related functional connectivity decline in high-order cognitive networks. 
Front. Aging Neurosci. 8:330. doi: 10.3389/fnagi.2016.00330

Song, J., Birn, R. M., Boly, M., Meier, T. B., Nair, V. A., Meyerand, M. E., et al. (2014). 
Age-related reorganizational changes in modularity and functional connectivity of 
human brain networks. Brain Connect. 4, 662–676. doi: 10.1089/brain.2014.0286

Stumme, J., Jockwitz, C., Hoffstaedter, F., Amunts, K., and Caspers, S. (2020). 
Functional network reorganization in older adults: graph-theoretical analyses of age, 
cognition and sex. Neuroimage 214:116756. doi: 10.1016/j.neuroimage.2020.116756

Tailby, C., Masterton, R. A. J., Huang, J. Y., Jackson, G. D., and Abbott, D. F. (2015). 
Resting state functional connectivity changes induced by prior brain state are not 
network specific. Neuroimage 106, 428–440. doi: 10.1016/j.neuroimage.2014.11.037

Thomas, C. G., Harshman, R. A., and Menon, R. S. (2002). Noise reduction in BOLD-
based fMRI using component analysis. Neuroimage 17, 1521–1537. doi: 10.1006/
nimg.2002.1200

Tong, Y., Hocke, L. M., Fan, X., Janes, A. C., and Frederick, B. D. (2015). Can apparent 
resting state connectivity Arise from systemic fluctuations? Front. Hum. Neurosci. 9:285. 
doi: 10.3389/fnhum.2015.00285

Tong, Y., Hocke, L. M., and Frederick, B. B. (2019). Low frequency systemic hemodynamic 
‘noise’ in resting state BOLD fMRI: characteristics, causes, implications, mitigation strategies, 
and applications. Front. Neurosci. 13:787. doi: 10.3389/fnins.2019.00787

Tsvetanov, K. A., Henson, R. N. A., Jones, P. S., Mutsaerts, H., Fuhrmann, D., 
Tyler, L. K., et al. (2020). The effects of age on resting-state BOLD signal variability is 
explained by cardiovascular and cerebrovascular factors. Psychophysiology 58:e13714. 
doi: 10.1111/psyp.13714, November, e13714

https://doi.org/10.3389/fnins.2024.1223230
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.neurobiolaging.2016.02.020
https://doi.org/10.1016/j.neurobiolaging.2016.02.020
https://doi.org/10.1016/j.neuroimage.2016.12.036
https://doi.org/10.3389/fnins.2019.01190
https://doi.org/10.1371/journal.pone.0261334
https://doi.org/10.3389/fnagi.2020.00177
https://doi.org/10.3389/fnagi.2020.00177
https://doi.org/10.1002/hbm.24879
https://doi.org/10.1007/s00424-021-02520-7
https://doi.org/10.1016/j.neuroimage.2008.05.019
https://doi.org/10.1016/j.neuroimage.2008.05.019
https://doi.org/10.1016/j.mri.2021.10.028
https://doi.org/10.1016/j.neuroimage.2009.12.008
https://doi.org/10.1016/j.neuroimage.2019.04.016
https://doi.org/10.1371/journal.pone.0222914
https://doi.org/10.1016/j.neuroimage.2016.09.008
https://doi.org/10.1016/j.neuroimage.2017.02.036
https://doi.org/10.7717/peerj.5176
https://doi.org/10.1371/journal.pone.0067652
https://doi.org/10.1371/journal.pone.0067652
https://doi.org/10.7334/psicothema2020.92
https://doi.org/10.1371/journal.pone.0058130
https://doi.org/10.1016/j.neuroimage.2012.08.004
https://doi.org/10.1016/j.neuroimage.2014.03.028
https://doi.org/10.1016/j.neulet.2013.10.023
https://doi.org/10.1016/j.neuroimage.2016.05.005
https://doi.org/10.1016/j.neuroimage.2016.05.005
https://doi.org/10.1016/j.neuroimage.2017.12.073
https://doi.org/10.3389/fnagi.2021.607988
https://doi.org/10.1523/JNEUROSCI.3872-16.2017
https://doi.org/10.3389/fneur.2021.645974
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neuroimage.2019.116041
https://doi.org/10.1016/j.neuroimage.2015.02.063
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1016/j.jneumeth.2021.109084
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1002/hbm.23397
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.3389/fnins.2022.1006056
https://doi.org/10.1101/2021.04.22.21255924
https://doi.org/10.1016/j.neuroimage.2014.08.022
https://doi.org/10.1016/j.neuroimage.2021.117783
https://doi.org/10.1016/j.neuroimage.2021.117783
https://doi.org/10.1016/j.neuroimage.2022.119136
https://doi.org/10.3389/fnagi.2016.00330
https://doi.org/10.1089/brain.2014.0286
https://doi.org/10.1016/j.neuroimage.2020.116756
https://doi.org/10.1016/j.neuroimage.2014.11.037
https://doi.org/10.1006/nimg.2002.1200
https://doi.org/10.1006/nimg.2002.1200
https://doi.org/10.3389/fnhum.2015.00285
https://doi.org/10.3389/fnins.2019.00787
https://doi.org/10.1111/psyp.13714


Golestani and Chen 10.3389/fnins.2024.1223230

Frontiers in Neuroscience 16 frontiersin.org

Tsvetanov, K. A., Henson, R. N. A., Tyler, L. K., Davis, S. W., Shafto, M. A., Taylor, J. R., 
et al. (2015). The effect of ageing on fMRI: correction for the confounding effects of 
vascular reactivity evaluated by joint fMRI and MEG in 335 adults. Hum. Brain Mapp. 
36, 2248–2269. doi: 10.1002/hbm.22768

Van Dijk, K. R., Sabuncu, M. R., and Buckner, R. L. (2012). The influence of head 
motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–438. doi: 
10.1016/j.neuroimage.2011.07.044

Van Schuerbeek, P., De Wandel, L., and Baeken, C. (2022). The optimized combination 
of aCompCor and ICA-AROMA to reduce motion and physiologic noise in task fMRI 
data. Biomed. Phys. Eng. Exp. 8. doi: 10.1088/2057-1976/ac63f0

Varangis, E., Habeck, C. G., Razlighi, Q. R., and Stern, Y. (2019). The effect of aging 
on resting state connectivity of predefined networks in the brain. Front. Aging Neurosci. 
11:234. doi: 10.3389/fnagi.2019.00234

Wang, P., Wang, J., Michael, A., Wang, Z., Klugah-Brown, B., Meng, C., et al. 
(2022). White matter functional connectivity in resting-state fMRI: robustness, 
reliability, and relationships to gray matter. Cereb. Cortex 32, 1547–1559. doi: 
10.1093/cercor/bhab181

Weiler, M., Casseb, R. F., de Campos, B. M., Crone, J. S., Lutkenhoff, E. S., Vespa, P. M., 
et al. (2022). Evaluating Denoising strategies in resting-state functional magnetic 
resonance in traumatic brain injury (EpiBioS4Rx). Hum. Brain Mapp. 43, 4640–4649. 
doi: 10.1002/hbm.25979

Whitfield-Gabrieli, S., and Nieto-Castanon, A. (2012). Conn: a functional connectivity 
toolbox for correlated and Anticorrelated brain networks. Brain Connect. 2, 125–141. 
doi: 10.1089/brain.2012.0073

Wise, R. G., Ide, K., Poulin, M. J., and Tracey, I. (2004). Resting fluctuations in arterial 
carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 
21, 1652–1664. doi: 10.1016/j.neuroimage.2003.11.025

Wong, C. W., Olafsson, V., Tal, O., and Liu, T. T. (2013). The amplitude of the resting-
state fMRI global signal is related to EEG vigilance measures. Neuroimage 83, 983–990. 
doi: 10.1016/j.neuroimage.2013.07.057

Xie, W., Peng, C.-K., Shen, J., Lin, C.-P., Tsai, S.-J., Wang, S., et al. (2020). Age-related 
changes in the Association of Resting-State fMRI signal variability and global functional 
connectivity in non-demented healthy people. Psychiatry Res. 291:113257. doi: 10.1016/j.
psychres.2020.113257

Yang, A. C., Tsai, S.-J., Lin, C.-P., Peng, C.-K., and Huang, N. E. (2018). Frequency 
and amplitude modulation of resting-state fMRI signals and their functional 
relevance in Normal aging. Neurobiol. Aging 70, 59–69. doi: 10.1016/j.
neurobiolaging.2018.06.007

Yeo, B. T., Thomas, B. T., Yeo, T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., et al. 
(2011). The Organization of the Human Cerebral Cortex Estimated by intrinsic 
functional connectivity. J. Neurophysiol. 106, 1125–1165. doi: 10.1152/jn.00338.2011

Yuan, B.-K., Zang, Y.-F., and Liu, D.-Q. (2016). Influences of head motion regression 
on high-frequency oscillation amplitudes of resting-state fMRI signals. Front. Hum. 
Neurosci. 10:243. doi: 10.3389/fnhum.2016.00243

Yuan, H., Zotev, V., Phillips, R., and Bodurka, J. (2013). Correlated slow fluctuations 
in respiration, EEG, and BOLD fMRI. Neuroimage 79, 81–93. doi: 10.1016/j.
neuroimage.2013.04.068

Zhang, H.-Y., Chen, W.-X., Jiao, Y., Yao, X., Zhang, X.-R., and Jing-Tao, W. (2014). 
Selective vulnerability related to aging in large-scale resting brain networks. PLoS One 
9:e108807. doi: 10.1371/journal.pone.0108807

Zhong, X. Z., and Chen, J. J. (2022). Resting-state functional magnetic resonance 
imaging signal variations in aging: the role of neural activity. Hum. Brain Mapp. 43, 
2880–2897. doi: 10.1002/hbm.25823

https://doi.org/10.3389/fnins.2024.1223230
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1002/hbm.22768
https://doi.org/10.1016/j.neuroimage.2011.07.044
https://doi.org/10.1088/2057-1976/ac63f0
https://doi.org/10.3389/fnagi.2019.00234
https://doi.org/10.1093/cercor/bhab181
https://doi.org/10.1002/hbm.25979
https://doi.org/10.1089/brain.2012.0073
https://doi.org/10.1016/j.neuroimage.2003.11.025
https://doi.org/10.1016/j.neuroimage.2013.07.057
https://doi.org/10.1016/j.psychres.2020.113257
https://doi.org/10.1016/j.psychres.2020.113257
https://doi.org/10.1016/j.neurobiolaging.2018.06.007
https://doi.org/10.1016/j.neurobiolaging.2018.06.007
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.3389/fnhum.2016.00243
https://doi.org/10.1016/j.neuroimage.2013.04.068
https://doi.org/10.1016/j.neuroimage.2013.04.068
https://doi.org/10.1371/journal.pone.0108807
https://doi.org/10.1002/hbm.25823

	Comparing data-driven physiological denoising approaches for resting-state fMRI: implications for the study of aging
	Introduction
	Method
	Participants and data acquisition
	Data preprocessing and physiological denoising
	Evaluation metrics
	BOLD-signal spectral power
	rs-fcMRI metrics
	Testing the generalizability of findings across sampling rates
	Statistical testing

	Results
	Discussion
	Physiological noise power spectrum
	Choice of denoising methods
	Impact on BOLD signal spectrum
	Interaction between head motion, fast sampling and the BOLD signal spectrum
	Impact on fcMRI strength
	Impact on age-related fcMRI differences
	Limitations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	References

