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Introduction: Crohn’s disease (CD), one of the main phenotypes of inflammatory 
bowel disease (IBD), can affect any part of the gastrointestinal tract. It can impact 
the function of gastrointestinal secretions, as well as increasing the intestinal 
permeability leading to an aberrant immunological response and subsequent 
intestinal inflammation. Studies have reported anatomical and functional 
brain changes in Crohn’s Disease patients (CDs), possibly due to increased 
inflammatory markers and microglial cells that play key roles in communicating 
between the brain, gut, and systemic immune system. To date, no studies have 
demonstrated similarities between morphological brain changes seen in IBD 
and brain morphometry observed in older healthy controls..

Methods: For the present study, twelve young CDs in remission (M = 26.08 
years, SD = 4.9 years, 7 male) were recruited from an IBD Clinic. Data from 
12 young age-matched healthy controls (HCs) (24.5 years, SD = 3.6 years, 8 
male) and 12 older HCs (59 years, SD = 8 years, 8 male), previously collected 
for a different study under a similar MR protocol, were analyzed as controls. 
T1 weighted images and structural image processing techniques were used 
to extract surface-based brain measures, to test our hypothesis that young 
CDs have different brain surface morphometry than their age-matched young 
HCs and furthermore, appear more similar to older HCs. The phonemic verbal 
fluency (VF) task (the Controlled Oral Word Association Test, COWAT) (Benton, 
1976) was administered to test verbal cognitive ability and executive control.

Results/Discussion: On the whole, CDs had more brain regions with differences 
in brain morphometry measures when compared to the young HCs as 
compared to the old HCs, suggesting that CD has an effect on the brain that 
makes it appear more similar to old HCs. Additionally, our study demonstrates 
this atypical brain morphometry is associated with function on a cognitive task. 
These results suggest that even younger CDs may be showing some evidence of 
structural brain changes that demonstrate increased resemblance to older HC 
brains rather than their similarly aged healthy counterparts.
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Introduction

Crohn’s disease (CD), one of the main phenotypes of inflammatory 
bowel disease (IBD), can affect any part of the gastrointestinal tract 
(Fiorindi et al., 2022; Godala et al., 2022). It can impact the function 
of gastrointestinal secretions, as well as increasing the intestinal 
permeability leading to an aberrant immunological response and 
subsequent intestinal inflammation (Chichlowski and Hale, 2008). 
Even patients in remission experience post-inflammatory changes 
leading to intestinal hypersensitivity (Jacobson et al., 1995). There is 
evidence suggesting that the inflammatory response of IBD may affect 
a patient’s mental state by altering motor and sensory systems causing 
difficulties with cognition (Nair et al., 2016; van Langenberg et al., 
2017; Sharma et al., 2021) and psychological stress precipitating mood 
disorders (Zhang et al., 2016; Banovic et al., 2020). The effect of IBD 
may also alter the brain and lead to anatomical and functional 
changes. Several studies have reported anatomical and functional 
brain changes in Crohn’s Disease patients (CDs), possibly due to 
increased inflammatory markers and microglial cells that play key 
roles in communicating between the brain, gut, and systemic immune 
system (Sajadinejad et al., 2012; Hou et al., 2019). It has been proposed 
that these systemic alterations lead to a series of changes to neuronal 
connections and processes resulting in anatomical or functional brain 
changes that impact cognitive or emotion regulation skills (Zeng et al., 
2012; Nair et al., 2016; Bao et al., 2017b). These brain changes may also 
explain why CDs tend to have a reduced ability to regulate cognitive 
and emotional states than their non-CD counterparts (Thomason and 
Thompson, 2011; Bushnell et al., 2013; Nair et al., 2016). Additionally, 
anatomical and functional changes in the brain may be influenced by 
the comorbidities associated with CD such as chronic pain, 
psychological stress, anxiety, and depression (Sajadinejad et al., 2012).

There is mounting evidence suggesting that the differences 
observed in brain function and structure of CDs may be correlated 
with cognitive differences. For instance, a couple of diffusion tensor 
imaging (DTI) studies have identified white matter (WM) 
microstructural differences in CDs compared to heatlhy controls 
(HCs). Zikou et al. reported IBD patients (CD or ulcerative colitis) 
who showed decreased axial diffusivity in the right corticospinal tract 
(involved in motor function) and right superior longitudinal fasciculus 
(involved in language function) when compared to HCs (Zikou et al., 
2014). Our previous DTI study identified significant alterations in 
WM microstructure of CDs compared to HCs in brain regions 
implicated in language function despite the absence of differences in 
a verbal fluency measure designed to assess verbal cognitive ability 
and executive control (Hou et al., 2020).

A meta-analysis of CDs brain imaging literature reported reduced 
GM volume in the medial frontal gyrus compared to that of HCs 
(Yeung, 2021). Bao, et al. identified cortical thickness of the left insula 
and orbitofrontal cortex and gray matter (GM) volumes of the right 
anterior cingulate cortex (ACC), dorsomedial prefrontal cortex and 
left insula were negatively correlated with disease duration (Bao et al., 
2015). A subsequent study by Bao, et al. identified differences in GM 

volumes between CDs in remission with and without abdominal pain, 
finding lower GM volumes in the insula and ACC in CDs with pain 
compared to those without (Bao et  al., 2017a). Other regions of 
cortical thickness increases, and sub-cortical volume decreases, have 
also been reported and correlated to pain score or disease duration 
(Nair et al., 2016). Zikou et al. also found brain regions of atrophy in 
CDs such as the bilateral fusiform and inferior temporal gyrus which 
are related to emotion processing (Zikou et al., 2014). A study by 
Thapaliya, et al., demonstrated a significant reduction in gray matter 
volume (GMV), white matter volume and cortical thickness in the left 
prefrontal gyrus and increased GMV in frontal brain regions in CDs 
versus HCs (Thapaliya et al., 2022). Additionally, another study found 
CDs with extraintestinal manifestations of the disease, but not those 
without such manifestations, were especially prone to cortical brain 
changes, suggesting that brain changes are more strongly influenced 
by the systemic inflammation of the disease (Thomann et al., 2016).

Our previous task-based functional magnetic resonance imaging 
study looking at verbal fluency of CDs in remission found that activity 
intensity in regions of the right hemisphere was positively correlated 
with disease duration. Furthermore, the study identified similar task 
activation patterns between young adult CDs and healthy older HCs. 
This suggests that young adult CD brain changes may resemble brains 
older healthy adults (Nair et al., 2019), perhaps due to the increase of 
proinflammatory cytokine exposure in both aging adults and CDs. 
Additionally, IBD has been associated with age-related diseases such 
as, Parkinson’s (Lin et al., 2016; Brudek, 2019; Zeng et al., 2022) and 
Alzheimer’s disease (Hillary et al., 2020; Wang et al., 2022). To date, 
no studies have demonstrated similarities between morphological 
brain changes seen in IBD and brain morphometry observed in older 
healthy controls.

Among many techniques, the brain cortical thickness measures 
using magnetic resonance imaging (MRI) have proven sensitive to 
examine the changes in brain structure and development with some 
studies having used the volumetric measurement (e.g., voxel-based 
morphometry) to examine CD in remission (Nair et  al., 2016; 
Thomann et al., 2021). However, volumetric measurement has some 
limitations. For example, it is inadequate for investigating brain 
surface folding due to its lack of statistical power (Lemaitre et al., 2012; 
Jin et al., 2018). Other cortical surface morphometries such as the 
cortical thickness, fractal dimensionality (FD), gyrification, and sulcal 
depth also influence the volumetric results (Trost et  al., 2013; 
Hirakawa et al., 2016).

Cortical thickness measures the distance between the points on 
the pial and white matter boundaries of the neocortex, in addition to 
measuring the gray matter morphological difference (Hirakawa et al., 
2016; Seiger et al., 2018). However, cortical thickness is limited to the 
cortex and therefore it cannot examine non-cortical regions 
(Bermudez et al., 2009). Another measure, fractal dimensionality, 
reflects how the brain structure fits to space constraints (Yotter et al., 
2011b) and is used to investigate cortical complexity of cerebral 
folding reported as a single numerical value (Di Ieva et al., 2014, 2015; 
Madan and Kensinger, 2017). Studies have demonstrated that FD is 
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sensitive to internal shape complexity of the brain that gray matter 
volume and cortical thickness measures are not (Zhang et al., 2008; 
Madan and Kensinger, 2017; Chen et al., 2020). Gyrification examines 
the level of local cortical folding that relates to the integrity between 
subcortical and cortex circuits (Li et al., 2021). Sulcal depth, based on 
the Euclidean distance between the pial and outer surface (Yun et al., 
2013; Li et al., 2021), is generated from the changes of gray and white 
matter in the cerebral cortex as well as subcortical structures, making 
it sensitive to the complicated folding of the cerebral surface (Im et al., 
2008; Kim et al., 2008; Kochunov et al., 2008; Jin et al., 2018).

In the current study, we aim to build upon our previous study by 
using structural imaging techniques that include the cortical thickness, 
fractal dimensionality, gyrification, and sulcal depth (see Methods for 
description of each metric), to test our hypothesis that the young CDs 
have different brain surface morphometry than their age-matched 
young HCs and furthermore, appear more similar to the older HCs. 
Additionally, we hypothesize these structural changes will be reflected 
in functional outcome differences in cognitive function.

Methods

Participants

Twelve young CDs in remission (M = 26.08 years, SD = 4.9 years, 7 
male) were recruited from the IBD Clinic. Data from 12 young 
age-matched HCs (24.5 years, SD = 3.6 years, 8 male) and 12 older HCs 
(59 years, SD = 8 years, 8 male), previously collected for a different 
study with similar MR scan protocol, were analyzed as controls. 
Participant characteristics are shown in Table 1. HCs had no history 
of substance abuse, affective, psychiatric, or neurological disorders, 
and were mostly right-handed (Oldfield, 1971). The participants were 
screened for cognitive deficits using the Mini-Mental State 
Examination (Folstein et al., 1975) and provided written informed 
consent. The protocol was reviewed and approved (#H2014–0131) by 
the local health sciences IRB. All methods were carried out in 
accordance with relevant guidelines and regulations. All experimental 
protocols were approved by the Institutional Review Board (IRB) of 
the School of Medicine and Public Health, University of 
Wisconsin-Madison.

Behavioral data acquisition

We administered the phonemic verbal fluency (VF) task (the 
Controlled Oral Word Association Test, COWAT; Benton, 1976) to 

test verbal cognitive ability and executive control. All CDs and HCs 
were tested for the VF task outside the scanner. COWAT has been 
extensively used in both clinical and non-clinical populations on 
account of its face validity (Sauzéon et al., 2011), assessment of both 
verbal cognitive ability and executive control (Fisk and Sharp, 2004), 
and high correlation with measures of attention, verbal memory, and 
word knowledge (Ruff et  al., 1997). Participants were required to 
produce words beginning with the letters “F,” “A,” “S,” in three 1-min 
trials, respectively. A normalized VF z-score, corrected for age and 
education, based on the total correct responses over the 3 trials was 
used to quantify VF performance for each participant.

MRI data acquisition

The MRI data were acquired on a GE750 3 T MRI scanner. A 
whole brain high-resolution 3D T1-weighted BRAVO, IR-prepared 
FSPGR (Fast Spoiled Gradient Recalled Echo), MRI sequence with 
156 axial slices was performed for each participant using the following 
parameters: TR = 8.132 ms, TE = 3.18 ms, TI = 450 ms, feld of 
view = 256 × 256 mm2, flip angle = 12, matrix = 256 × 256, in-plane 
resolution =1 × 1 mm2, slice thickness = 1.0 mm.

Cortical surface preprocessing

The Computational Anatomy Toolbox (CAT12)1, which is a 
plug-in software based on Statistical Parametric Mapping (SPM12)2 
and integrated into MATLAB (MathWorks), was used for the 
T1-weighted MRI data preprocessing. The CAT12 is not only a more 
precise and accurate analysis of gray matter volume than the previous 
voxel-based morphometry plug-in toolbox in SPM (Farokhian et al., 
2017; Yuksel et al., 2018), but also is fully automated for surface-based 
analysis (Zhuang et al., 2017). The data preprocessing with CAT12 
consisted of bias-field correction, skull-stripping, and alignment to the 
Montreal Neurological Institute (MNI) structural template to classify 
gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), 
as well as spatial normalization with the Diffeomorphic Anatomical 
Registration Through Exponentiated Lie Algebra (DARTEL) 
registration (1.5 mm) (Kurth et al., 2015; Zhuang et al., 2017; Yuksel 
et al., 2018). Subsequently, we employed a spherical harmonic method 

1 http://www.neuro.uni-jena.de/cat/

2 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

TABLE 1 Characteristics and cognitive measures among young CDs, young HCs and old HCs.

Characteristics Young CDs Young CDs Old CDs F(2, 33) p

Number 12 12 12

Age (years) 26.083 (4.926) 24.500 (3.606) 59.250 (8.081) 135.145 0.000

Education 15.750 (2.563) 16.417 (2.021) 16.583 (2.275) 0.442 0.646

Gender (male/female) 7/5 8/4 8/4 0.111 0.895

Handedness (L/R/A) 1/8/3 1/11/0 0/12/0 2.029 0.148

Mean VF raw score 45.417 (13.222) 45.250 (11.702) 42.417 (9.424) 0.255 0.776

IBD medications Antibiotics 0, 5- aminosalicyclate, 7 immunomodulator 6, antitumor necrosis factorα 9, anti-integrin1, corticosteroids 0
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(Yotter et al., 2011a) to reparametrize the cortical surface mesh based 
on an algorithm that reduces area distortions (Yotter et al., 2011c) to 
repair any topological defects (Yotter et al., 2011a,c; Chen et al., 2020). 
Cortical thickness was analyzed based on the workflow specified in 
the study by Dahnke et  al. (2013). This algorithm uses tissue 
segmentation to evaluate the WM distance and also projects the local 
maxima to other GM voxel. Values at the outer GM boundary in the 
WM distance map is projected back to the inner GM boundary to 
generate the GM thickness (Li et al., 2021). Following this, a central 
surface was created at the 50% level of the percentage position between 
the WM distance and GM thickness (Li et al., 2021). For the resultant 
central surface, a topology correction based on spherical harmonics 
was used to account for topological defects (Yotter et al., 2011a; Li 
et al., 2021). Moreover, the central surface was reparameterized into a 
common coordinate system through spherical mapping, and the 
spatial normalization was used with the DARTEL registration (Li 
et  al., 2021). Spatially smoothing with 15 mm full width at half 
maximum (FWHM) Gaussian kernel was used for this analysis.

The fractal dimensionality estimates cortical fold complexity 
based on spherical harmonic reconstructions (Yotter et al., 2011a; Li 
et al., 2021) and is calculated as the slope of a logarithmic plot of 
surface area versus the maximum l-value, where the maximum l-value 
is a measure of the bandwidth of frequencies used to reconstruct the 
surface shape (Yotter et al., 2011b; Li et al., 2021). Smoothing with 
15 mm FWHM Gaussian kernel was used for the fractal 
dimensionality analysis.

Based on the spherical harmonic reconstructions, the gyrification, 
as an indicator of cortical folding, was calculated as absolute mean 
curvature (Luders et al., 2006; Li et al., 2021). Mean curvature is an 
extrinsic surface measure, and provides information about the change 
in normal direction along the surface (Li et al., 2021). Smoothing with 
15 mm FWHM Gaussian kernel was used for this analysis.

The sulcal depth measures the depth of sulci and is calculated as 
the Euclidean distance between the central surface and its convex hull 
based on the spherical harmonic reconstructions, then transformed 
with the sqrt function (Li et al., 2021). Smoothing with 15 mm FWHM 
Gaussian kernel was used for this analysis.

Statistical analysis

The demographic differences between the CDs and young or old 
HCs were analyzed by independent samples t-tests. Group 
comparisons of cortical thickness, fractal dimensionality, gyrification, 
and sulcal depth were performed using the CAT12 and analyzed via a 
non-parametric permutation technique. The Threshold-Free Cluster 
Enhancement (TFCE) was used in permutation testing with 5,000 
permutations (Smith and Nichols, 2009). TFCE p < 0.05 images 
obtained were family-wise error corrected for multiple comparisons 
across space. The brain regions with cluster size at least 100 vertices 
(cluster size × percentage covered in the specific region produced by 
CAT12) were reported. The Desikan–Killiany atlas (DK40) (Desikan 
et al., 2006) was used to label the cortical regions and the results were 
visualized using the CAT12. Moreover, when group differences with 
detailed regions were observed in CAT12, we conducted the Pearson 
correlation between each surface index and VF score in each group in 
IBM SPSS version 23, with its threshold of family-wise error corrected 
p < 0.05.

Results

Behavior

A One-Way ANOVA showed that there were no significant 
differences between young CDs, young HCs, and old HCs on 
education, VF score, gender and handedness. Posthoc analysis 
revealed no age difference between young CDs and young HCs 
(p = 0.512), but there was a statistical difference between the ages of 
young CDs and old HCs (p = 0.000), and also between the young HCs 
and old HCs (p = 0.000) (see Table 1 for details).

Group differences in cortical surface 
measures

Cortical thickness
Compared to the young HCs, the young CDs demonstrated 

significantly decreased cortical thickness in the right fusiform, inferior 
occipital and lingual gyri (see Figure 1A and Table 2). However, the 
young CDs exhibited significantly increased cortical thickness in the 
right postcentral gyrus compared to the old HCs (see Figure 2A and 
Table 3).

Fractal dimensionality
The fractal dimensionality revealed bi-directional results. When 

compared to young HCs, the young CDs showed significant increases 
in the lateral occipital, lingual and insula gyri, as well as, the superior 
and inferior parietal lobules in the left hemisphere. Contrarily, 
significant decreases in fractal dimensionality were observed in the 
young CDs compared to the young HCs in the left superior temporal 
and superior frontal gyri, right superior and inferior parietal lobules, 
right precuneus, insula, parstriangularis, rostral middle frontal gyri, 
as well as the bilateral supramarginal and postcentral gyri (see 
Figure 1B and Table 2).

The fractal dimensionality also demonstrated bi-directional 
results between young CDs and old HCs. Compared to the old HCs, 
the young CDs exhibited significantly increased fractal dimensionality 
in the superior frontal, rostral and caudal middle frontal, lateral 
orbitofrontal, lingual, supramarginal and rostral anterior cingulate 
gyri, superior and paracentral lobules in the left hemisphere, and the 
right pericalcarine and medial orbitofrontal gyri in the right 
hemisphere. However, the young CDs also showed significantly 
decreased fractal dimensionality in the left inferior parietal lobule and 
the right superior frontal and parstriangularis gyri compared to the 
old HCs (see Figure 2B and Table 3).

Gyrification index
Compared to the young HCs, the young CDs illustrated significant 

increased gyrification in the superior frontal, rostral middle frontal, 
medial and lateral orbitofrontal, caudal and rostral anterior cingulate, 
isthmus cingulate, precentral, precuneus gyri, superior parietal, and 
paracentral lobules in the left hemisphere, as well as the supramarginal 
gyrus in the right hemisphere (see Figure 1C and Table 2).

Compared to the old HCs, the young CDs exhibited significantly 
increased gyrification in the posterior and caudal anterior cingulate 
gyri, and paracentral lobule in the left hemisphere, in the superior 
temporal, insula, rostral middle frontal and lateral orbitofrontal gyri 
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in the right hemisphere, as well as significantly decreased gyrification 
in the right fusiform and lateral occipital gyri (see Figure 2C and 
Table 3).

Sulcal depth
Compared to the young HCs, the young CDs showed significantly 

increased sulcal depth only in the right inferior parietal lobule. They 
also revealed significantly decreased sulcal depth in the caudal 
middle frontal, cuneus, entorhinal gyri in the left hemisphere, the 
precentral, postcentral, supramarginal and middle temporal gyri, 
superior and inferior parietal lobules, and paracentral lobule in the 
right hemisphere, as well as the bilateral superior frontal and 
posterior cingulate gyri in the bilateral hemispheres (see Figure 1D 
and Table 2).

Compared to the old HCs, the young CDs presented with 
significantly increased sulcal depth only in the right lateral occipital 
gyrus, and exhibited significantly decreased sulcal depth in the left 
superior frontal and caudal middle frontal gyri, as well as the right 
rostral middle frontal gyrus (see Figure 2D and Table 3).

Correlation analysis
The correlation analysis was conducted to examine the 

relationship between the cortical morphology and VF raw score in 
each group. Table 4 shows that the CDs showed significant correlations 
between the VF score and the left supramarginal gyrus in fractal 
dimensionality, and the left caudal anterior cingulate, the left posterior 
cingulate, and precentral gyri in gyrification. The young HCs revealed 
significant correlations between the VF score and the left superior 
frontal gyrus in fractal dimensionality and the left superior frontal 
gyrus in gyrification.

Table 4 also illustrates the old HCs showed significant correlations 
between the VF score and the left lingual and supramarginal gyri in 
fractal dimensionality and the right lateral occipital gyrus in 
sulcal depth.

Figure  3 illustrates the correlation analysis across groups 
we conducted using Fisher’s r to z transformation to determine if the 
3 groups had statistically significantly different relationships for a 
given cortical measurement, brain region, and VF score. This analysis 
was completed for the 8 combinations of cortical measurements and 
brain regions with significant correlations with VF seen in Table 4 to 
determine if there were dose–response effects between groups. 
Figure  3 demonstrated CDs had significantly different slopes for 
gyrification of the left precentral and caudal anterior gyri, as well as, 
fractal dimensionality of the left supramarginal gyrus compared to 
both young and old HCs. The remaining analyses were non-significant.

Discussion

The current study reported notable differences in brain 
morphometry between the young CDs and both young and old HCs. 
There were numerous findings where CDs had decreases in cortical 
surface measures in some regions, but also increased measures in 
other regions compared to both young and old HCs, suggesting that 
CD does not just affect the brain in one particular direction and 
remodeling may be occurring.

On the whole, Tables 2, 3 demonstrated that CDs had more brain 
regions with differences in brain morphometry measures when 
compared to the young HCs (54 regions with differences) as compared 
to the old HCs (30 regions with differences), suggesting that CD may 

FIGURE 1

Cortical surface differences between young CDs and young HCs. Non-parametric permutation testing with  5,000 permutations and threshold-free 
cluster enhancement (TFCE) with family-wise error corrected threshold of p  <  0.05 was used. Red: younger CDs increased sulcal depth compared to 
younger HCs. Blue: younger CDs decreased sulcal depth compared to younger HCs. (A) Cortical thickness. (B) Fractal dimensionality. (C) Gyrification 
(D) Sulcal depth.
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TABLE 2 Differences of cortical surface measures between young CDs and young healthy controls.

Group 
differences

Regions
Coordinates

Peak t-
value

p
Cluster 

size

x y z

Thickness (right hemisphere)

CDs < Controls Fusiform 41 −12 −28 2.47 0.022 150

Lateral occipital 44 −69 29 2.40 0.024 212

Lingual gyrus 26 −59 5 2.69 0.031 100

Fractal dimensionality (left hemisphere)

CDs > Controls Lateral occipital gyrus −9 −102 9 3.77 0.004 201

Lingual gyrus −54 −35 −9 2.42 0.004 147

Superior parietal lobule −19 −67 42 2.64 0.018 246

Inferior parietal lobule −30 −69 32 2.58 0.018 145

Insula −35 5 5 4.37 0.000 222

CDs < Controls Supramarginal gyrus −56 −47 26 2.45 0.003 434

Postcentral gyrus −33 −24 14 2.23 0.003 319

Superior temporal gyrus −47 −39 −25 2.75 0.008 173

Superior frontal gyrus −23 2 49 2.13 0.038 118

Fractal dimensionality (right hemisphere)

CDs < Controls Supramarginal gyrus 56 −47 35 2.61 0.001 750

Superior parietal lobule 32 −50 62 2.53 0.001 673

Inferior parietal lobule 54 −59 6 2.89 0.035 119

Postcentral gyrus 56 −4 21 2.42 0.001 517

Precuneus 53 −60 −4 2.83 0.001 155

Insula 39 −5 4 2.53 0.001 155

Parstriangularis gyrus 38 13 −29 3.29 0.001 103

Rostral middle frontal gyrus 35 37 −8 2.55 0.011 238

Gyrification (left hemisphere)

CDs > Controls Superior frontal gyrus −21 9 59 5.74 0.002 432

Rostral middle frontal gyrus −27 34 25 2.46 0.030 168

Medial orbitofrontal gyrus −14 35 −24 2.71 0.002 228

Lateral orbitofrontal gyrus −7 7 47 2.41 0.002 132

Caudal anterior cingulate gyrus −8 37 16 4.25 0.002 191

Rostral anterior cingulate gyrus −3 −12 30 2.23 0.002 191

Isthmus cingulate gyrus −6 −48 31 2.91 0.020 143

Superior parietal lobule −42 −67 45 2.82 0.006 127

Paracentral lobule −7 −22 51 2.91 0.010 167

Postcentral gyrus −28 −33 70 3.54 0.006 334

Precentral gyrus −6 −3 70 2.86 0.006 140

Precuneus −16 −42 57 2.52 0.010 131

Gyrification (right hemisphere)

CDs > Controls Postcentral gyrus 57 −16 42 3.07 0.019 156

Supramarginal gyrus 58 −25 25 2.55 0.019 123

Sulcal depth (left hemisphere)

CDs < Controls Superior frontal gyrus −20 42 34 2.23 0.007 426

Caudal middle frontal gyrus −11 46 10 2.21 0.007 187

(Continued)
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alter brain structure making it appear more similar to old HCs. For 
reference, S1a – S1d and S2a – S2d are Supplementary Tables of the 
brain regions with non-significant differences for Tables 2, 3, 
respectively. Additionally, Tables 2, 3 demonstrated CDs had atypical 

brain morphometries compared to both young and old HCs in key 
regions of well-described cognitive networks, such as the default mode 
network (DFM) and language function pathways. The DFM, a 
network negatively associated with attention and associated with states 

TABLE 2 (Continued)

Group 
differences

Regions
Coordinates

Peak t-
value

p
Cluster 

size

x y z

Posterior cingulate gyrus −4 −42 70 2.33 0.024 221

Cuneus −17 −79 43 2.76 0.010 172

Entorhinal gyrus −51 −20 −36 2.87 0.026 169

Sulcal depth (right hemisphere)

CDs > Controls Inferior parietal lobule 22 −50 43 2.15 0.009 206

CDs < Controls Precentral gyrus 5 −58 34 2.23 0.008 375

Paracentral lobule 9 −33 49 2.14 0.008 324

Superior parietal lobule 21 −62 62 2.40 0.008 273

Inferior parietal lobule 51 −49 40 3.46 0.036 117

Superior frontal gyrus 44 26 25 2.23 0.008 256

Precentral gyrus 55 4 41 2.13 0.036 110

Postcentral gyrus 44 −25 47 2.35 0.008 222

Posterior cingulate gyrus 14 −37 41 2.40 0.008 171

Supramarginal gyrus 55 −37 30 2.07 0.014 203

Middle temporal gyrus 64 −10 −20 2.94 0.025 122

N-parametric permutation testing with 5,000 permutations and threshold-free cluster enhancement (TFCE) with family-wise error corrected threshold of p < 0.05 was used.

FIGURE 2

Cortical surface differences between younger CDs and older HCs. Non-parametric permutation testing with  5,000 permutations and threshold-free 
cluster enhancement (TFCE) with a family-wise error correction threshold of p  <  0.05 was used. Red: younger CDs increased sulcal depth compared to 
older HCs. Blue: younger CDs decreased sulcal depth compared to older HCs. (A) Cortical thickness. (B) Fractal dimensionality. (C) Gyrification. 
(D) Sulcal depth.
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TABLE 3 Differences of cortical surface measures between young CDs and old healthy controls.

Group 
differences

Regions
Coordinates Peak t value p Cluster size

x y z

Thickness (right hemisphere)

CDs > Controls Postcentral gyrus 36 −35 66 2.65 0.000 221

Fractal dimensionality (left hemisphere)

CDs > Controls Superior frontal gyrus −22 3 50 3.43 0.004 391

Rostral middle frontal gyrus −27 15 42 2.72 0.004 211

Caudal middle frontal gyrus −22 40 34 2.30 0.004 180

Lateral orbitofrontal gyrus −13 36 −23 2.31 0.008 108

Superior parietal lobule −31 −73 44 2.41 0.010 370

Superior parietal lobule −35 −45 39 2.27 0.027 116

Paracentral lobule −7 −26 59 2.49 0.020 203

Lingual gyrus −12 −66 −3 3.65 0.002 427

Supramarginal gyrus −56 −47 26 4.31 0.001 268

Supramarginal gyrus −59 −21 27 2.81 0.011 139

Rostral anterior cingulate gyrus −2 −20 28 3.37 0.006 126

CDs < Controls Inferior parietal lobule −4 −37 25 2.89 0.022 139

Fractal dimensionality (right hemisphere)

CDs > Controls Pericalcarine 18 −71 10 2.57 0.011 259

Medial orbitofrontal gyrus 8 32 −12 3.62 0.004 235

CDs < Controls Superior frontal gyrus 20 33 51 2.49 0.008 139

Parstriangularis gyrus 64 −6 11 2.32 0.023 101

Gyrification (left hemisphere)

CDs > Controls Posterior cingulate gyrus −12 −21 39 3.84 0.000 307

Caudal anterior cingulate gyrus −4 25 18 4.34 0.000 233

Paracentral lobule −21 −47 62 3.89 0.000 223

Gyrification (right hemisphere)

CDs > Controls Superior temporal gyrus 25 −7 −30 3.19 0.000 197

Insula 41 −5 3 2.59 0.000 158

Rostral middle frontal gyrus 39 8 24 4.43 0.002 118

Lateral orbitofrontal gyrus 20 56 −8 3.77 0.002 108

Fusiform 33 −42 −16 4.03 0.001 172

Lateral occipital gyrus 21 −78 45 2.07 0.001 126

Sulcal depth (left hemisphere)

CDs < Controls Superior frontal gyrus −47 10 17 3.15 0.004 220

Caudal middle frontal gyrus −23 −11 68 2.80 0.004 118

Sulcal depth (right hemisphere)

CDs > Controls Lateral occipital gyrus 42 −84 −14 3.42 0.010 115

CDs < Controls Rostral middle frontal gyrus 43 −60 9 2.39 0.024 173

N-parametric permutation testing with 5,000 permutations and threshold-free cluster enhancement (TFCE) with family-wise error corrected threshold of p < 0.05 was used.

of day-dreaming and mindwandering, changes as a function of age 
and is thought to be partially responsible for cognitive decline and 
memory dysfunction seen in healthy aging populations (Tsvetanov 
et  al., 2016; Chaovalitwongse et  al., 2017; Staffaroni et  al., 2018). 
Interestingly, our study demonstrated CDs have more regions 
associated with the DFM (such as the posterior cingulate gyrus and 

inferior parietal lobule) that are significantly different from young 
HCs as opposed to old HCs (17 vs. 8, respectively). While our study 
did not set out to assess DFM function or connectivity, based on these 
findings it appears that CDs have structures involved in the DFM that 
more closely resemble older HCs. While there is evidence that suggests 
CD has an impact on the DFM (Thomann et al., 2017; Kornelsen et al., 
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2020; Skrobisz et al., 2020), further research is needed to assess the 
effect of CD on DFM function and connectivity and if it might 
resemble a form of accelerated aging. Neural pathways involved in 
language function (such as the supramarginal and pars triangularis 
gyri and the inferior parietal lobe) also appear to have brain regions 
in the CDs that more closely resemble old HCs compared to young 
HCs. In Tables 2, 3, CDs have more regions associated with language 
function that are significantly different from young HCs as opposed 
to old HCs (11 vs. 5, respectively). However, our study did not find any 
differences in VF performance to suggest these atypical 
morphometries have an impact on performance. Further discussion 
of VF and brain morphometry is discussed later.

These findings of atypical brain morphometries of CDs appearing 
more similar to old HCs is inline with our previous study that found 
fMRI task activation patterns during a verbal fluency task were more 

similar among young CDs and healthy aging older HCs than the 
young HCs (Nair et al., 2019). Furthermore, in the present study CDs 
had increased FD in the left inferior parietal lobule and decreased FD 
in the left supramarginal gyrus compared to young HC, whereas, the 
association between CDs and old HCs were reversed in these brain 
regions. This possibly suggests that CDs are moving toward brain 
morphometry that resembles older HCs. However, there are a number 
of other significant differences in brain region morphometries 
between CDs and both young and old HCs that were significantly 
different in the same direction (i.e., CDs < both old and young HCs or 
CDs > both old and young in a given brain region), making 
associations based on individual brain regions difficult to interpret. 
Perhaps a study with a larger sample size can clarify these associations 
to assist with interpretation. Nevertheless, it is apparent that CDs 
exhibit different brain morphometry compared to HCs as 

TABLE 4 Correlation between verbal fluency raw score and cortical surface morphology.

Participants Measures Regions r(12) p

Young CDs Fractal dimensionality Left supramarginal gyrus 0.784 0.003

Gyrification Left caudal anterior cingulate gyrus 0.822 0.001

Left precentral gyrus 0.716 0.009

Left posterior cingulate gyrus 0.822 0.001

Young HCs Fractal dimensionality Left superior frontal gyrus 0.586 0.045

Gyrification Left superior frontal gyrus 0.586 0.045

Old HCs Fractal dimensionality Left lingual gyrus 0.655 0.021

Left supramarginal gyrus 0.601 0.039

Sulcal depth Right lateral occipital gyrus −0.619 0.032

FIGURE 3

Group comparisons for all regions and cortical brain metrics with significant correlations with verbal fluency. Key: CD  =  Crohn’s disease patients, 
OldHC  =  old healthy controls, YoungHC  =  young healthy controls. p-values: N.S. = no significance, *  =  p  <  0.05–0.01, **  =  p  <  0.01–0.001, 
***  =  p  <  0.001.
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demonstrated by previous studies (Zikou et al., 2014; Bao et al., 2015; 
Nair et al., 2016; Thomann et al., 2016; Bao et al., 2017a; Yeung, 2021; 
Thapaliya et al., 2022).

Current literature suggests that both the innate and adaptive 
immune system in CD are involved in altering intestinal mucosal 
permeability, making bacterial translocation and systemic 
inflammation possible, with interactions between host inflammation 
and microbiota implicated in disease progression (Petagna et  al., 
2020). Similarly, gut barrier dysfunction has been implicated in 
bacterial translocation and organ failure in a variety of diseases such 
as Grave’s disease (Zheng et al., 2021), acute pancreatitis (Li et al., 
2020), hepatic disorders (Chopyk and Grakoui, 2020), stress and 
mood disorders (Doney et al., 2022), and Alzheimer’s disease (Megur 
et al., 2020; Liu et al., 2021). In addition, gut barrier dyfunction may 
be  a primary driver of systemic inflammation and organ failure 
observed in the elderly population (Deitch, 1990). Not only this, but 
there is evidence that elderly patients may not have an increased 
strength of the inflammatory response, but a more protracted response 
that is responsible for poorer outcomes during similar pathologic 
insults in an older population as compared to their younger 
counterparts (Fagiolo et al., 1993; Kudoh et al., 2001; Pinheiro da Silva 
et al., 2013; Ren et al., 2014). This protracted inflammatory response 
seen in older patients is not too dissimilar to the chronicity seen in 
CD, and one could argue the chronicity may even be more pronounced 
in the CD population given its lifelong recurring and remitting course. 
Furthermore, recent studies suggest certain inflammatory markers, 
such as IL18R1, demonstrate a causal relationship with both IBD and 
pathologies of the aging brain, such as Alzheimer’s disease (Hillary 
et al., 2020), further demonstrating a link between IBD and aging 
brain function.

To investigate the effects CD has on brain function our study had 
CDs and HCs complete a VF task to explore differences in cognitive 
function between groups. Although there were no group differences, 
there was an association between better performance on the VF task 
and the FD in the left supramarginal gyrus in both the CDs and old 
HCs that was not present in the young HCs group. There were no 
overlapping associations between brain morphometry and VF task 
performance between CDs and young HCs. With performance 
remaining the same across groups, this may suggest a shift in function 
compensation by the CDs that more similarly resembles that of the 
old HCs.

However, Figure 3 (VF vs. FD supramarginal) demonstrates CDs 
have significantly different correlations for supramarginal fractal 
dimensionality and VF performance compared to both young and old 
HCs where increasing fractal dimensionality is associated with better 
VF for CDs, contradicting this assertion. Additionally, gyrification of 
both the left caudal anterior cingulate and left precentral gyrus have 
significantly different correlations with VF performance for CDs 
compared to both young and old HCs where increasing gyrification is 
associated with better VF. With the remaining brain regions and 
cortical measures for CDs, Young HCs, and old HCs that were 
associated with VF performance not having statistically significantly 
different slopes among groups, it appears as though CDs may have a 
different adaptation pattern for performing the VF task as compared 
to both old and young HCs. In fact, 6 out of the 8 comparisons in 
Figure 3 demonstrated a positive relationship with CDs compared to 
3 out of the 8 for both healthy control groups. This seems to suggest 
CDs recruit more brain regions in order to perform the same VF task 
as compared to both young and old HCs. Its possbile these differences 

are a result of the varying medications CDs require to combat the 
disease process or a result of the disease process itself, but a causal 
relationship is not assessable within the constraints of the present 
study. Lastly, with the limited sample size of our study, it is possible 
that the lack of positive associations seen with VF performance in the 
young and old HCs is an artifact of the study and perhaps, further 
research with a larger study population will help elucidate more 
measures and regions of significance that can assist with interpretation 
of these findings.

Interestingly, the HAROLD (hemispheric asymmetry reduction in 
older adults) model of hemispheric aging was not demonstrated in the 
CDs VF performance, but was identified in the old HCs; with the old 
HCs having VF performance correlate with sulcal depth of the right 
lateral occipital gyrus, whereas a left lateralization of language 
performance is the predominant finding in both CDs and young HCs 
(Cabeza, 2002). Perhaps these findings are a result of CDs not having 
progressed as far on the bi-hemispheric pattern of aging timeline or 
have not had enough time to develop new brain response patterns 
involving this brain region. Lastly, given that studies have shown that 
education, employment, and income are not significantly different 
between patients with IBD and healthy individuals (El-Matary et al., 
2017), it is possible that CD patients might adopt adaptive cognitive 
strategies to maintain function despite structural and functional brain 
changes resulting from this lifelong disease. Although the investigation 
of brain changes in CD patients has become an increasing focus of 
several recent studies to explore brain-gut interactions (Thomann et al., 
2017; Peppas et al., 2021), our study demonstrates that atypical brain 
morphometry of CDs is more similar to old HCs and this atypical brain 
morphometry is associated with function on a cognitive task. These 
results suggest that even younger CDs may be showing some evidence 
of structural brain changes that demonstrate increased resemblance to 
older HC brains rather than their similarly aged healthy counterparts. 
However, the current study demonstrated that these structural brain 
changes did not result in similar brain response patterns on a cognitive 
task as compared to young or old HCs. Future longitudinal studies will 
be needed in order to better understand the effect CD has on brain 
structure and function over time and whether or not it resembles a form 
of accelerated aging.

The modest sample size is a limitation and the results can 
be substantiated with adequately powered future studies. All of our CDs 
were on treatments with at least one standard IBD maintenance 
medication; however, the number and combination of medications they 
were taking, as well as the classes of those medications, varied among 
participants. Differences in medication regimens might have influenced 
brain morphometry or task performance. The duration of the disease 
and the age at CD diagnosis also varied among patients, which could 
have contributed to the changes observed in their brain morphometry.
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