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In neural prostheses, intensity modulation of a single channel (i.e., through a

single stimulating electrode) has been achieved by increasing the magnitude

or width of each stimulation pulse, which risks eliciting pain or paraesthesia;

and by changing the stimulation rate, which leads to concurrent changes

in perceived frequency. In this study, we sought to render a perception of

tactile intensity and frequency independently, by means of temporal pulse

train patterns of fixed magnitude, delivered non-invasively. Our psychophysical

study exploits a previously discovered frequency coding mechanism, where the

perceived frequency of stimulus pulses grouped into periodic bursts depends

on the duration of the inter-burst interval, rather than the mean pulse rate

or periodicity. When electrical stimulus pulses were organised into bursts,

perceived intensity was influenced by the number of pulses within a burst,

while perceived frequency was determined by the time between the end of

one burst envelope and the start of the next. The perceived amplitude was

modulated by 1.6× while perceived frequency was varied independently by 2×

within the tested range (20–40 Hz). Thus, the sensation of intensity might be

controlled independently from frequency through a single stimulation channel

without having to vary the injected electrical current. This can form the basis

for improving strategies in delivering more complex and natural sensations for

prosthetic hand users.

KEYWORDS

tactile, electrical stimulation, burst, psychophysics, human, peripheral nerve, frequency
discrimination, magnitude estimation

Introduction

We previously discovered a neural code for frequency perception in the human tactile
system, which confers the advantage of encoding frequency in a manner independent of
the number of spikes evoked in peripheral afferents (Birznieks and Vickery, 2017; Ng et al.,
2018). When we grouped spikes into trains of periodic bursts, perceived frequency was best
explained by the duration of the silent gap between bursts, rather than by the periodicity,
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mean spike rate or number of spikes within the burst (Birznieks
and Vickery, 2017; Ng et al., 2020). The role of the number of
spikes within a burst is not certain, but it is hypothesised that they
encode other qualitative features of the stimulus such as intensity
(Kaczmarek et al., 1992; Sharma et al., 2022c). One technology to
generate such temporal spiking patterns in peripheral afferents is
by very fast mechanical pulses with durations comparable to an
action potential (Birznieks et al., 2019). For broader application
in neural prosthetics (Vickery et al., 2020), we have verified
experimentally that the same coding scheme can be implemented
using electrocutaneous stimulation (Ng et al., 2020, 2021) and
auditory click stimulation (Sharma et al., 2022a, 2022b).

Firing patterns of action potentials grouped into temporal
bursts have been posited to allow sensory neurons to encode
multiple stimulus features on a fine temporal scale and also to
enhance transmission robustness (Kepecs and Lisman, 2003; Mease
et al., 2017). This form of multiplexed coding, where both overall
spike count and precise spike timing carry information (Panzeri
et al., 2010; Lankarany et al., 2019), enables greater information
coding capacity than a simple rate code, as demonstrated in
thalamic (Mease et al., 2017), auditory (Eyherabide et al., 2008)
and visual (Reich et al., 2000) neurons. A form of multiplexing
for frequency and intensity has been previously observed in the
primary somatosensory cortex (S1) of primates by Harvey et al.
(2013), where they found that information for vibrotactile stimuli
is encoded at different time scales. Specifically, vibratory amplitude
is represented by the coarse overall firing rate in a subpopulation of
neurons, whereas frequency composition is encoded in the phase-
locked temporal patterning of the neuronal response. Lankarany
et al. (2019) propose another form of multiplexing in S1 for
aperiodic stimuli, where the rate of asynchronous spiking encodes
stimulus intensity, while the timing of synchronous spikes encodes
abrupt changes in the intensity, including the occurrence of high
contrast features such as edges.

The possibility of independently controlling perceived
frequency and intensity using electrocutaneous burst stimuli as a
form of sensory feedback has been previously proposed by Menia
and Van Doren (1994). Their subjects performed pitch (frequency)
matching of stimuli with different charges (proportional to pulse
width multiplied by amplitude) and burst periodicity in one
experiment, and loudness (intensity) matching with varying
burst periods in others. They found that subjects’ pitch matches
depended only on the burst period and were not affected by
discriminable differences in charge. Moreover, subjects’ loudness
matches were not affected by discriminable differences in burst
periods of ±10 ms, and only depended slightly on burst periods
over the range of 15.6 ms to 500 ms (corresponding to burst
rates of 2.0–64.1 Hz). However, Menia and Van Doren only used
stimuli with a fixed number of pulses within a burst, i.e., 10 pulses
per burst.

Here, we test whether modulating the number of pulses
within a burst might change intensity perception within the
flutter range (20–40 Hz), by combining this strategy with our
previously uncovered “burst gap” frequency coding scheme. The
unprecedented advantage of this approach is that stimulus intensity
could be rendered independently from frequency in a brain-
machine interface, through one and the same stimulation channel,
at a fixed stimulus strength.

Methods

Subjects

We conducted three separate experiments, where healthy
human subjects with no history of altered tactile function were
recruited. In Experiment 1, 14 subjects (5 females, ages 19–25)
participated. For Experiment 2, we had 12 subjects (8 females, ages
20–25). Twelve subjects (4 females, ages 19–25) participated in
Experiment 3, eight of which had also participated in Experiment
1. This study was approved by the UNSW Sydney Human Research
Ethics Committee (approval number HC16245/210271). Prior
to the start of experimentation, written informed consent was
obtained from all subjects.

Stimulation patterns

To test our hypothesis, we created four stimulus patterns
that were expected to have identical perceived frequencies, as
determined by the silent period between bursts regardless of the
number of pulses within a burst (Birznieks and Vickery, 2017).
These patterns (Doublet, Triplet, Quadruplet and Pentuplet) were
bursts consisting of 2 to 5 pulses evenly spaced over a burst duration
of 13.5 ms. Each burst was separated by an interval of 36.5 ms,
and thus should all render a perceived frequency of ∼27 Hz. These
values were chosen such that they were within the burst parameters
tested in a previous study (Ng et al., 2020). Additionally, all burst
patterns had the same periodicity, i.e., burst rate, of 20 bursts/s.
The perceived frequency of these test stimuli was verified in
Experiment 1.

In Experiment 2, subjects rated the intensity of some of the
aforementioned stimulus patterns, including one consisting of
regularly-spaced pulses (Singlet), which was designed to match
the 36.5 ms burst gap and corresponding reciprocal perceived
frequency of 27 Hz of the burst patterns. We have previously shown
that each transcutaneous nerve stimulation pulse within these
stimulus patterns reliably and consistently evokes neural activity in
tactile afferents even at short inter-pulse intervals, and that these
patterns all evoke the same perceived frequency (Ng et al., 2020;
Sharma et al., 2022c).

To also demonstrate that subjects can simultaneously,
and independently, perceive both frequency and intensity, we
conducted a further third experiment where subjects rated both
parameters. Nine stimulus patterns were created, with either 1, 2,
4, 5, or 6 pulse(s) in the burst (Figure 1). As before, each burst
had a duration of 13.5 ms, but the silent gap between bursts was
varied (between 50 and 25 ms) to have corresponding reciprocal
frequencies between 20 and 40 Hz.

Experimental set-up

Stimulus patterns were generated using a CED Power1401
Mk II data acquisition system via Spike2 (Cambridge Electronic
Design, Cambridge, UK) and MATLAB (Mathworks, Natick, MA,
USA) software. This triggered a DS5 constant current stimulator
(Digitimer, Welwyn Garden City, UK) to output charge-balanced,

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2024.1125597
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-18-1125597 May 30, 2024 Time: 18:8 # 3

Ng et al. 10.3389/fnins.2024.1125597

FIGURE 1

Schematic representation of stimulation patterns used in Experiment 3. Vertical lines represent an electrical pulse, and silent (burst) gap intervals are
labelled for each stimulus train. Silent gaps in ms correspond to the frequency in Hz shown above each train. Note that a stimulus pattern, 20 Hz (6
pulses/burst) with 50 ms burst gap, was also tested but not shown here.

biphasic electrical pulses. The electrical pulses were delivered to one
digital nerve of the index finger, on the subject’s dominant hand
using Kendall 200 series foam electrodes (Covidien, Mansfield, MA,
USA). One electrode was placed on the proximal phalanx and
another on the distal interphalangeal joint.

The stimulation current applied to each subject was optimised
such that the stimulus was clearly perceptible and distinguishable,
confirmed by subjects being able to perform a practice task. The
40 Hz (6 pulses/burst) pattern (Figure 1) was used for this in
Experiments 1 and 3, and the Quadruplet pattern (Figure 2A) was
used in Experiment 2. The maximum current used was 10 mA. The
pulse waveform was charge balanced as a 0.1 ms cathodic pulse,
followed by 1 ms at 10% current in the reverse polarity to allow for
charge to be recovered from the electrode (Hofmann et al., 2011).

Psychophysical tasks

Two-alternative forced choice
In Experiment 1, the perceived frequency of the stimulus

patterns was assessed using a two-alternative forced choice (2AFC)
method. Subjects were presented with pairs of stimulus patterns
and asked to press a button according to which they felt had a
higher frequency or rate of “tapping”. Each trial consisted of a test
stimulus, which was one of the burst patterns (with either 2, 3,
4, or 5 pulses per burst, Figure 2A), and a comparison stimulus,
with regularly-spaced pulses at either 18, 21, 25, 29, 33, or 37 Hz.
These were presented for 1 s each and in a random order, with
0.5 s in between. There were approximately 120 pairs for each test

condition, with each comparison stimulus presented 20 times. A 5-
min break was provided between each of the four condition blocks
tested. Subjects were given practice stimuli and received feedback
to ensure their understanding of the task.

Magnitude estimation
In Experiments 2 and 3, the perceived intensity of all stimulus

patterns was assessed using the psychophysical paradigm of
magnitude estimation (Stevens, 1956). In each trial, subjects were
presented with a pair of stimuli consisting of the standard stimulus
first, followed by one of the test patterns second. The stimuli were
each presented for 1 s, separated by a 500 ms interval. Subjects were
instructed to consider the standard stimulus as having an intensity
of 100 arbitrary units and to verbally report the relative perceived
intensity of the test stimulus. For example, if they considered
the second stimulus in the pair as two times as intense, they
would report a value of “200”, and if half, they would report “50”.
Subjects were again given practice stimuli similar to test conditions.
For Experiment 2, the stimulus pattern with periodic bursts of 2
pulses (Doublet) was chosen as the standard and was compared
against one of four patterns – Singlet, Doublet (itself), Triplet and
Quadruplet. Each test pattern was presented 20 times.

In Experiment 3, the standard stimulus was the 28 Hz (2
pulses/burst) stimulus (Figure 1), and this was compared against
one of the 9 stimulus patterns (including itself). Additionally,
subjects also rated the magnitude of frequency, in addition to
intensity and in a similar manner. Subjects completed a block
with 10 presentations of each comparison, rating them either
for frequency or intensity relative to the standard. The order of
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FIGURE 2

Stimulus patterns with similar perceived frequency despite varying
number of pulses. (A) Schematic representation of stimulation
patterns used in Experiments 1 and 2. Each vertical line denotes an
electrical pulse. Numbers on the right represent the overall pulse
rate for each stimulus train. (B) The mean Weber fractions (n = 14
subjects) for the tested burst stimuli in Experiment 1. This expresses
the just noticeable difference (JND) in frequency change as a
percentage of the test stimulus. (C) The mean perceived frequency
(circles, n = 14 subjects) of the tested burst stimuli in Experiment 1.
Point of subjective equality (PSE) was best predicted by the burst
gap code corresponding to the reciprocal of the silent interval, i.e.,
∼27 Hz, shown as a dashed line. The dotted line indicates frequency
if it was predicted by the mean pulse rate of the stimuli, and the
dash-dotted line if it was predicted by the periodicity, i.e., burst rate
of 20 Hz. A regression line has been fitted to the subject data. Error
bars indicate 95% CI.

whether subjects rated intensity or frequency magnitude first was
randomised.

Data analysis

To determine each subject’s perceived frequency of the test
stimulus in Experiment 1, the number of times that subjects
judged that test stimulus as having a higher frequency than that
of the comparison stimuli was recorded. This proportion was logit
transformed and a regression line was fitted to the data. The
point of subjective equality (PSE) was taken from the x-intercept
of the fitted regression line, representing the frequency where
the subject perceived the test stimulus as being equally higher or
lower than that comparison frequency. This PSE value would be
their perceived frequency of the test stimulus. Furthermore, each
subjects’ Weber fraction, which calculates the percentage change
in the stimulus that can be reliably detected, was calculated using
the halfway point between the frequencies that give 25 and 75%
response probabilities for each test stimulus. Both calculations were
performed in Excel (Microsoft, Redmond, WA, USA). A one-way
repeated measures ANOVA (with Geisser-Greenhouse correction)
compared the Weber fractions between the four different stimulus
patterns, including post hoc Tukey’s multiple comparisons testing
between pairings, with Prism software (Graphpad Software, San
Diego, CA, USA).

For Experiments 2 and 3, subjects’ magnitude ratings were
recorded manually in Excel and an average was calculated for each
stimulus pattern. In Experiment 2, a regression line was fitted
between the ratio of the mean pulse rate (1.0 = 40 pulses/s) and
the ratio of intensity ratings averaged across subjects using Prism.

In Experiment 3, we first plotted the average frequency rating
of all subjects for each of the 9 stimulus patterns against that of
intensity. On this, regression lines were fitted based on arbitrary
values chosen to show the ability to control intensity in either
direction (increasing and decreasing trends) with a change in
perceived frequency. Regression lines were subsequently fitted to
determine if average frequency ratings correlated to changes in
the burst gap predicted frequency, as well as whether there was
a relationship between pulses per burst and average intensity
ratings in Prism.

Results

Experiment 1: verifying perceived
frequency of burst patterns

In the first experiment, we used a 2AFC procedure to measure
perceived frequency of stimuli with a fixed burst gap duration,
but varying number of pulses per burst (Figure 2A). Subjects’ PSE
values ranged from 21 to 28 Hz for the different patterns and had
an overall mean of 24.9 ( ± 2.1 SD) Hz. The Weber fraction for
each test pattern is shown in Figure 2B. The overall Weber fraction
between all subjects and conditions was 0.25 ± 0.11 (mean ± SD).
Differences were found between Weber fractions of the stimulus
patterns (F2.168,28.19 = 6.431, p = 0.0042), e.g., when the doublet
was compared against the triplet (p = 0.0029) and quadruplet
(p = 0.0122), but not the pentuplet (p = 0.1437). Nonetheless, the
data match the 0.2–0.3 range reported in the literature (Bull et al.,
1985; Li et al., 2018; Graczyk et al., 2022).

The mean PSE for each test pattern is shown in Figure 2C. The
slope of the fitted regression line was not significantly different from
zero (−0.42, 95% CI −1.06 to 0.21, p = 0.1873) with a y-intercept
of 26.41 (95% CI 24.07–28.74). This suggests that there was no
trend between perceived frequency and pulses per burst (R2 = 0.03).
While the periodicity (burst rate) of the four patterns was also
constant at 20 Hz, the reciprocal of the silent burst gap, i.e., 27 Hz,
remains a better predictor of perceived frequency.

Experiment 2: rating perceived intensity
of burst patterns

Subjects were tested with pairs of 1 s stimulus trains where the
first was always the standard stimulus (Doublet, Figure 2A), and
then asked to rate the relative intensity of the second stimulus.
The results are summarised for 12 subjects in Figure 3A, which
show a consistent intensity of around 100 when the Doublet was
compared against itself (crosses). As the number of pulses in
the burst increased from 1 to 4 (3× increase in mean rate), the
perceived intensity increased by 1.82× (median; quartiles 1.47×

and 2.34×).
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FIGURE 3

Perceived intensity of stimulus patterns shown in Figure 2A and tested in Experiment 2. (A) Mean ratings (n = 20 repeats) for the four tested
stimulation patterns in individual subjects (n = 12), sorted by subjects’ reported intensity range; error bars depict SD. (B) The ratio of the intensity
ratings relative to 100 averaged across 12 subjects, plotted against the ratio relative to the mean pulse rate of the Doublet standard stimulus
(1.0 = 40 pulses/s); error bars denote 95% CI. A regression line has been fitted to the data.

In the group mean data, perceived intensity increased linearly
with the mean number of pulses per second (Figure 3B). The slope
of the fitted regression line was 0.58 (95% CI 0.47–0.69; R2 = 0.70;
p < 0.0001) which indicates that although a doubling in the number
of pulses did not double the perceived intensity, the increase was
significant and clearly perceptible.

Experiment 3: simultaneous magnitude
ratings of frequency and intensity

In Experiment 3, we tested whether varying the number of
pulses per burst would be able to cause subjects to report a higher
frequency stimulus as less intense than a stimulus with a lower
frequency, and vice versa. The results for subjects’ magnitude
ratings of their perceived frequency and intensity of the stimulus
patterns are summarised in Figure 4A. Subjects consistently
responded with values around “100” when the standard was
compared against itself in both perceived frequency and intensity
ratings. The results also show that increasing the frequency
corresponding to reciprocal of the silent gap would result in a
report of higher perceived frequency (slope = 1.31, R2 = 0.80,
p < 0.0001); whilst decreasing pulses per burst would result
in subjects reporting a lower intensity rating despite frequency
increasing (slope = −0.37, R2 = 0.13, p = 0.0134).

In Figure 4B, the slope of the fitted regression line for average
frequency ratings was 4.00 (95% CI 3.41–4.59). In Figure 4C the
slope of the regression line was 19.17 (95% CI 16.06–22.28) for
the average intensity ratings. Both these demonstrate a significant
linear positive relationship between the frequency (R2 = 0.63,
p < 0.0001) or intensity ratings (R2 = 0.58, p < 0.0001), and the
frequency corresponding to the silent gap or the pulses per burst,
respectively. Furthermore, it is evident in Figure 4B that stimuli
with the same predicted frequencies were rated as having similar
frequencies and that doubling the frequency from 20 to 40 Hz
caused a twofold increase in the frequency ratings. The frequency
rating was remarkably linear, with 20 Hz (6 pulses) being rated as
69 relative to the standard stimulus of 28 Hz, giving an equivalent

frequency of 19.3 Hz, and similarly the 40 Hz (regular) was rated
142 relative to the standard which translates to a frequency of
39.8 Hz. Intensity ratings shown in Figure 4C display a marked
increase between the lowest and highest number of pulses, with
the increase of 59% due to a doubling from 2 to 4 pulses per
burst matching the equivalent increase seen in Experiment 2. This
demonstrates that within the zone of 20 and 40 Hz we are able to
arbitrarily vary frequency and also modulate intensity up and down
without changing individual stimulus pulse properties.

Discussion

A previous study by Szeto (1985) proposed a logarithmic
relationship between pulse width and pulse rate, whereby the pulse
width of an electrotactile pulse train must decrease if its pulse
rate increases, to maintain a constant intensity, but variations in
the pulse rate would result in concurrent changes to perceived
frequency. Our results clearly demonstrate that it is possible to
control intensity perception by varying the number of pulses in
a burst, while maintaining the same stimulation current (and
pulse width) and so fixing the population of activated afferents.
Combined with our previous studies showing the ability to control
frequency by the gap between bursts even if overall pulse rate
was varied (Birznieks and Vickery, 2017; Ng et al., 2021), this
might represent a method of multiplexing intensity and frequency
information in a peripheral nerve stimulation pattern. Therefore,
what we have established here undoubtedly allows intensity to be
varied independently from frequency, and the reverse to a degree.
In order to control frequency independently from intensity, one
would still need to take into account the relationship between the
stimulus pulse train pattern, mean pulse rate and intensity, which is
not necessarily linear and may depend on perceived frequency (Ng
et al., 2022). For example, in our data the 40 Hz (regular) stimulus
is felt as more intense than 20 Hz (regular); and to balance the
intensity at these different frequencies, the lower frequency would
need to have more spikes per burst than the high frequency.
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FIGURE 4

Average magnitude ratings of frequency and intensity for stimulus
patterns shown in Figure 1 and tested in Experiment 3. All stimuli
were compared against the standard of 28 Hz (2 pulses/burst),
which is marked with a dotted circle. Unfilled shapes have
equivalent predicted frequencies to filled shapes, but a greater
number of pulses per burst. (A) Mean frequency ratings plotted
against intensity ratings (n = 12 subjects) for the 9 stimulation
patterns. A regression line is fitted to the sequence predicted to
show increasing frequency and intensity (20 Hz regular, 28 Hz 2
pulses, 34 Hz 5 pulses, 40 Hz 6 pulses), and to the sequence
predicted to show a decreasing trend of intensity magnitude ratings
despite increasing frequency (20 Hz 6 pulses, 24 Hz 4 pulses, 24 Hz
2 pulses, 40 Hz regular). (B) Average frequency ratings plotted
against expected frequency corresponding to the reciprocal of the
silent gap, with regression line fitted. The dashed line depicts
predicted frequency ratings assuming the relationship was linear.
(C) Average intensity ratings plotted against number of pulses per
burst, with regression line fitted. Data points jittered horizontally in
panels (B,C) to minimise overlap. Error bars represent 95% CI.

The results are comparable with Muniak et al. (2007) and
Bensmaia (2008), which showed intensity varied with firing rate
with a positive slope relationship of less than 1 in different afferent
types; and Kaczmarek et al. (1992), which showed that increasing
the number of pulses in a burst from 1 to 6 almost doubled
the average magnitude in subjects. Several other studies have also
suggested the use of varying number of pulses within bursts as a
method of providing a wide range of sensations without eliciting
pain (Collins, 1970; Saunders, 1974). For example, Sachs et al.
(1980) measured a slope of 1.8 using electrical stimulation with
changing the number of pulses per burst, but they had used cross-
modality matching with the magnitude of auditory tones, which
may explain the difference with our results. Similarly, Sharma et al.
(2022c) demonstrated that temporal structuring of a fixed number
of electrical pulses over a second into periodic bursts of varying
pulses altered perceived intensity as a function of burst pulse count,
however stimuli in that study were not controlled for changes in
frequency perception.

Along with the principal debate of how afferent activity
translates into a perception of stimulus intensity, previous studies
have noticed substantial inter-subject variability (Knibestöl and
Vallbo, 1980). Knibestöl and Vallbo (1980) demonstrated that
power functions fitted to the relationship between indentation
amplitude and perceived intensity are highly individualistic – the
exponents ranged from 0.36 to 2.09 in their study and were not
related to differences in neural activity. This is consistent with
our observations (Figure 3), and we further speculate that subjects
who showed the smallest effects on intensity may have interpreted
pulse number within the burst as affecting some other qualitative
feature of the stimulus such as sharpness, roughness or fuzziness, in
addition to tactile intensity (Steenbergen et al., 2012; Tezuka et al.,
2016; Kaczmarek et al., 2017).

The present findings were obtained using non-invasive
electrocutaneous stimulation, which could be implemented with
targeted muscle/sensory reinnervation approaches (Kuiken et al.,
2007; Hebert et al., 2014). Nevertheless, we expect that the results
would also be applicable when using electrodes implanted directly
in the nerve to deliver sensory feedback (Tan et al., 2014; Graczyk
et al., 2016). A particular benefit provided by our method is that
intensity sensation could be varied in a single channel to increase
dynamic range without increasing stimulation current, thereby
reducing potential adverse effects on tissues in the vicinity of
implanted electrodes (Cogan et al., 2016; Günter et al., 2019) and
the likelihood of discomfort from recruitment of smaller diameter,
higher threshold nociceptive afferents (Hallin and Torebjörk, 1973;
Kaczmarek et al., 1991).

Implementing the principles established here within single
channel stimulation with complex activity patterns across multiple
electrodes offers the promise of providing multiple channels of
parallel information as used in biomimetic approaches to restoring
touch (Saal and Bensmaia, 2015; Okorokova et al., 2018). During
surface exploration and object manipulation, vibrations of various
frequencies arise depending on the dynamics of the movement
(Delhaye et al., 2012; Shao et al., 2016). Our stimulation technique
could potentially allow perception of the frequency and intensity
of such vibrations to be controlled independently as though arising
from a fixed stimulus site without smearing the spatial boundaries
by recruiting additional afferents with higher currents, as both
vibratory and spatial cues play an important role in texture
perception (Hollins and Risner, 2000). Moreover, Bhattacharjee
et al. (2021) show that vibrotactile perception in humans employ
a “temporally local” code that is sensitive to short-lasting features
such as individual pulse shapes, and this may allow even finer
modulation of perception, as it could be concurrently traded for
changes in perceived frequency and intensity.

Such stimulation patterns could also potentially be combined
with changing pulse width, which Tan et al. (2014) showed could
transform the typical tingling electrical sensation into more natural
sensations in upper limb prostheses fitted to amputees, improving
their functional ability to control grasp strength and manipulate
delicate objects. Our method might help minimise or overcome
the resulting biases on perceived frequency or impairment of
frequency discrimination sensitivity, which Graczyk et al. (2022)
showed could occur when pulse width is varied. Furthermore, Karu
et al. (1995) demonstrated that functional electrical stimulation
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using pulse bursts (which they termed N-lets stimulation, where
N represents the number of pulses within the burst) produces less
muscle fatigue than traditional singlet pulse patterns, which might
be of significance in a prosthesis with both motor and sensory
functionality.

Whilst it has been previously shown that perceived frequency
within the flutter range (<60 Hz) and vibratory hum range
(>60 Hz) can be predicted using the same burst gap code (Ng
et al., 2021), a limitation is that we only tested the flutter range
in this study. It is speculated that at a high enough frequency,
it is possible that the silent gap becomes smaller than the
inter-pulse gap and thus results in difficulty in differentiating
between separate pulses and bursts. Graczyk et al. (2022) recently
demonstrated the possibility of frequency discrimination of
electrical pulses breaking down around 50–100 Hz. Additionally,
sustained electrical stimulation of the skin has been shown to
induce perceptual adaptation that recovers after the stimulus ends
(Graczyk et al., 2018). While we included sufficient breaks in
the study, the degree of adaptation could increase depending on
frequency and amplitude of stimulation (Verrillo and Gescheider,
1977; Hollins et al., 1990). Further research should therefore
examine these aspects.

In conclusion, our strategy might enable expansion of the
dynamic range for intensity modulation (Sachs et al., 1980;
Kaczmarek et al., 1992), which could potentially deliver a sharper
spatial contrast between individual stimulation channels when
rendering surface texture and object shape reliant on spatial
intensity modulation, accompanied by independently controlled
tactile frequency perception for mimicking surface interaction
during exploratory movements. Accordingly, complex temporal
patterns of burst stimulation offer the opportunity for improving
information encoding via neural interfaces, which will open
new opportunities for control of neuroprostheses in a rapidly
developing field (George et al., 2019; Bensmaia et al., 2020;
Vickery et al., 2020).
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