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The role of histone
methyltransferases in
neurocognitive disorders
associated with brain size
abnormalities
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Brain size is controlled by several factors during neuronal development, including

neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and

synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size

abnormalities, such as microcephaly and macrocephaly. Mutations in histone

methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36

and H3K4) have been identified in neurodevelopmental disorders involving

both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both

associated with transcriptional activation and are proposed to sterically hinder the

repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal

development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome

wide transcriptional repression of genes that regulate cell fate transitions and

neuronal arborization. Here we provide a review of neurodevelopmental processes

and disorders associated with H3K36 and H3K4 histone methyltransferases, with

emphasis on processes that contribute to brain size abnormalities. Additionally, we

discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes

vs. PRC2 could contribute to brain size abnormalities which is an underexplored

mechanism in relation to brain size control.

KEYWORDS

autism, histone methyltransferase, brain size, neurodevelopment, chromatin, microcephaly,
macrocephaly

1. Introduction

Neurodevelopment is a complex process that depends on the precise regulation of gene
transcription. In particular, the development of the cerebral cortex, the structure in the brain
that gives us our highest cognitive functions, is reliant on the careful orchestration of multiple
cellular processes including the proliferation of neuronal progenitors, as well as the migration,
and differentiation of neuronal cells. Early in development a thin neuroepithelium constituted
by neuroepithelial stem cells (NES) lines up the ventricles of the developing telencephalon. As
development proceeds, NES give rise to Radial Glial Cells (RGCs) which are neuronal progenitor
cells (NPCs) located in the ventricular zone (VZ) (Namba and Huttner, 2017). RGCs have an
apical and a basal process that sense signals from the environment. In addition, the RGC basal
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processes also provide structural support for the migration of the
newly born neurons (Noctor et al., 2002). In lyssencephalic mammals
(e.g., mice), a second proliferative region is located away from the
ventricle in the subventricular zone (SVZ). The NPC population
at the SVZ is composed of both outer (or basal) Radial Glia Cells
(oRGCs) and intermediate progenitor cells (IPCs) which lack an
apical process (Namba and Huttner, 2017). In gyrated mammals (e.g.,
ferrets and primates) there is an expansion of the SVZ forming an
inner (iSVZ) and an outer (oSVZ) SVZ (Lui et al., 2011). In particular,
the oSVZ composed of both IPCs and oRGCs is proposed to have
driven the rapid evolutionary expansion of the superficial layers of
the cerebral cortex contributing to a larger brain to body size ratio
in humans compared to other non-human primates (Lui et al., 2011;
Nowakowski et al., 2016).

Changes in the mode of NPC cell division are proposed to
contribute to the diversity of the daughter cell population. Before the
onset of neurogenesis, NES and RGC cells divide symmetrically to
generate two identical daughter cells (Brand and Rakic, 1979). This
mode of cell division occurs with the division plane perpendicular to
the neuroepithelial ventricular surface. After the start of neurogenesis
at the VZ, RGCs undergo asymmetric or symmetric cell division.
In RGCs, a parallel or oblique plane of division with respect to
the neuroepithelium ventricular surface is proposed to result in the
asymmetric inheritance of the basal process and cell fate determining
factors giving rise to two distinct daughter cells–an NPC and a
neuron for example (Chenn and McConnell, 1995; Huttner and
Brand, 1997; Haubensak et al., 2004). In contrast, oRGCs undergo
proliferative symmetric cell divisions to expand the NPC population,
or non-proliferative symmetric terminal divisions to give rise to two
post-mitotic neurons (Shitamukai et al., 2011).

After birth newly born neurons migrate away from the VZ to
their final location into the nascent cortical plate along the RGC
basal processes. The earliest born neurons will form the pre-plate
that later on will be split into the marginal zone and sub-plate by
the first wave of migrating neurons. Subsequent waves of newborn
neurons will form the transcriptionally and functionally distinct
layers in the neocortex (Molnar et al., 2019a,b). Early in neurogenesis
the earlier born projection neurons populate the deeper layers of
the cerebral cortex, while during mid-neurogenesis the later born
neurons start to populate the more superficial layers of the developing
cortex (Rakic, 1972, 2009; Clowry et al., 2010). As neurogenesis
ends, there is a switch from a neurogenic to a gliogenic fate, for
which RGC competence changes to generate glial cells (astrocytes and
oligodendrocytes) at late embryonic or perinatal stages (Ohtsuka and
Kageyama, 2019).

Improper regulation of NPC division during cortical
development has been proposed as a major mechanism underlying
defects in brain size. Primary microcephaly has been associated
with mutations in genes that modulate centrosome function and
mitotic spindle formation, which are essential for proper cell
division (Cox et al., 2006; Jean et al., 2020). Alternatively, postnatal
microcephaly, or the failure of the brain to grow after birth (Seltzer
and Paciorkowski, 2014), has been associated (albeit not exclusively)
with mutations in transcriptional and chromatin regulators that
modulate the expression of genes important to the development
of the forebrain and hindbrain (Seltzer and Paciorkowski, 2014).
In contrast, an increased head size, or macrocephaly, has also been
associated with mutations in developmentally important genes that
regulate neurogenesis and gliogenesis (Chenn and Walsh, 2002;
Geisert et al., 2002; McCaffery and Deutsch, 2005). Alterations
in brain size could ultimately alter the cytoarchitecture of the

developing brain and impair the development of the neuronal
circuitry. Not surprisingly, microcephaly has been associated with
disorders of neuronal connectivity including autism spectrum
disorders (ASD), and intellectual disability (ID), while macrocephaly
has been primarily correlated with ASD (Fombonne et al., 1999;
Miles et al., 2000).

Proper development of the brain architecture and wiring
requires the careful regulation of multiple gene programs that may
need to seamlessly transition between transcriptional activation
or repression states in a cell type specific manner at distinct
developmental timepoints. Epigenetic mechanisms such as DNA
methylation, histone post-translational modifications, and chromatin
remodeling are essential for these transitions. Histone methylation
is a type of post-translational histone modification that is highly
dynamic and essential to the regulation of transcriptional activation
and repression. Work from multiple experimental systems has
demonstrated that during development histone methylation is
essential for the establishment of different cell lineages (Jambhekar
et al., 2019). For instance, the evolutionarily conserved Polycomb
Group of Proteins Complex (PcG) is a major regulator of histone
methylation that is essential for the switching between neurogenic
to gliogenic fates in the developing cerebral cortex (Pereira et al.,
2010). Therefore, the precise regulation of a wide array of distinct
histone methylation marks modulates transcriptional programs in a
spatial and temporal manner to ensure normal brain development
(Jambhekar et al., 2019).

In particular, histone methyltransferases that modify Histone
H3 on Lysines 4, 36, and 27 are emerging as major regulators of
neuronal structure and function (Figures 1A–C). Tri-methylation
of Histone H3 on Lysine 4 (H3K4me3) and di or tri-methylation
of Histone H3 on Lysine 36 (H3K36me2 and H3K36me3) have
been associated with transcriptional activation (Bannister et al.,
2005; Barski et al., 2007; Wagner and Carpenter, 2012; Zhu
et al., 2013; Tables 1–4). In contrast to the activating effect on
transcription of H3K4me3 and H3K36me2/3, tri-methylation of
Histone H3 on Lysine 27 (H3K27me3) (Yu J. et al., 2019) by
the Polycomb repressor complex 2 (PRC2) has been linked to
transcriptional silencing. Histone modifications can either facilitate
or hinder the recruitment or activation of other chromatin factors
(Kim and Kim, 2012; Gates et al., 2017). Both H3K36me2/3 and
H3K4me3 have been proposed to either directly or indirectly
sterically hinder the deposition of H3K27me3 by the PcG which
acts as a transcriptional repressor during development (Tie et al.,
2014; Schuettengruber et al., 2017). While these mechanisms
have been widely studied in cancer and general development, we
focused on the evolutionary conserved counteracting activities of
H3K36 (SETD2, SETD5, NSD1, NSD2, and ASH1L), and H3K4
(MLL1/KMT2A, MLL2/KMT2B, MLL3/KMT2C, MLL4/KMT2D,
SETD1A, and SETD1B) modifiers vs. PcG (PRC2), because their
antagonizing activities are understudied in the regulation of brain
architecture, wiring and brain size control (Figures 1, 2 and
Tables 1–4).

2. H3K36 methylation and
neurodevelopment

Methylation of Lysine 36 on Histone H3 (H3K36) has important
biological implications due to its involvement in the regulation
of transcriptional activation, splicing, and the control of spurious
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FIGURE 1

Role of H3K36me2/3, H3K4me3, and H3K27me3 in transcriptional activation and repression. (A) Depiction of a nucleosome showing the location of the
different lysine histone modifications in the tail of histone H3. (B) Schematic showing histone methyltransferases and their corresponding histone marks
associated with transcriptional activation (top panel) and repression (bottom panel). H3K36me2 (light green), H3K36me3 (light blue), and H3K4me3 (dark
blue) histone marks are associated with transcriptional activation. Histone methyltransferases associated with deposition of either H3K36me2,
H3K36me3, or H3K4me3 are shown. ASH1L is in gray for H3K4me3 as it might indirectly affect the levels of this histone mark. Bold enzyme names are
associated with neurodevelopmental disorders or have neuronal phenotypes. H3K27me3 (red) histone mark is associated with transcriptional repression.
The PRC2 complex catalyzes H3K27 methylation, its individual core subunits are shown in red. (C) Diagram illustrates the distribution of the different
histone marks in different genomic locations including the enhancer, CpG island, promoter, transcription start site (TSS), gene body, and transcription
end site (TES). Left panel depicts the histone modification distribution in a transcriptionally active gene. Right panel shows histone modifications in a
transcriptionally silent gene (Lim et al., 2010).

transcription (Wang et al., 2007; Pradeepa et al., 2012; Huang and
Zhu, 2018). H3K36 methylation occurs in three different forms:
mono-methylation (H3K36me), di-methylation (H3K36me2), and
tri-methylation (H3K36me3). H3K36me is widely considered an
intermediate step, but a function for H3K36me in the repair of

double-strand breaks has been reported (Jha and Strahl, 2014).
Both H3K36me2 and H3K36me3 are mainly contained within
lightly packed regions of chromatin, indicating their role in
transcriptional activation (Bannister et al., 2005; Wagner and
Carpenter, 2012; Figure 1). H3K36me2 is mostly found in intergenic

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.989109
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-989109 February 8, 2023 Time: 13:48 # 4

Ritchie and Lizarraga 10.3389/fnins.2023.989109

regions (Weinberg et al., 2019; Xu et al., 2020), while H3K36me3
localizes along gene bodies (Weinberg et al., 2019), and is
proposed to serve as a hub to recruit proteins involved in RNA
splicing (Pradeepa et al., 2012; Iwamori et al., 2016). Control of
H3K36 methylation is modulated by H3K36 demethylases and
methyltransferases. Mutations in these proteins have been associated
with several neurodevelopmental disorders. Next, we highlight the
cellular functions and neurological clinical findings associated with
histone methyltransferases that deposit the H3K36me1/2/3 histone
marks (NSD1, NSD2, ASH1L, SETD2, and SETD5) (Figure 1 and
Tables 1, 2).

2.1. NSD1 gene dosage and the balancing
act of large vs. small brains

Nuclear receptor SET domain-containing protein 1 (NSD1)
catalyzes both the mono-methylation and di-methylation of H3K36
(Li et al., 2009). The fact that H3K36me1/2 could serve as a substrate
for the tri-methylation of H3K36 (H3K36me3), suggests that NSD1
function might also contribute to the total levels of H3K36me3
(Lucio-Eterovic et al., 2010). Haploinsufficiency of NSD1 has been
associated with syndromic (Kurotaki et al., 2002; Buxbaum et al.,
2007; Koshimizu et al., 2013; Lane et al., 2017) and idiopathic ASD
(De Rubeis et al., 2014; Iossifov et al., 2015; Yuen et al., 2017;
Satterstrom et al., 2020). Loss of function mutations in NSD1 are
a major cause of Sotos Syndrome (Kurotaki et al., 2002, 2005)
which presents with macrocephaly, pre- and postnatal overgrowth,
facial dysmorphism, ID, autistic features, developmental delay, and
in some cases seizures (Sotos et al., 1964; Fortin et al., 2021). The
macrocephaly phenotype associated with NSD1 mutations in Sotos
syndrome has variable penetrance as 72–95% of patients present
with larger head circumference (Cecconi et al., 2005; Faravelli, 2005;
Saugier-Veber et al., 2007; Fortin et al., 2021; Muhsin et al., 2022).
In contrast, duplication of NSD1 in the microduplication 5q35
syndrome leads to microcephaly in 74% of cases, with undergrowth,
and developmental delay in close to 90% of the cases (Chen et al.,
2006; Franco et al., 2010; Dikow et al., 2013; Rosenfeld et al., 2013;
Quintero-Rivera et al., 2021). Therefore, differences in NSD1 gene
dosage that elicit gain or loss of function phenotypes result in either
microcephaly or macrocephaly, respectively. However, the precise
molecular and cellular mechanisms regulated by NSD1 that influence
the control of brain size are underexplored.

At the molecular level, NSD1 is proposed to regulate the
recruitment of RNA Polymerase II to bone morphogenetic protein 4
(BMP4) nascent mRNA, indicating a role for NSD1 in transcriptional
activation during development (Lucio-Eterovic et al., 2010). In
embryonic stem cells (ESCs), NSD1 counteracts PRC2 activity by
preventing non-specific deposition of H3K27me3 along the genome,
which will prevent random transcriptional gene repression by PRC2
(Streubel et al., 2018). Therefore, NSD1 promotes a chromatin
environment that is permissive of transcriptional activation to
ensure the normal progression of organismal development. In the
developing human cortex, NSD1 is highly expressed in RGCs, oRGCs,
IPCs, and subsets of excitatory and inhibitory neurons suggesting
a major role for NSD1 in the regulation of these neural cell types
(Speir et al., 2021). In fact, acute knockdown of Nsd1 in mouse
cortical progenitors led to migration defects in cortical neurons and
correlated with differential expression of gene programs that regulate

neuronal migration and cell fate decisions (Almuriekhi et al., 2015).
In contrast, studies in Nsd1 heterozygous mutant mice showed that
while they did not present defects in overall brain architecture, they
did show reduced social novelty which is a hallmark of an autism-
like behavior (Oishi et al., 2020). There are currently no duplication
mouse models for NSD1 function. However, overexpression studies
in Drosophila showed that increased dosage of Nsd1 in glial cells
lead to cell death of glial and neuronal cells resulting in smaller head
sizes (Kim et al., 2020). Taken together these studies suggest that
while NSD1 contributes to the development of the brain architecture
and circuitry there might be cell type and species-specific differences
associated with its function.

2.2. NSD2 influencing brain size through
NPC proliferation and survival dynamics

Nuclear receptor SET domain-containing protein 2 (NSD2) is
a catalyst for the di-methylation of H3K36. In humans, NSD2 is
located in a critical region of microdeletion 4p16.3 which is associated
with Wolf-Hirschhorn syndrome (Bergemann et al., 2005), which
presents with microcephaly at birth (Bernardini et al., 2018; Zanoni
et al., 2021), global developmental delay, postnatal growth deficiency,
ID, distinct craniofacial features, and seizures (Kagitani-Shimono
et al., 2005; Battaglia et al., 2021; Wiel et al., 2022). Loss of function
mutations in NSD2 have been associated with ASD across multiple
genetics studies (De Rubeis et al., 2014; Wang et al., 2016; Yuen et al.,
2017), and replicate several of the clinical presentations of Wolf–
Hirschhorn syndrome including microcephaly, global developmental
delay, and ID, but do not present seizures (Boczek et al., 2018; Barrie
et al., 2019; Wiel et al., 2022). Therefore, the clinical evidence suggests
an essential role for NSD2 in the development of human neuronal
circuitry.

In non-neuronal cells, NSD2 is proposed to regulate cellular
proliferation and survival (Park et al., 2018). Therefore, it is possible
that the microcephaly phenotypes in humans with mutations in
NSD2 could arise from defects in NPC proliferation. Mouse models
with different deletions that affect Nsd2 present with a reduced
cerebral cortex (Naf et al., 2001), while Zebrafish null for nsd2 showed
reduced numbers of motor neurons with delayed axon outgrowth
(Yamada-Okabe et al., 2010; Yu et al., 2017). The reduction in cerebral
cortex size in mice or the reduction in the numbers of motor neurons
could be a consequence of reduced NPC proliferation, altered cell
fate or increase neuronal cell death. However, additional mechanistic
studies using human systems are needed to address the role of NSD2
in the control of brain size and neuronal function at large.

2.3. ASH1L a potential regulator of
prenatal and postnatal brain growth

Similar, to the NSD proteins, the Absent, small, or homeotic-
1 like (ASH1L) methyltransferase catalyzes both the mono- and
di-methylation of H3K36 (H3K36me1, H3K36me2) (Tanaka et al.,
2007, 2011). ASH1L might also be indirectly associated with tri-
methylation of H3K4 (H3K4me3) (Gregory et al., 2007). De novo loss
of function and missense mutations in ASH1L reached genome wide
significance across large genetics studies in ASD (Willsey et al., 2013;
Iossifov et al., 2014, 2015; Tammimies et al., 2015; Wang et al., 2016;
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TABLE 1 Neurodevelopmental disorders associated with H3K36 histone methyltransferases.

Enzyme Histone mark Associated neurodevelopmental
disorders

Brain size alterations Brain size defects source

NSD1 H3K36me1/2
Sotos syndrome (ID, ASD) Macrocephaly (79/85) and (16/16) Faravelli, 2005; Muhsin et al., 2022

Microduplication 5q35 syndrome Microcephaly (29/39) Quintero-Rivera et al., 2021

NSD2 H3K36me2 Wolf-Hirschhorn syndrome-DD, ID Microcephaly (14/28) and (6/7) Barrie et al., 2019; Zanoni et al., 2021

ASH1L H3K36me1/2

ASD, ID, seizures
Microcephaly (1/1) and (1/7) Okamoto et al., 2017; Faundes et al., 2018

Macrocephaly (1/1) Wang et al., 2016

ADHD, motor, and speech delay Normocephalic (1/1) Shen et al., 2019

Tourette Syndrome/ADHD Not ascertained Liu et al., 2020

SETD2 H3K36me3
Overgrowth Syndrome (ASD, ID) Macrocephaly (10/14) and (11/13) Marzin et al., 2019; Chen et al., 2021

NDD, severe ID (p. Arg1740Trp) Microcephaly (12/12) Rabin et al., 2020

SETD5 H3K36me3

SETD5-associated KBG syndrome Microcephaly (1/2) Crippa et al., 2020

3p25 Microdeletion Syndrome (ID, seizures) Microcephaly (3/4) and (2/4) Grozeva et al., 2014; Kuechler et al., 2015

ASD/variable ID/seizures/motor and speech delays
Not ascertained Fernandes et al., 2018

Normocephalic (12/14) Powis et al., 2018

This table shows H3K36 writers, that have corresponding neurodevelopmental syndromes. The corresponding histone modifications are shown. The brain size defects associated with mutations in
the different genes are shown. References shown are related primarily to reports in which brain size differences were reported.

TABLE 2 Neuronal phenotypes associated with mutations in H3K36 histone methyltransferases.

Enzyme Species Experimental design Phenotypes References

NSD1
Mouse

shRNA KD in embryonic brain Impaired neuronal migration Almuriekhi et al., 2015

Heterozygous KO Normal cerebral cortical size and progenitor number, fewer SATB2
neurons in Retrospenial cortex, UV vocalization defects

Oishi et al., 2020

Drosophila Overexpression in glial cells Increased apoptosis neuronal and glial cells; decreased head/brain size;
learning defects

Kim et al., 2020

NSD2

Zebrafish

KD by morpholinos Enlargement of endbrain/cerebral ventricle; Ventrally projecting
neurons are truncated; Reduced numbers of motor neurons

Yamada-Okabe et al., 2010

Homozygous KO Smaller body length; Enlarged Diencephalic ventricle; and Reduced
number of motor neurons

Yu et al., 2017

Mouse

Homozygous KO Decreased growth rate Nimura et al., 2009

Wolf-Hirschhorn deletion model
(radiation induced)

Reduced cerebral cortex size, cerebellar foliage defects, learning deficits Naf et al., 2001

ASH1L

Human

CRISPRi KD iPSC-derived neural
progenitor cells

Reduced neural progenitor cell proliferation; and reduction in neurite
outgrowth

Lalli et al., 2020

shRNA KD in ESC-derived
cortical neurons

Reduced neurite length and complexity; enlarged growth cone and cell
bodies

Cheon et al., 2022

Mouse

Nestin-CRE-KO Growth delays; cortical layer disorganization, reduced sociability, and
increased anxiety-like behaviors.

Gao et al., 2021a,b

Haploinsufficiency model and
EMX-CRE-KO

Neuronal hyperactivity; deficits in synapse pruning, propensity to
seizures

Gao et al., 2022; Yan et al., 2022

SETD2 Mouse

Forebrain KO Defects in neocortical arealization, cortico-thalamo-cortical circuits,
social interaction, motor learning, and spatial memory

Xu et al., 2021

In utero KD at E14 Defects in polarity and neuronal migration Xie et al., 2021

SETD5 Mouse

shRNA KD Increased proliferation of cortical progenitor cells

Sessa et al., 2019Heterozygous mutant Decreased body size, glutamatergic synapse formation, neuronal
activity, and deficits in social interaction

Haploinsufficiency model Normal brain size and cortical lamination; delayed ultrasonic
vocalization, impairments in cognitive tasks and behavioral inflexibility.

Deliu et al., 2018

Haploinsufficiency Decreased neurite length and complexity, thinner layer V (CTIP2),
reduced firing rate in primary cultures

Moore et al., 2019

This table shows H3K36 writers described in Table 1. We show the corresponding species, experimental system, neural relevant phenotypes, and the respective literature citations.
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TABLE 3 Neurodevelopmental disorders associated with H3K4 histone methyltransferases.

Enzyme Histone mark Associated neurodevelopmental
disorders

Brain size alterations Brain size defects source

SETD1A H3K4me3

Novel SETD1A-Associated NDD (global DD, ID,
behavioral problems)

Macrocephaly (3/13) Kummeling et al., 2021

Schizophrenia Not reported Singh et al., 2016

SETD1B H3K4me3 SETD1B associated syndrome (ID, DD, ASD,
seizures)

Microcephaly (2/36)

Weerts et al., 2021

Macrocephaly (2/36)

MLL1/KMT2A H3K4me1/2/3

Weidemann–Steiner Syndrome (DD/ID, ASD,
pre/post-natal growth deficits, seizures, corpus
callosum defects)

Microcephaly (11/71) Sheppard et al., 2021

Microcephaly (2/6) Chan et al., 2019

Kabuki Syndrome (mild-moderate cognitive
disability, postnatal growth deficits)

Microcephaly (2/2) Sobreira et al., 2017

Rubinstein–Taybi syndrome (ID, Speech delay,
postnatal growth retardation)

Microcephaly (3/7) Castiglioni et al., 2022

MLL2/KMT2B H3K4me3
Early childhood onset Dystonia (motor,
psychomotor defects, ID, ADHD, seizures)

Microcephaly (4/4) Kawarai et al., 2018

Microcephaly (2/19) Meyer et al., 2017

Non-dystonia syndrome Microcephaly (17/44) Cif et al., 2020

MLL3/KMT2C H3K4me1/2/3

Kleefstra Syndrome (ID, seizures, behavioral
problems)

Microcephaly (1/4) Kleefstra et al., 2012

ID/ASD related disorder (variable ID severity,
ASD, language/motor delay, short stature)

Microcephaly (3/6) Koemans et al., 2017

MLL4/KMT2D H3K4me1/2 Kabuki Syndrome (ID, pre and post-natal short
stature, seizures)

Microcephaly (7/26) Lehman et al., 2017

Microcephaly (11/37) Usluer et al., 2022

This table shows H3K4 writers, that have corresponding neurodevelopmental syndromes. The corresponding histone modifications are shown. The brain size defects associated with mutations in
the different genes are shown. References shown are related primarily to reports in which brain size differences were reported.

Stessman et al., 2017). Mutations in ASH1L have also been reported in
severe forms of ASD, presenting with ID, seizures, speech difficulties,
and in a small number of cases microcephaly and macrocephaly
(Homsy et al., 2015; Wang et al., 2016; Faundes et al., 2017,
2018; Okamoto et al., 2017; Stessman et al., 2017). Additional
pathogenic variants in ASH1L have been associated with Attention-
deficit/hyperactivity disorder (ADHD) (Satterstrom et al., 2019),
Tourette syndrome (Liu et al., 2020; Zhang et al., 2021), and
epilepsy (Tang et al., 2020). The association of ASH1L deficits with
multiple neurological disorders suggests that common downstream
mechanisms could underlie the diverse neuropathology in ASH1L-
related disorders.

ASH1L is emerging as a major modulator of neurodevelopment
and insight into its function has come from multiple studies that
integrate mouse and human experimental systems. CRISPR-
inactivation of ASH1L in LUHMES neural-like progenitor
cells, which are of human mesencephalic origin and give rise
to dopaminergic-like neurons, resulted in delayed neuronal
differentiation (Lalli et al., 2020). Similarly, introduction of
truncating frameshift mutations in ASH1L by CRISPR/CAS9
genome editing led to reduced neuronal output that correlated
with increased neural stem cell production in a human induced
pluripotent stem cell (iPSC)-model of prefrontal cortex neurogenesis
(Cederquist et al., 2020). Together these studies suggest a role for
ASH1L in the regulation of neuronal numbers. However, additional
evidence suggests that ASH1L functions in a cell-type dependent

manner affecting additional processes important for neuronal
morphogenesis and synaptic function. For example, knockdown of
ASH1L in human ESC-derived neurons led to severe reduction in
neurite outgrowth (Lalli et al., 2020; Cheon et al., 2022). In vivo,
knockout of Ash1l in mice lead to an overall growth retardation
at later postnatal stages and revealed cortical malformations (Gao
et al., 2021b). Specifically, knockout of Ash1l led to a disorganized
cortical architecture, with SATB Homeobox 2 (Satb2), a marker
specific for cortical layer 2/4 being observed in deeper layers (Gao
et al., 2021b). These results suggested that Ash1l knockout led to
the delayed lamination of neuronal cells. Recently, conditional
knockout of Ash1l in mice demonstrated a role for ASH1L in
synaptic function and synapse remodeling. Ash1l -haploinsufficiency
resulted in neuronal hyperactivity (Gao et al., 2022) and increased
synapse numbers due to deficits in synapse elimination (Yan et al.,
2022). Together the clinical and mechanistic studies discussed above,
suggest that ASH1L regulates gene programs relevant to the proper
development of the brain architecture, wiring, and possibly the
control of brain size.

2.4. SETD2 gain or loss of function
differentially impact brain size

In contrast to the NSDs and ASH1L proteins, the Set Domain
Containing 2 (SETD2) catalyzes exclusively the tri-methylation of
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TABLE 4 Neuronal phenotypes associated with mutations in H3K4 histone methyltransferases.

Enzyme System Experimental design Phenotype References

SETD1A

Mouse

Frameshift mutation exon 7
heterozygous mutants and KD

Reduced sociability, severe hyperactivity, reduced synaptic function, and
spine density

Nagahama et al., 2020

LoF Heterozygous KO Deficits in working memory, alterations in PFC synaptic function,
reduced axonal branching and synaptic density

Mukai et al., 2019

Human iPSC-neurons Haploinsufficiency
CRISPR-induced deletion of exon
7

Increased dendritic complexity, increased network activity, increased
cAMP signaling

Wang et al., 2022

SETD1B Mouse CamKII-CRE-KO Postnatal
deletion excitatory neurons

Severe learning impairment Michurina et al., 2022

MLL1/KMT2A

Zebrafish KD by morpholino and dominant
negative OE

Reduced NPC proliferation, premature neuronal differentiation,
reduced gliogenesis

Huang et al., 2015

Mouse

cKO excitatory forebrain neurons Impaired hippocampal memory formation Kerimoglu et al., 2017

hGFAP-CRE/MLL1 cKO NPCs
SVZ, SGZ, cerebellar granule cells

Reduced size of cerebellar granule layer and hippocampal dentate gyrus.
Impaired SVZ neurogenesis but not gliogenesis

Lim et al., 2009

Heterozygous mutant Decreased spine density in basal ganglia and increased aggressive
behavior

Vallianatos et al., 2020

MLL2/KMT2B Mouse

KO in ESCs Delayed differentiation toward ectodermal lineage and increased
apoptosis of ESCs

Lubitz et al., 2007

KO in embryonic fibroblasts Impaired trans differentiation of fibroblasts into neuronal cells Barbagiovanni et al., 2018

cKO postnatal forebrain
excitatory neurons

Impaired hippocampus dependent memory formation Kerimoglu et al., 2013

MLL3/KMT2C

Rat siRNA KD in cortical neurons Hyperactive neuronal networks during development; Reduced
inhibitory and excitatory synaptic puncta

Frega et al., 2020

Drosophila RNAi in the adult nervous system Reduced short term memory Koemans et al., 2017

MLL4/KMT2D

Human iPSC-derived NPCs from a
Kabuki syndrome patient

Reduced NPC proliferation Carosso et al., 2019

Mouse KMT2D/β-geo-truncated protein
lacking SET domain

Hippocampal memory dysfunction, reduced neurogenesis of granule
cell layer

Bjornsson et al., 2014

This table shows H3K4 writers described in Table 3. The corresponding species, experimental system, neural relevant phenotypes, and the respective literature citations are shown.

FIGURE 2

Neuronal phenotypes associated with brain size abnormalities. Schematic shows brain size abnormalities and potential cellular defects associated with
differences in brain size. Microcephaly mechanism are shown in red while macrocephaly mechanisms are shown in light pink. Histone
methyltransferases and their corresponding neuronal phenotypes that have been associated with either microcephaly or macrocephaly are shown in
black, while enzymes for which there is no conclusive evidence on specific phenotypes are shown in gray.
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H3K36 (Edmunds et al., 2008), which is a histone mark mostly found
in the gene body of transcriptionally active genes. Several clinical
studies suggest that loss of SETD2 could impact neuronal connectivity
and brain size. De novo loss of function mutations in SETD2 have
been associated with idiopathic ASD (O’Roak et al., 2012a,b; Wang
et al., 2020), and a syndrome that presents with variable degrees
of ID, autistic behaviors, overgrowth, seizures, speech delays, facial
dysmorphisms, and macrocephaly (Lumish et al., 2015; van Rij et al.,
2018; Marzin et al., 2019; Chen et al., 2021). In contrast, a recent
report of patients with a gain of function mutation (p. Arg1740Trp)
in SETD2, presented microcephaly and epilepsy in 12 out of 12 cases
(Rabin et al., 2020). Therefore, SETD2 like the NSDs and ASH1L,
appears to be important for the proper development of neuronal
connectivity and for the control of brain size.

SETD2 is a multifaceted protein that regulates transcriptional
activation, modulates transcriptional elongation through its
interaction with RNA Polymerase II (Kizer et al., 2005), is essential
in the control of co-transcriptional splicing (Leung et al., 2019),
and contributes to DNA repair through promotion of homologous
recombination (Pfister et al., 2014). In the human developing cortex
SETD2 is widely expressed in oRGCs, RGCs, IPCs, astrocytes,
excitatory, and inhibitory neurons (Speir et al., 2021), which suggests
widespread functions in multiple neural cell types. Hence cell
specific knockout studies will be important to define cell-type
specific mechanisms governed by SETD2 during the development
of neuronal circuitry. In fact, knockout of Setd2 in the developing
forebrain revealed abnormal cortical arealization and aberrant
thalamo-cortico-thalamic circuits in mice that also had defects in
social interaction, motor learning and spatial memory (Xu et al.,
2021). The observed neural phenotypes associated with SETD2
dysfunction could be related in part to changes in the chromatin
environment. For instance, SETD2 interacts with histone H2
variant H2A.Z to regulate the H3K36me3 modification of the NK2
Homeobox 4 (Nkx2.4) gene (Shen et al., 2018; Zhang et al., 2020).
Deficits in both Nkx2.4 and H2A.Z promote NPC proliferation
and inhibit neuronal differentiation (Shen et al., 2018; Zhang et al.,
2020). However, only deficits in H2A.Z lead to dendritic arborization
defects (Shen et al., 2018). Together deficits in NPC proliferation,
neuronal differentiation, and arborization could contribute to the
defects in arealization and the aberrant thalamo-cortical circuits
associated with loss of Setd2 (Xu et al., 2021). Therefore, we posit
that the modulation of the chromatin environment by SETD2 plays
an important role in the regulation of cell fate transitions during
neurogenesis, and the structural development of neuronal circuits.

2.5. SETD5 dysfunction in microcephaly
related syndrome

Like SETD2, the SET Domain Containing 5 (SETD5) histone
methyltransferase appears to exclusively catalyze the tri-methylation
of H3K36 (Sessa et al., 2019). SETD5 is one of 3 genes located in a
critical region of the 3p25 microdeletion syndrome. Large deletions
in 3p25 present with varying degrees of ID, and facial dysmorphisms
and could include seizures, cardiac defects, and microcephaly, yet
smaller deletions containing the critical interval only present with
ID and facial dysmorphisms (Kellogg et al., 2013; Grozeva et al.,
2014; Kuechler et al., 2015). Similarly, haploinsufficiency of SETD5
has been identified as a frequent cause of ID based on whole exome

sequencing studies (Kuechler et al., 2015) and has been associated
with variable dysmorphic features, ASD, and ADHD (De Rubeis et al.,
2014; Grozeva et al., 2014; Szczałuba et al., 2016; Rawlins et al., 2017;
Fernandes et al., 2018; Powis et al., 2018; Satterstrom et al., 2020).
Finally, loss of function mutation in SETD5 was identified in a patient
with KBG syndrome that also presented with microcephaly (Crippa
et al., 2020).

Loss of SETD5 causes abnormal transcription within neural stem
cells (Nakagawa et al., 2020). In neonatal mouse brains, knockdown
of Setd5 led to an increase in the proliferation of cortical progenitor
cells, and a significant decrease in glutamatergic synaptic formation
(Sessa et al., 2019). In addition, Setd5 haploinsufficiency in mice was
associated with decreased neurite length, reduced arbor complexity
and autism-like behaviors (Moore et al., 2019). Furthermore, a
different study of mice haploinsufficient for SETD5 showed that
despite an overall normal brain architecture and cortical lamination,
the animals presented defects in ultrasonic vocalization and cognitive
tasks (Deliu et al., 2018). Taken together these studies demonstrate an
essential role for H3K36me3 methylation mediated by SETD5 during
neurogenesis, neuronal differentiation, maturation, and synaptic
function.

In summary, mounting evidence suggests a major role for H3K36
methyltransferases in the regulation of early brain development and
the proper wiring of neural circuits. H3K36 methyltransferases have
been implicated in multiple processes that can contribute to the
control of brain size including cell fate transitions, NPC proliferation
and neuronal arborization. Next, we present an overview of another
group of histone Lysine methyltransferases with major roles in
neuronal development.

3. H3K4 methylation and
neurodevelopment

H3K4 methylation occurs in three states: mono-, di-, and tri-
methylation (H3K4me, H3K4me2, and H3k4me3) and has previously
been associated with transcriptional activation (Barski et al., 2007;
Zhu et al., 2013; Figure 1). The three different H3K4 methylation
states are differentially distributed across the genome, with H3K4me1
being present primarily at enhancer regions, while H3K4me2/3 are
enriched at transcriptional active promoters (Collins et al., 2019).
Histone H3K4 methyltransferases and demethylases control the
transition between these different methylation states (Shilatifard,
2008). H3K4 histone methyltransferases have been widely studied in
cancer biology (Deb et al., 2014; Li et al., 2018; Yang et al., 2021),
and have been strongly implicated in various neurodevelopmental
disorders, including ASD and ID (Wynder et al., 2010; Vallianatos
and Iwase, 2015; Kim et al., 2017; Tables 3, 4).

3.1. MLL1/KMT2A a central contributor to
the pathogenesis of multiple
microcephaly associated syndromes

Mixed lineage-leukemia 1 (MLL1), also known as Lysine
methyltransferase 2A (KMT2A), is a member of the Trithorax
Group (TrxG) of proteins. MLL1/KMT2A catalyzes the mono, di
and tri-methylation of H3K4 (H3K4me1/2/3). Dominant de novo
mutations in MLL1/KMT2A are associated with Weidemann–Steiner
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syndrome. Patients with Weidemann–Steiner syndrome exhibit ID,
microcephaly, short stature, and a subset present with ASD (Jones
et al., 2012; Strom et al., 2014; Chan et al., 2019; Sheppard et al.,
2021). Large scale exome sequencing studies identified mutations
in MLL1/KMT2A among patients presenting with developmental
delay and ID (Deciphering Developmental Disorders Study, 2015;
Lelieveld et al., 2016; Trujillano et al., 2017). Clinical genetics studies
identified MLL1/KMT2A pathogenic variants in patients diagnosed
with either Kabuki syndrome or Rubinstein–Taiby syndrome which
are characterized by ID, postnatal growth defects and microcephaly
(Sobreira et al., 2017; Castiglioni et al., 2022).

MLL1/KMT2A-mediated H3K4 methylation has been associated
with the regulation of transcriptional initiation through recruitment
of RNA Polymerase II (Wang et al., 2009). Morpholino knockdown
of the MLL1/KMT2A homologue in Zebrafish embryos showed
reduced NPC proliferation, premature neuronal differentiation, and
reduced numbers of glial cells (Huang et al., 2015). Similarly, in
human iPSC-derived neural stem cells loss of function mutations in
MLL1/KMT2A introduced by CRISPR/CAS9 genome editing led to
neurogenesis defects that resulted in the depletion of the neural stem
cell population and premature neuronal differentiation (Cederquist
et al., 2020). In contrast, Mll1/Kmt2a—deficient SVZ adult neural
stem cells showed severe impairment of neuronal differentiation
but normal gliogenesis (Lim et al., 2009). In addition to its role
in neurogenesis, MLL1/KMT2A also modulates synaptic function.
Mice heterozygous for Mll1/Kmt2a showed reduced numbers of
dendritic spines (Vallianatos et al., 2020), and the specific ablation
of Mll1/Kmt2a in mice prefrontal cortical neurons lead to defects in
short-term synaptic plasticity (Jakovcevski et al., 2015). Furthermore,
the synaptic defects identified in Mll1/Kmt2a mutant mice lead to
increased aggressive behaviors and social dominance (Vallianatos
et al., 2020), as well as deficits in working memory (Jakovcevski et al.,
2015). In summary, MLL1/KMT2A control of H3K4 methylation
might be species and cell type specific but is overall essential for the
proper development of brain architecture and wiring.

3.2. MLL2/KMT2B in dystonia and brain
size control

Mixed lineage-leukemia 2 (MLL2), also known as Lysine
methyltransferase 2B (KMT2B), tri-methylates H3K4 (Denissov
et al., 2014). Mutations in MLL2/KMT2B have been commonly
associated with early onset generalized dystonia, which is a disorder
characterized by sustained muscle contractions causing abnormal,
repetitive movements, and in a small number of cases has been
associated with ID, facial dysmorphisms and microcephaly (Albanese
et al., 2013; Zech et al., 2016; Meyer et al., 2017; Kawarai et al.,
2018). In contrast, a subset of non-dystonia patients with mutations
in MLL2/KMT2B presented with neurodevelopmental delay, ID,
microcephaly, short stature, and facial dysmorphic features (Cif et al.,
2020).

Knockout of Mll2/Kmt2b in mouse ESCs resulted in a severe
delay in differentiation toward the ectodermal lineage which gives
rise to the neuroectoderm (Lubitz et al., 2007). Further, inactivation
of Mll2/Kmt2b resulted in impaired trans differentiation of mouse
fibroblasts into neuronal cells, and disruption of a network of genes
responsible for neuronal maturation, suggesting that MLL2/KMT2B
is required for the activation of the neuronal maturation programs

during this process (Barbagiovanni et al., 2018). In vivo, post-
natal deletion of Mll2/Kmt2b from excitatory forebrain neurons
led to impaired memory consolidation (Kerimoglu et al., 2013).
Therefore, similar to MLL1/KMT2A, MLL2/KMT2B is also essential
for the regulation of gene networks that modulate memory processes.
However, the gene programs modulated by both proteins are almost
non-overlapping (Kerimoglu et al., 2017).

3.3. MLL3/KMT2C

Mixed lineage-leukemia 3 (MLL3), also known as Lysine
methyltransferase 2C (KMT2C), catalyzes the mono- and di-
methylation of H3K4 (Hu et al., 2013; Lee et al., 2013). H3K4me
and H3K4me2 have been identified at enhancer regions leading to
transcriptional activation (Hu et al., 2013). Pathogenic mutations
in MLL3 are associated with Kleefstra syndrome, ID, behavioral
problems, and epileptic seizures as its core features, while in some
cases microcephaly is present (Kleefstra et al., 2012; Frega et al.,
2020). Pathogenic variants in MLL3 were identified in large whole
exon sequencing studies in patients with ASD (De Rubeis et al., 2014;
Iossifov et al., 2014), and have been associated with an ID/ASD related
syndrome that presents microcephaly in 50% of the cases reported
(Koemans et al., 2017). Therefore, suggesting the importance of
this member of the MLL family of proteins in the development of
neuronal circuitry.

MLL3/KMT2C is widely expressed in the developing human fetal
brain (Johnson et al., 2009). Introduction of frameshift mutations
in MLL3/KMT2C by CRISPR/CAS9 genome editing in iPSC-derived
neural stem cells render them unable to generate neurons (Cederquist
et al., 2020). Work in other species suggests that MLL3/KMT2C
might have additional roles outside of the control of neurogenesis,
as knockdown of MLL3/KMT2C in rat primary neurons led to a
hyperactive state of mature neuronal networks compared to control
neurons (Frega et al., 2020). In Drosophila, knockdown of the
MLL3/KMT2C homologue in the adult nervous system led to reduced
short-term memory, but no effect on cell fate decisions or increase in
cell death was observed (Koemans et al., 2017). Taken together, these
studies across multiple species suggest that MLL3/KMT2C drives
temporally distinct programs as development proceeds.

3.4. MLL4/KMT2D in Kabuki syndrome
associated with microcephaly

Like MLL3/KMT2C the paralogous MLL4/KMT2D can also
catalyze the mono- and di-methylation of H3K4 (Hu et al., 2013;
Lee et al., 2013). Mutations in MLL4/KMT2D have been identified as
the most common cause of Kabuki syndrome, which is characterized
by distinctive facial features, microcephaly, growth delay, cardiac
anomalies, and varying degrees of ID (Lehman et al., 2017; Di Candia
et al., 2022; Usluer et al., 2022; Table 3).

Work in human iPSC-derived NPCs from a Kabuki syndrome
patient with a nonsense mutation in MLL4/KMT2D showed a
reduction in NPC proliferation that resulted in precocious neuronal
differentiation (Carosso et al., 2019). Similarly, a study of a mouse
with a truncation mutation in the catalytic domain of Mll4/Kmt2d
led to reduced neurogenesis of the granule cell layer. Taken together,
these studies suggest a major role for MLL4/KMT2D regulating the
numbers of NPCs during embryonic and adult neurogenesis.
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3.5. SETD1A is a major factor in
neuropsychiatric disorders

SET Domain Containing 1A (SETD1A) catalyzes the tri-
methylation of H3K4 (Lee and Skalnik, 2008), and has been
shown to be important for the maintenance of genome stability
during DNA replication (Higgs et al., 2018). Haploinsufficiency of
SETD1A was identified in patients with a novel neurodevelopmental
disorder, characterized by global developmental delay, ID, facial
dysmorphisms, psychosis, behavioral and psychiatric abnormalities,
and in some cases autistic-like behaviors (Kummeling et al., 2021).
In contrast, a de novo mutation in SETD1A was associated with
macrocephaly but was not co-diagnosed with ASD (Zhang et al.,
2022). Recently, a large human genetics study of schizophrenia
identified rare coding variants in SETD1A raising above genome-
wide significance (Singh et al., 2022). Clearly, SETD1A has a major
role in the proper development of neuronal circuits, however,
additional evidence is needed to determine how common is the
macrocephaly phenotype in patients with SETD1A mutations.

SETD1A has been proposed to regulate neuronal progenitor
proliferation through its interaction with Histone Cell Cycle
Regulator (HIRA) (Li and Jiao, 2017) could contribute to
the regulation of neuronal differentiation and excitability by
transcriptionally activating β-catenin (Li and Jiao, 2017), a key
component of the Wnt/β-catenin pathway which is essential for
neurogenesis (Hirabayashi et al., 2004; Zhang et al., 2011; Rubio
et al., 2020). In mice, a missense mutation in SETD1A resulted in
faster migration of neurons within the cortex (Yu X. et al., 2019),
suggesting that neuronal migration could also be regulated by
SETD1A. Mice heterozygous for Setd1a showed decreased axonal
branching, reduced dendritic spines, and altered cortical synaptic
dynamics that are associated with defects in working memory
and social interaction (Mukai et al., 2019; Nagahama et al., 2020).
In contrast, iPSC-derived human glutamatergic and GABAergic
neurons haploinsufficient for SETD1A had enlarged neuronal
arbors, increased network activity, and synaptic connectivity
(Wang et al., 2022). Taken together, mounting evidence suggests
an essential role for SETD1A in the regulation of neurogenesis
and neuronal connectivity, that might differ in a species-specific
manner.

3.6. SETD1B and the balancing act
between a large vs. a small brain

SET Domain Containing 1B (SETD1B) is the catalytic subunit
of the Complex Proteins Associated with SET1 (COMPASS) that
catalyzes the tri-methylation of H3K4 (Lee et al., 2007). Human
pathogenic variants in coding regions of SETD1B have been
associated with ASD, ID, and epilepsy (Den et al., 2019; Hiraide
et al., 2019; Roston et al., 2021). Additionally, SETD1B has been
identified as a candidate gene for 12q24.31 microdeletion syndrome,
which presents with ID, autism-like features, facial dysmorphisms,
and epilepsy (Baple et al., 2010; Palumbo et al., 2015; Labonne et al.,
2016). Both microcephaly and macrocephaly have been associated
with SETD1B mutations. However, this is a variable phenotype as
in each only 2 out of 36 patients were reported to have significant
changes in head circumference (Weerts et al., 2021). In mice, deletion
of Setd1b at early embryonic stages did not appear to be required for

neural stem cell (NSC) survival or proliferation (Bledau et al., 2014).
However, postnatal deletion of Setd1b in excitatory forebrain cortical
neurons led to severe learning impairment and altered the expression
of neural genes involved in learning and memory (Michurina et al.,
2022). Therefore, SETD1B appears to control primarily neuronal
function.

In summary, the different H3K4 methyltransferases control
various stages of neuronal development that can influence brain size
and cognition by controlling different H3 methylation states that
influence distinct gene programs.

4. The role of H3K27 methylation by
PRC2 in neurodevelopment and brain
size control

Polycomb group complex genes are a family of chromatin
regulators closely associated with gene silencing. In particular, PRC2
plays a vital role in the epigenetic regulation of gene expression
during normal development (Deevy and Bracken, 2019). PRC2
catalyzes H3K27me3 (Yu J. et al., 2019), which is a repressive
histone modification associated with gene silencing (Figure 1). PRC2
is composed of four core subunits: EZH1/2, SUZ12, EED, and
RbAp46/48. Enhancer of Zeste Homolog 1 or 2 (EZH1/2) is the
main catalytic subunit of PRC2 and it catalyzes the mono-, di-, or
tri-methylation of H3K27 (Di Croce and Helin, 2013). Embryonic
ectoderm development (EED) subunit of PRC2 plays an important
role in maintaining H3K27me3 through the binding of H3K27me3
to its C-terminal domain. Suppressor of zeste 12 (SUZ12) helps to
maintain the stability and catalytic activity of EZH2. Retinoblastoma-
associated protein 46/48 (RbAP46/48) is required for the association
of PRC2 to histone tails.

Different core subunits of PRC2 have been linked to multiple
neurodevelopmental disorders. Mutations in EZH2 (catalytic subunit
of PRC2) have been associated with Weaver Syndrome, which is
characterized by overgrowth and ID (Tatton-Brown et al., 2013).
Further, mutations in EZH2 have also been suggested to contribute
to the genetic ethology of ASD in the Chinese Han population (Li
et al., 2016). Previous studies suggest that a subset of ASD cases might
be associated with larger brain size (Sacco et al., 2015). However,
the extent to which ASD patients with EZH2 pathogenic variants
also present macrocephaly is unknown. Similar to EZH2, several
mutations in EED have also been identified in patients with Weaver
syndrome (Cooney et al., 2017; Cyrus et al., 2019; Griffiths et al.,
2019), while mutations in SUZ12 have been associated with a Weaver-
like syndrome presenting with macrocephaly, postnatal overgrowth,
and skeletal abnormalities (Imagawa et al., 2017, 2018). Similarly,
mutations in non-core subunits of PRC2 have also been shown
to have an important role in neuronal development. Jumonji and
AT-Rich Interaction Domain Containing 2 (JARID2) is a non-core
subunit of PRC2 that acts as an activator of Polycomb (Kasinath
et al., 2021). Mutations in JARID2 have been associated with
developmental delay, variable degrees of ID, facial dysmorphisms
(Verberne et al., 2021), and ASD (Weiss et al., 2009; Ramos et al.,
2012). However, to date no brain size alterations correlate with
pathogenic variants in JARID2.

Based on the clinical studies, PRC2 has an important role in
neuronal development and can impact brain size. We posit that
PRC2 modulates brain growth through the control of gene programs
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that impact neural cell fate decisions and neuronal morphogenesis
(Pereira et al., 2010; Liu et al., 2018). In particular the tight
regulation of the switch from a neurogenic to an astrocytic cell
fate could alter brain size. Knockdown of EED in mice NPCs
showed a lengthening of the neurogenic phase while there was a
shortening of the astrocytic phase (Hirabayashi et al., 2009). Similarly,
deletion of EZH2 in cortical progenitors led to an increase in the
number of neurons (Pereira et al., 2010) which correlated with a
lengthening of the neurogenic phase (Hirabayashi et al., 2009). Loss
of EZH2 in primary neurons led to increased neuronal arborization
and advanced migration of cells to the upper layers (Pereira
et al., 2010). Alterations in neuronal arborization is a mechanism
that could contribute to changes in brain size postnatally. The
defects in neuronal arborization associated with EZH2 dysfunction
might be mediated in part by alterations in the Brain-derived
Neurotrophic Factor (BDNF)/TrkB signaling pathway which is a
major regulator of neuronal arborization, synaptic function and
survival (Gonzalez et al., 2016). EZH2 regulates BDNF expression
through its interaction with Chromodomain Y Like (CDYL). CDYL
recognizes H3K27me3 and recruits additional PRC2, leading to a
restriction of dendritic morphogenesis (Qi et al., 2014), which could
result from increased repression of gene expression by elevated
levels of H3K27me2 repressive marks. Similarly, deletion of Lysine
demethylase 6A (UTX), an H3K27 demethylase, resulted in abnormal
dendritic development and reduced synaptic formation coinciding
with increased levels of H3K27me3 (Tang et al., 2017). Taken
together, these results implicate the restriction of PRC2 activity
as essential for proper neuronal differentiation, migration, and
morphogenesis.

5. Counteracting activities between
H3K36 and H3K4 methylation and
PRC2-mediated H3K27 methylation

The interplay between PRC2 methylation of H3K27 and
Trithorax methylation of H3K36 in the regulation of gene expression
is a known mechanism essential during development. However,
the implications of PRC2/Trithorax counteracting activities in the
formation of proper neuronal architecture and circuitry are largely
understudied (Schuettengruber et al., 2017). Deposition of H3K36
methylation marks provides a steric hindrance to PRC2 activity
by preventing it from methylating H3K27me3. The majority of
our current knowledge on how these counteracting epigenetic
mechanisms work is based on studies of non-neuronal systems. For
example, knockdown of Nsd1 in mouse ESCs resulted in a genome-
wide reduction of H3K36me2 levels coupled with increased levels
in H3K27me3. Additionally, NSD1 is required in ESCs for the
demarcation of H3K27me3 and H3K27me2, further corroborating
the importance of the counteracting activity between H3K36
histone methyltransferase activity and PRC2 activity (Streubel et al.,
2018). However, the mechanism by which NSD1 regulates the
demarcation of H3K27me3 and H3K27me2 in neurons is not
currently known. RNA-sequencing of a Nsd1 knockout mouse
revealed counteracting regulation of PRC2-associated genes (Shirane
et al., 2020). Knockdown of both Nsd1 and Nsd2 in mice brown
preadipocytes resulted in decreased H3K36me2 and increased
H3K27me3, with a more substantial change seen when Nsd2 was
knocked down compared to Nsd1 (Zhuang et al., 2018). Similarly,

in Drosophila, ASH1L antagonizes PRC2 activity by preventing the
methylation of H3K27me3 (Yuan et al., 2011). ASH1L knockdown in
bovine cumulus cells resulted in increased mRNA expression of EZH2
and SUZ12 which in turn could lead to higher levels of H3K27me3
methylation. These studies demonstrate that the opposing activities
of H3K36 modifying enzymes and PRC2-mediated methylation of
H3K27 is a conserved epigenetic mechanism. ASH1L has also been
shown to form a functional interaction with CREB-binding protein
(CBP) in Drosophila (Bantignies et al., 2000). CBP is a histone
acetyltransferase that acetylates H3K27, preventing the methylation
of H3K27 (Tie et al., 2014). Therefore, ASH1L by directly methylating
H3K36me2 and indirectly through its interaction with CBP could
oppose the catalytic activity of PRC2.

However, despite the antagonizing relationship between H3K36
methyltransferase activity and PRC2 activity, there is some evidence
that PRC2 directly binds to regions containing H3K36 methylation.
The introduction of PRC2 to H3K36 methylated regions is driven by
PHD Finger Protein 1 (PHF1) and PHD Finger Protein 19 (PHF19)
(Cai et al., 2013), which contain Tudor domains that recognize
H3K36me3. Recognition of H3K36 methylation marks by PHF1 or
PHF19 promotes the introduction of PRC2, leading to gene silencing
in these regions. PHF1 is also important for the stabilization of PRC2
on chromatin (Cai et al., 2013). These results suggest a more direct
interaction between these two histone methylation marks.

Finally, besides the opposing activities of H3K36 vs.
H3K27 methylation states, H3K4 methylation also provides a
counterbalancing mechanism to H3K27 modifiers. Mechanistically,
H3K4 histone marks are proposed to indirectly prevent the
methylation of H3K27 (Tie et al., 2014). Specifically, methylated
H3K4 binds CBP, which by acetylating H3K27 prevents its
methylation (Tie et al., 2014). Comparably, H3K27 tri-methylation
has been shown to inhibit the binding of the SET1-like H3K4
methyltransferase complex to histone H3 (Kim et al., 2013). In
addition, the MLL3/4 COMPASS-like complex contains the histone
demethylase KDM6/UTX, which is able to remove the H3K27me3
repressive mark produced by PRC2 (Agger et al., 2007; Kim et al.,
2014; Piunti and Shilatifard, 2016). Therefore, there is an interplay of
opposing activities between H3K4 and H3K27 modifying enzymes
that modulate the transition between transcriptional activation and
repression (Piunti and Shilatifard, 2016; Schuettengruber et al.,
2017).

6. Impact of histone
methyltransferases on brain size and
circuitry development–Integrating
the clinical findings with the
underlying biological mechanisms

6.1. Microcephaly

Different cellular mechanisms can contribute to a reduced brain
size. Here we discuss two major forms of microcephaly (primary
and postnatal) associated with genetic causes and the cellular
mechanisms that could underlie the development of a microcephalic
brain. Primary microcephaly is characterized by a small brain size
in the absence of major brain malformations at birth. Some of
the major cellular mechanisms that underlie primary microcephaly
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pathogenesis are reduced NPC proliferation, increased cell death
of NPC, and changes in cell fate determination (associated with
premature cell cycle exit) (Wollnik, 2010). This is not surprising as
several of the key primary microcephaly genes (CDK5RAP2, ASPM,
WDR62, and MCPH1) (Jackson et al., 2002; Bond et al., 2005; Shen
et al., 2005; Yu et al., 2010) are essential for the control of mitosis and
cell cycle progression (Cox et al., 2006; Jean et al., 2020).

Alternately, postnatal microcephaly has been associated with
defects in axon and dendritic arborization (Kwon et al., 2006;
Dindot et al., 2008; Belichenko et al., 2009; Zikopoulos and
Barbas, 2010), synaptogenesis (Giedd et al., 1999), gliogenesis
(Zuchero and Barres, 2015) and potentially increased postnatal
neural cell death. In particular, defects in the BDNF/TrkB
signaling pathway might constitute a common molecular
underpinning of neurodevelopmental disorders associated with
postnatal microcephaly. Variants in NTRK2, the gene encoding the
BDNF receptor TrkB, have been identified in patients presenting
with microcephaly (Yoganathan et al., 2021). During neuronal
development the BDNF/TrkB signaling pathway is a major regulator
of axonal and dendritic arborization (Gonzalez et al., 2016), as
well as synaptogenesis (Yoshii and Constantine-Paton, 2010).
Christianson syndrome (Ouyang et al., 2013) and Angelman
syndrome (Judson et al., 2017) are two neurodevelopmental
disorders associated with postnatal microcephaly that share defects
in neurotrophin signaling. Mouse models of both syndromes
showed reductions in neuronal arborization that correlate with
deficits in neurotrophin signaling. However, the extent to which the
different histone methyltransferases that have been associated with
postnatal microcephaly could modulate brain size by modulating
the BDNF/TrkB signaling pathway is underexplored. Recently,
mice with loss of Ash1l revealed growth delays and ASD/ID-like
social behaviors (Gao et al., 2021b). Knockdown of ASH1L in
human ESC-derived cortical neurons lead to decreased neurite
length and arbor complexity (Cheon et al., 2022). Similarly,
depletion of ASH1L in human iPSC-derived NPCs resulted in
delayed neural differentiation and maturation (Lalli et al., 2020).
The neuronal arborization defects associated with loss of ASH1L
might correlate with defects in the BDNF/TrkB signaling pathway
(Cheon et al., 2022). Taken together, these data are suggestive of
a mechanism through which deficits in ASH1L could underlie
postnatal microcephaly through its regulation of the neurotrophin
signaling pathway.

In addition to the potential role of ASH1L in the control of
brain size postnatally, clinical studies suggest that mutations in
either NSD1, NSD2, SETD2, or SETD5 have also been implicated
in microcephaly. Several clinical studies on NSD1 suggest that the
microcephaly associated with NSD1 increased dosage appears to
be postnatal (Dikow et al., 2013). Based on overexpression studies
in Drosophila, elevating the levels of the NSD1 fly homologue
in glial cells but not in neuronal cells led to reduced brain
size that was associated with increased cell death of both glial
and neuronal cells (Kim et al., 2020). However, further work in
animal models and human iPSC-derived neurons with duplication
of NSD1 will be necessary to elucidate the role of this histone
methyltransferase in the control of brain size in vertebrates. In
contrast to patients with NSD1 duplications, patients with small
4p.16.3 deletions that implicate NSD2 have been reported to be
microcephalic at birth (Bernardini et al., 2018) which suggests
that NSD2 controls brain size by mechanisms independent of
NSD1. Mouse models with different deletions that affect Nsd2

present with reduced cerebral cortex, and reduction of Nsd2 in
zebrafish led to reduced numbers of motor neurons; however, to
date there is a lack of mechanistic studies in these systems (Naf
et al., 2001). In hematopoietic B cells, loss of NSD2 reduced B
cell proliferation and led to alterations in cell fate commitment
(Campos-Sanchez et al., 2017). Therefore, it is possible that during
brain development, NSD2 could control the proliferation and cell
fate decisions of NPCs which if impaired could be a mechanism
contributing to the congenital microcephaly associated with deficits
in NSD2.

In contrast, multiple mechanisms could be implicated in
microcephaly associated with deficits in SETD5. For example,
decreased formation of glutamatergic synapses was observed in mice
with knockdown of Setd5 (Sessa et al., 2019), which suggests defects
in synaptogenesis that could lead to a reduced brain size postnatally.
Similarly, defects in neuronal arborization outgrowth and complexity
due to Setd5 downregulation could also be a potential mechanism
contributing to SETD5-associated microcephaly (Moore et al., 2019).
However, based on the current clinical literature it is not clear
whether the microcephaly associated with SETD5 is congenital or
postnatal.

Additional insights into the mechanistic underpinnings of
microcephaly associated with histone methyltransferases will be
gained by the study of the MLL family of H3K4 methyltransferases.
Deficits in both MLL1 and MLL2 have been associated with delays
or impairments of neuronal differentiation observed in mice models
targeting these two genes (Lubitz et al., 2007; Lim et al., 2009). Similar
to MLL1, loss of MLL4 leads to reduced NPC proliferation (Lim
et al., 2009; Huang et al., 2015; Carosso et al., 2019). Therefore,
convergent downstream mechanisms modulated by MLL1, MLL2,
and MLL4 could lead to a reduced brain size. In contrast, knockdown
of MLL3 in rat cortical neurons showed increased hyperactive
neuronal networks which correlated with decreased inhibitory and
excitatory synaptic puncta (Frega et al., 2020). However, MLL3 is
widely expressed in developing human fetal brain which suggests
that it could have additional important functions during human
neuronal development (Nagase et al., 2000; Johnson et al., 2009). To
gain further understanding of the chromatin regulatory mechanisms
that control brain size, studies that consider the counterbalance
between MLLs’ driven H3K4 methylation and PRC2 driven H3K27
methylation will be needed. PRC2 is known to repress genes
implicated in neural differentiation (Dietrich et al., 2012). Therefore,
genome wide scale loss of H3K4 methylation could result in increased
levels of H3K27me3 which could reduce neuronal differentiation for
example.

6.2. Macrocephaly

Macrocephaly or enlarged brain in the absence of hydrocephalus
has been linked to defects in axon/dendritic arborization,
synaptogenesis and hyperproliferation of neuronal progenitors.
A classic molecular mechanism previously implicated in
macrocephaly is the deletion of Phosphatase and Tensin Homolog
(PTEN). Loss of PTEN in neuronal cell populations of the mouse
cerebral cortex resulted in progressive macrocephaly, axonal
hypertrophy, and increased synapse formation (Kwon et al., 2006).
PTEN is involved with the PI3K/AKT pathway, which regulates
neurite growth and dendritic arborization (Crowder and Freeman,
1998; Markus et al., 2002; Jaworski et al., 2005). Mutations in
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Mammalian target of rapamycin (MTOR), which is downstream
of the PI3K/AKT pathway, have been identified in patients with
macrocephaly (Baynam et al., 2015). The MTOR pathway has been
identified as important for proper synaptogenesis, suggesting a
mechanistic role for abnormal synaptogenesis in the etiology of
macrocephaly (Takei et al., 2004).

The mechanism through which loss of function mutations in
NSD1 contribute to macrocephaly in patients with Sotos Syndrome
and Weaver Syndrome is largely understudied. Mice heterozygous
for Nsd1 presented deficits in social behaviors but did not show
enlarged brain size (Oishi et al., 2020). Analysis of homozygous
Nsd1 mutant embryos at embryonic day 9.5 showed they had
a smaller prosencephalon which was unexpected based on the
human clinical findings on Sotos syndrome (Oishi et al., 2020).
Therefore, there could be species specific differences, and it will
be important to model Sotos syndrome using human organoids
for example. Macrocephaly has been shown to be co-morbid with
cortical malformations that could result from impaired neuronal
migration (Andrews and Hulette, 1993; Robertson et al., 2000;
Tenney et al., 2011; Mirzaa and Poduri, 2014; Winden et al., 2015).
In humans, mutations in Adenomatous Polyposis coli 2 (APC2),
a protein with a crucial role in the control of neuronal migration
and axon guidance (Mimori-Kiyosue et al., 2000; Shintani et al.,
2009, 2012), have been identified by whole exome sequencing as
an additional cause of Sotos syndrome (Almuriekhi et al., 2015).
APC2 is a downstream target of NSD1 as overexpression of Apc2
in mice with Nsd1 knockdown rescued the neuronal migration
phenotype associated with loss of Nsd1 (Almuriekhi et al., 2015).
In contrast to the Nsd1 mutant mice that does not show an
enlarged head circumference, loss of function mutation in Apc2
resulted in a Sotos Syndrome-like phenotype in mice, with increased
head circumference and dilated brain ventricles (Almuriekhi et al.,
2015). Similar to NSD1, both SETD2 and SETD1A have also been
implicated in the control of neuronal migration (Yu X. et al., 2019;
Xu et al., 2021). However, divergent mechanisms could underlie a
larger head size associated with loss of function mutations in SETD2
and SETD1A. For instance, deficits in SETD2 could increase NPC
proliferation and lead to an enlarged brain (Li and Jiao, 2017; Shen
et al., 2018; Xu et al., 2021). In contrast, loss of SETD1A might result
in a macrocephalic brain due to increased neuronal arborization
(Wang et al., 2022).

Impairing the function of EZH2, the catalytic subunit of
PRC2, leads to increased neuronal differentiation which correlates
with decreased NPC proliferation and accelerated gliogenesis
(Liu et al., 2017). While it is unclear whether these cellular
mechanisms contribute to PRC2-associated macrocephaly, as brain
size was not investigated in this EZH2-knockout mouse model,
an additional mechanism that could contribute to the increase
in brain size associated with PRC2 defects is increased neuronal
arborization (Di Meglio et al., 2013; Qi et al., 2014). Studies on
the effects of PRC2 dysregulation and its interaction with CDYL
provide support to the idea of increased neuronal arborization
as a mechanism underlying PRC2-associated macrocephaly. The
interaction between CDYL and EZH2 leads to inhibition of
BDNF (Qi et al., 2014). If CDYL is unable to recruit EZH2 to
inhibit BDNF, this could potentially lead to increased neuronal
arborization and possibly synaptogenesis through upregulation of
the BDNF/TrkB pathway. In fact, loss of EZH2 has been associated
with increases in neuronal arborization and astrogliogenesis
(Hirabayashi et al., 2009; Corley and Kroll, 2015), providing

additional mechanisms that could contribute to PRC2-associated
macrocephaly.

7. Final remarks

Brain size abnormalities, including microcephaly and
macrocephaly, have previously been identified in a variety of
neurodevelopmental disorders. Gaining insight into the mechanisms
that produce brain size abnormalities will increase our understanding
of the pathogenesis resulting in these neurodevelopmental disorders.
Mutations in H3K36 and H3K4 histone methyltransferases have
been associated with both microcephaly and macrocephaly related
disorders (Figure 2 and Tables 1, 3). Methylation of H3K36 is
vital to a variety of cellular processes, including transcriptional
activation, DNA repair, and RNA splicing (Wang et al., 2007;
Pradeepa et al., 2012; Huang and Zhu, 2018). Similarly, H3K4
methylation is also important to many cellular processes, including
transcriptional activation and DNA repair (Barski et al., 2007;
Zhu et al., 2013). Studies have shown a major role for H3K36
and H3K4 methylation during neuronal development. Histone
methyltransferases responsible for H3K36 and H3K4 methylation
have been implicated in neural stem cell proliferation (Zhang
et al., 2011; Sessa et al., 2019), neuronal migration (Almuriekhi
et al., 2015; Yu X. et al., 2019), neuronal arborization (Moore
et al., 2019; Lalli et al., 2020; Gao et al., 2021b), and the control of
gliogenesis which constitute essential mechanisms for proper brain
development.

Additionally, gene silencing via PRC2-mediated H3K27
methylation is implicated in many different neurodevelopmental
processes, including neuronal migration (Pereira et al., 2010),
neural stem cell proliferation, and neuronal differentiation (Pereira
et al., 2010; Dietrich et al., 2012). Mutations within the subunits of
PRC2 are associated with several neurodevelopmental disorders,
some of which also have reported brain size abnormalities (Cooney
et al., 2017; Imagawa et al., 2017, 2018; Cyrus et al., 2019; Griffiths
et al., 2019; Verberne et al., 2021). Both H3K36 and H3K4
methylation can directly or indirectly counteract PRC2 function
by preventing the methylation of H3K27me3 (Agger et al., 2007;
Yuan et al., 2011; Kim et al., 2014; Piunti and Shilatifard, 2016;
Schuettengruber et al., 2017; Streubel et al., 2018; Zhuang et al., 2018;
Shirane et al., 2020). While the balance between H3K36 and H3K4
methyltransferases and PRC2-mediated H3K27 tri-methylation
have been well-studied in cancer and general development, the
potential role of this counteracting activity to the etiology of
different neurodevelopmental disorders is understudied. Potential
increases in H3K27me3 caused by mutations in H3K36 or H3K4
methyltransferases could provide a convergent epigenetic mechanism
leading to abnormal neurodevelopment.

It is important to note that the activity of proteins associated
with H3K36 and H3K4 methylation is not necessarily restricted
to only histone methylation. There is increasing evidence that
several H3K36 methyltransferases also function as methylators of
cytoskeletal components. Specifically, recent studies have shown that
SETD2 is responsible for the trimethylation of Lysine 40 on α-
tubulin (Park et al., 2016; Koenning et al., 2021). This cytoskeletal
methylation has been identified in the mouse brain, with high
concentrations of this mark found in post-mitotic neurites and
growth cones (Koenning et al., 2021). Mutations to the Set2-Rpb1
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interaction (SRI) domain of SETD2, which is responsible for
substrate recognition, resulted in increased anxiety-like behavior
and reduced dendritic arborization and axon length in mice
(Koenning et al., 2021). Both α- and β-tubulin have been associated
with maintenance of brain size, as mutations in both of these
genes have been associated with microcephaly (Keays et al., 2007;
Breuss et al., 2012). Additionally, SETD2 has been shown to tri-
methylate actin on Lysine 68 through its interaction with the
Huntington protein and the actin-binding adapter HIP1R (Seervai
et al., 2020). This interaction was shown to be important for
proper cell migration in human embryonic kidney 293T cells
(Seervai et al., 2020). However, it is unknown if this interaction
contributes to neuronal cell migration. SMYD2 is another H3K36
methyltransferase that has been linked to methylation of α-tubulin
at Lysine 394 through cross-talk with cyclin-dependent kinases 4
and 6 (CDK4/6) (Li et al., 2020). Taken together, these studies
suggest that direct methylation of cytoskeletal components is
another mechanism that should be considered when attempting
to uncover epigenetic mechanisms contributing to brain size
abnormalities.

Epigenetic mechanisms play an important role in the
regulation of gene programs responsible for brain development
(Keverne, 2014). Here we have discussed how mutations across
different histone methyltransferases lead to dysregulation of
neurodevelopmental process, including NPC proliferation, neuronal
migration, and neuronal arborization. Additionally, we connect these
neurodevelopmental processes to brain size abnormalities identified
in disorders associated with multiple histone methyltransferases.
The counteracting mechanisms associated with H3K27me3 vs.
H3K36me2 or H3k4me3 modifications bring forward the exciting
opportunity to test rescue strategies of the different neural
phenotypes. For example, inhibition of PRC2 catalytic activity
using a pre-clinical inhibitor of EZH2 rescued ASH1L neuronal
arborization defects in human ESC-derived neurons (Cheon et al.,
2022). Similarly, acetylation of H3K27, which can inhibit the
methylation of the same site by PRC2, has been used as a rescue
strategy for H3K4- and H3K36-related neuronal phenotypes.
For instance, inhibition of histone deacetylation which would
maintain chromatin in a hyperacetylated state improved autistic-like
behaviors of an Ash1l mutant mice (Gao et al., 2021a). Therefore,
gaining an in depth understanding of the molecular signatures
and cellular phenotypes associated with the pathogenic mutations
in H3K36 and H3K4 histone methyltransferases in the etiology
of various neurodevelopmental disorders will be instrumental
in the potential development of mechanistic based therapeutic
strategies.

Finally, a major remaining question moving forward in the
field of neurodevelopmental epigenetics will be how to explain the
phenotypic divergency associated with mutations in the different
H3K4-H3K36- and H3K27 methyltransferases. Are the differences
associated with cell type specific expression? Based on single cell
data from developing human cortex ASH1L, KMT2A, KMT2C,
SETD2, and SETD5 are widely expressed in multiple subtypes
of NPCs, inhibitory and excitatory neurons as well as glial
cells (Nowakowski et al., 2017; Speir et al., 2021). In contrast,
NSD1, KMT2B, KMT2D, SETD1A, and SETD1B seem to have
higher expression in different NPC subtypes but are not as
highly expressed in excitatory and inhibitory neurons in the

developing cortex (Nowakowski et al., 2017; Speir et al., 2021).
Therefore, the differences in spatial and temporal expression
could contribute to the divergence of phenotypes associated with
mutations in the different histone methyltransferases. In addition,
despite having similar cellular functions the differences in the
gene programs regulated by the different histone methyltransferases
could also contribute to the phenotypic diversity associated
with disruptions in the different enzymes. For example, the
paralogous enzymes MLL1/KMT2A and MLL2/KMT2B contribute
to memory formation through the regulation of distinct gene
programs (Kerimoglu et al., 2017). The differences in substrate
specificity and fine control of the chromatin environment, could
be further contributed by the different complexes these enzymes
form part of, which can give them their target specificity (Piunti
and Shilatifard, 2016). Therefore, future studies will need to
address the dynamic nature of these interactions during cortical
development.
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