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Background: Despite multimodal assessment (clinical examination, biology,

brain MRI, electroencephalography, somatosensory evoked potentials,

mismatch negativity at auditory evoked potentials), coma prognostic evaluation

remains challenging.

Methods: We present here a method to predict the return to consciousness and

good neurological outcome based on classification of auditory evoked potentials

obtained during an oddball paradigm. Data from event-related potentials (ERPs) were

recorded noninvasively using four surface electroencephalography (EEG) electrodes

in a cohort of 29 post-cardiac arrest comatose patients (between day 3 and day

6 following admission). We extracted retrospectively several EEG features (standard

deviation and similarity for standard auditory stimulations and number of extrema and

oscillations for deviant auditory stimulations) from the time responses in a window of

few hundreds of milliseconds. The responses to the standard and the deviant auditory

stimulations were thus considered independently. By combining these features,

based on machine learning, we built a two-dimensional map to evaluate possible

group clustering.

Results: Analysis in two-dimensions of the present data revealed two separated

clusters of patients with good versus bad neurological outcome. When favoring the

highest specificity of our mathematical algorithms (0.91), we found a sensitivity of

0.83 and an accuracy of 0.90, maintained when calculation was performed using

data from only one central electrode. Using Gaussian, K-neighborhood and SVM

classifiers, we could predict the neurological outcome of post-anoxic comatose

patients, the validity of the method being tested by a cross-validation procedure.

Moreover, the same results were obtained with one single electrode (Cz).
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Conclusion: statistics of standard and deviant responses considered separately

provide complementary and confirmatory predictions of the outcome of anoxic

comatose patients, better assessed when combining these features on a two-

dimensional statistical map. The benefit of this method compared to classical

EEG and ERP predictors should be tested in a large prospective cohort. If

validated, this method could provide an alternative tool to intensivists, to

better evaluate neurological outcome and improve patient management, without

neurophysiologist assistance.

KEYWORDS

coma, electroencephalography, automatic classification algorithm, machine learning,
neurological prognosis

Introduction

Sudden death by cardiac arrest (CA) is a major public health issue,
affecting 55 patients out of 100,000 with nearly 40,000 cases per year
in France (Sfar, 2007). Five to 30% of the patients resuscitated after
CA are alive at 1 year (Pell, 2003; Carr et al., 2009; Chin et al., 2022).
Despite the use of veno-arterial extracorporeal cardiopulmonary
resuscitation (VA-ECPR), a contemporary resuscitation approach
that increases patients’ survival, prognosis remains grim (Miraglia
et al., 2020). Favorable outcome after discharge relies mainly on the
prognostic value of brain injury that outweighs the combined effects
of all other terminal organ failures (Roberts et al., 2013; Rossetti et al.,
2016).

Assessment of neurological damage is usually performed 48–
72 h after CA and, optimally, after interruption of sedative
drugs (Nolan et al., 2021). The evaluation is multimodal and
combines, according to available local resources, clinical evaluation
(Glasgow Coma Scale, photomotor and pupillary reflexes), biological
markers of neural cell necrosis (NSE and S100bêta proteins),
cerebral Magnetic Resonance Imaging and electrophysiological
studies including electroencephalography (EEG), somatosensory
evoked potentials (SSEP) and auditory evoked potentials (AEP). EEG
analysis allows grading of post-anoxic encephalopathy (Synek, 1988),
“highly malignant” EEG pattern (Westhall et al., 2016; André-Obadia
et al., 2018), being associated with the least favorable prognosis.
The absence of EEG reactivity can predict mortality and poor
outcome. However, it is prone to large inter-rater variability when
only determined using visual analysis. For this reason, quantitative
methods developed to objectively measure EEG reactivity are
promising (Duez et al., 2018; Admiraal et al., 2020; Bouchereau et al.,
2022) and somatosensory and auditory evoked potentials can also be
used to improve the accuracy of the patient outcome. The absence of
cortical N20 response at SSEP after stimulation of median nerves has
an almost 100% specificity for non-awakening prediction (Sandroni
et al., 2014), while the presence of a "mismatch negativity” (MMN),
an endogenous long latency negative potential at AEP (Rohaut et al.,
2009) would rather indicate a good prognosis. The absence of cortical
N20 response at SSEP after stimulation of median nerves has an
almost 100% specificity for non-awakening prediction (Sandroni
et al., 2014). The presence of a "mismatch negativity” (MMN), an
endogenous long latency negative potential at AEP (Rohaut et al.,
2009) would rather indicate a good prognosis.

Mismatch negativity consists in recording cortical potentials
in response to auditory stimulation delivered by earphones, using

electrodes placed on the scalp. The MMN (or N200), is a negative
event-related potential (ERP) that occurs between 100 and 250 ms
predominantly over the frontocentral scalp area and is obtained by
the subtraction of oddball auditory stimuli (called deviant stimuli)
randomly intermixed with repetitive frequent auditory stimuli also
called standard or non-deviant stimuli. Thus, MMN reflects the
ability to detect automatic auditory violations, but sensitivity to
predict awakening is low (56%) with a high 93% specificity (Naccache
et al., 2005). Because of lack of sensitivity in the ICU when interpreted
only by visual analysis (present or absent) (Azabou et al., 2018),
complementary statistical methods have been developed to analyze
MMN more accurately, increasing thus the positive predictive value
for awakening (Pfeiffer et al., 2017), at the cost of extension of the time
of interpretation. Thus, multimodal approaches combining several
prognostic factors of post-anoxic coma have been proposed (Bassetti
et al., 1996; Fischer et al., 2006; Kim et al., 2012; Oddo and Rossetti,
2014) but the choice of these approaches has not yet succeeded to lead
to automatic and predictive analyses.

Taking advantage of the considerable amount of information
obtained at AEP, we conducted an explorative study in which
we applied a machine learning classification approach based on
EEG features arising from the distribution of the ERP fluctuations
responses during the 20 min-recording, rather than to interpret the
MMN as a binary response. We used data already acquired from a
homogeneous cohort of patients admitted in the intensive care unit
after CA and who all had EEG, SSEP and AEP recordings within
6 days after admission. We identified specific features from AEP,
considering responses to standard and deviant auditory stimulations
independently. Using a step-by-step data processing, we finally
reported combined features in two-dimensional map where we
observed that patients were clustered into two groups corresponding
to a different outcome at discharge whether they were able to follow
verbal command or not. We then estimated the probability for a
patient to be classified into one of the two groups at the acute phase
using several classifiers.

Patients and methods

Procedure

This study is a retrospective single-center study performed in
29 consecutive patients between January 2014 and March 2016,
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successfully resuscitated after CA, with persistent coma between
the 3rd day and 6th day following admission in the Department
of Medical and Toxicological Critical Care in Lariboisière Hospital
(Paris), and who completed EEG, SSEP, and AEP recordings. From
AEP recordings, we extracted individual features, and using a novel
analysis method, we aimed to classify patients into two categories:
communicating patients (assumed to have a good neurological
outcome) and deceased or non communicating patients, according
to their capacity to follow verbal command at discharge.

This study is an ancillary study of the PHRC CAPACITY
AOR10109 and was approved by the ethics committee (Comité de
Protection des Personnes, CPP Paris IV #2012/22). As this AEP
processing was performed secondarily, physicians who were in charge
of the patients could not have access to these data. Withdrawal of life-
sustaining therapies was performed according to the usual guidelines
(Société de réanimation de langue française., 2010).

Clinical data

Cardiac arrest characteristics, in-hospital management and
outcome data were collected according to Utstein method by the
intensivists in charge during hospitalization (Perkins et al., 2015).
During ICU stay, the following data were collected: age, sex, past
medical history; presumed etiology categorized into non-cardiac,
cardiac and undetermined; shockable rhythm; time from collapse
(CA) to return of spontaneous circulation (ROSC) dichotomized
into ≤25 or >25 min (Oddo et al., 2008); interval from the time
of collapse (presumed time of CA) to basic and/or advanced life
support, defined as no-flow duration, and the interval from the
beginning of life support until the return of spontaneous circulation
or termination of resuscitative efforts, termed low-flow duration;
hypothermia; Glasgow Coma Scale (GCS) on admission; SAPS II
(Simplified Acute Physiology Score) (Le Gall et al., 2005); sedation.

Good neurological prognosis was defined by appropriate
response to verbal command. Moreover, the Glasgow Outcome Scale
Extended (GOS-E) was retrospectively collected at 3–6 months, when
information was available.

Because of the retrospective design of our study, withdrawal of
life-sustaining therapies decisions had been taken before our new
analysis. They were multimodal and based upon European guidelines
ERC-ESICM (2014).

Electrophysiological data

We used electrophysiological data acquired between day 3 and
day 6 following admission, in order not to include patients with
early predictable death. However, most of them had previous EEG
recording in the first 48 h. All data were analyzed or double-
checked by specialists in clinical neurophysiology with at least
10 years’ experience.

EEG
Digital electroencephalography (EEG) recordings were

performed for at least 20 min, with 21 scalp electrodes positioned
according to the standard 10–20 system placement, reformatted to
both bipolar and off-head referential montages, with filter settings at
0.3 and 70 Hz. Repetitive bilateral auditory and painful stimulations
were systematically performed. These stimulations aimed to evaluate

EEG reactivity and performed according to a standardized protocol
for auditory (clapping noise, patient’s name and patient’s surname)
and nociceptive stimulations (nail bed pressure plied to each
upper limb) regularly applied in the same order. EEG was classified
according Synek’s classification (Synek, 1988), which defines precisely
the five major EEG patterns based on the allocation of patients into
five principal categories regarding their significance for survival
(optimal, benign if persistent, uncertain, malignant if persistent and
fatal).

Somatosensory evoked potentials
Median nerves were stimulated at the wrist to an intensity of 4–

5 mA, greater than that needed to evoke a muscular response, and
in the case of the use of neuromuscular blocking, the ERB potential
amplitude was used to estimate the intensity of the stimulation.
Pulse duration was 0.2 ms and stimulus rate 3 Hz. Active electrodes
were placed at Erb’s point and C3 and C4 points. At least two
repetitions (averages of 300 responses) were performed to assess
the reproducibility of the waveforms. N20 cortical response was
dichotomized into absent or present.

Mismatch negativity
The auditory event related potentials were elicited using the

classical odd-ball paradigm technique as already described (Fischer
et al., 1999).

Event-related potentials were recorded with active electrodes
(in an electrode cap) positioned at Fz, Cz, C3, C4 according
to the International 10–20 system, reference electrode at the
mastoid and ground reference at the forehead. Acoustic stimuli
were delivered through earphones binaurally using a randomly
intertwined sequence of standard and deviant stimuli in the
proportion of 86 and 14%, respectively. Standard stimuli were
delivered at a frequency of 800 Hz and lasting 75 ms each. Deviant
stimuli were delivered at a frequency of 880 Hz and lasting 30 ms each
to distinguish them from the standard stimuli (Fischer et al., 1999;
Chausson et al., 2008; Comanducci et al., 2020). The interstimulus
interval was 500 ms. EEG signals were band-pass filtered (0.5–75 Hz)
using a time window of 500 ms. Each recording was performed
during 20 min. Presence/absence of MMN defined as the negative
peak obtained between the difference between deviant and standard
response occurring in the 100–300 ms time interval following
stimulation. In our experience, MMN is delayed in those critically ill
and sedated patients, which explains this relatively wide time window.

Electrophysiological analysis
All data were analyzed by at least two different

neurophysiologists, blind to the neurological outcome of the
patients. When artifacts were too numerous leading to unreliable
conclusion, data were not considered.

Statistical analyses for demographic and
clinical data

In each group (good or bad neurological outcome), results
of clinical and neurophysiological examinations were expressed as
mean ± SD [min-max] and median [IQR 25–75], when appropriate.
Statistical analyses were performed with Prism 5 software (Prism
5.03, GraphPad, San Diego, USA). Comparison of frequencies in each
group was analyzed by the Fisher’s exact test. A value of p < 0.05 was
considered statistically significant.
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Signal processing, features identification,
and classification

This section is divided in three parts: 1-Signal processing, 2-
Feature identification and 3-Classification using a two-dimensional
map. Without a priori consideration, we considered specific features
in a 1 s duration window, then in a shorter window of 500 ms,
then at last in 320 ms, which contains the relevant features and gave
similar results compared to the two other time windows. This time
interval was chosen large to start (in order to take in consideration the
maximum amount of information, then was restricted to the smallest
time interval that still contained the whole information. The data
corresponding to the responses obtained from standard and deviant
auditory stimulations were considered independently, regardless
of the MMN that was not considered here, and mathematical
processing was applied as for any signal, independently of its potential
significance. We chose specific independent features for the standard
and deviant stimulations that allowed increasing the robustness of
the results, and preventing a potential bias by choosing a single set
of parameters. At last, we combined them into a two-dimensional
map, and patients formed two clusters according to their outcome.
All these steps were determined without a priori knowledge of the
patient’s prognosis.

Signal processing
Auditory evoked potential obtained with standard and deviant

auditory stimulations were exported in the European Data Format
(EDF), which is a simple and flexible format for storage of
multichannel biological and physical signals, then anonymized
through a specific software we designed. Analyses were performed
on all four active electrodes then on one single Cz (central) electrode
in order to see if we could obtain similar results with a simplified
electrodes setting. To quantify the auditory evoked responses recorded
from post CA patients in the intensive care unit, we studied separately
standard and deviant responses (Figure 1), which is a novel and
different paradigm compared to the classical MMN. We took into
account the total 20 min extracted data, instead of the short interval
response occurring in [100–300] ms following auditory stimulation.
We filtered the signal in the [0.5–50] Hz band. Finally, all standard
and deviant stimulations were averaged leading to a response in
the time interval [0− 1000] ms, [0−−500 ms], and [0–320 ms],
without difference in the analysis of the time intervals. To note,
there was no difference either in the responses when they were
computed in the interval [20–320 ms] that still contained the relevant
information. Therefore, we converged to compute all statistics over a
time window of [20–320] for all sounds, and results are presented in
this interval.

We first focused on the ERP responses to standard periodic
auditory stimuli, every 1s. We filtered the time series X(t) using a
Butterworth bandpass filter (n = 4) in the frequency range 0.5–
50 Hz and obtained the output Xf (t). Finally, we averaged the signal
in the time interval [0− 1]s, ensuring that auditory stimuli were
produced at time t = nT (T = 1s) leading to the response

Xp (s) =
1
N

N∑
1

Xf (s+ nT) , s ∈ [0− 1] (1)

where N is the number of periods (typically of the order 103).
This preliminary procedure therefore allowed obtaining an average

response Xp that highlights any possible deterministic feature present
in the response. We applied a similar averaging procedure for deviant
stimuli (see below and Figure 1).

Analysis of responses to standard stimuli

For the analysis of standard stimulation, we divided the 20 min
recording into two parts (two consecutive sequences of 10 min), to
explore a possible adaptation between the first part of the acquisition
and the last part. If patients’ responses to auditory stimulations
are able to fluctuate, this could indicate a better prognosis. This
“reactivity” or ability to adapt is already used when interpreting
the EEG in the ICU and indicates a better neurological outcome.
We have introduced two parameters to that possible adaptation
analysis: the variance of the signal computed over 10 min and the
correlation between the two parts of the signal. The main parameters
we extracted to study the response to standard stimulations were
defined as follows:

We computed the standard deviation σXof the signal in the time
interval [20− 320]ms.

σ2
X =

1
t2 − t1

∫ t2

t1
(X (t)−< X (t) >)2dt, (2)

where t2 = 320 ms and t1 = 20 ms, and X (t) is the average of the X
variable over the time [t1, t2]. This time interval corresponds to time
scales of the neural networks involved in cognitive tasks.

We then divided the acquisition time of 20 min into n equal parts.
For n = 2, we got [1− 10]min and [10− 20]min. We averaged the
signals on each of these periods to obtain two responses X(t) and
Y(t) in the interval [0− 1]s. We computed the time correlation or
similarity in [20, 320]ms of these two signals:

r (X,Y) =
<(X (t)−< X >) (Y (t)−< Y >)>

σXσY
, (3)

where < . > represents this time average.
We therefore used these two parameters to define the space state

for the coordinates a patient: (1) the standard deviation computed
over the entire sample of 20 min and (2) the similarity, computed in
Eq. 3. These coordinates define a mathematical state space, which is
not a specific of the medical state of the patient.

Analysis of responses to deviant stimuli

Deviant stimuli are random stimuli that account for 14% of the
entire responses. The approach used for standard responses analysis
is not well suited for deviant stimulations, as we did not expect
any adaptation in time of such a random motif. We choose two
parameters that are classically used for analysing oscillatory signals,
the number of extrema and the total variation for the oscillation.
We filtered the resulting signal Xd using a lowpass Butterworth
filter (n = 2) with a cut off frequency at 10 Hz. Finally, we
isolated responses in the different time windows described above and
computed averaged responses

Xr (s) =
1
N

N∑
1

Xd (s+ nT) . (4)

The smooth signal is shown in Figure 1C. We computed two
mathematical quantities on the signal:

(1) The number NE of local extrema (minima and maxima) in the
response attained at points ei.
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FIGURE 1

Pre-processing of the evoked auditory responses to standard and deviant stimuli (an example of data obtained from the CZ electrode is given for
standard stimuli and an example from all electrodes is given for deviant stimuli). (A) Upper: standard position of the EEG electrodes. Lower: EEG traces
during a protocol mixing standard (green) and deviant (red) stimulations. (B) Sample of standard stimuli (blue) the EEG signal from CZ-electrode is filtered
0.5–50 Hz. The output is an average filtered response over 1 s. (C) Pre-processing of deviant stimuli: (1) the signal is summed over electrodes, (2) a
low-pass filter is applied (butterworth with n = 2, cutoff frequency at 10 Hz), (3) average filtered response (continuous green) in a window of 500 ms to
a deviant stimulus, computed after synchronization to the stimulus. The non-filtered average response is also shown (dashed line).

(2) The total variation for the oscillation is measured by

|1V| =
∑
i

|V(ei)− V(ei+1)|, (5)

which is the sum of the absolute value of the difference between
two consecutive extrema of the average evoked responses. This
oscillation provides an information of the cumulative response
amplitude; (ei) is the time point where the EEG signal is
maximal or minimal.

Features identification associated to standard and
deviant responses

For standard responses, we computed the standard deviation
(formula 2) and the correlation function (formula 3) of the response
computed between the response in the first and second time period
(Figure 2A). To test the ability of these two parameters to separate
the two categories of patients, we plotted the histogram of these two
parameters for all patients in our data (Figure 2B), showing that each
parameter individually could be potentially used for a classification.

For the deviant responses, as the signal showed different
characteristics, we decided to use novel features, the number of
extremumNE present in the signal (Figure 3A) and the absolute value
of the oscillation|1V|, which represents the sum of the differences
between the extrema (formula 5). The result of this classification is
shown by histograms of the two parameters computed over the whole
population of patients (Figure 3B).

Although two different types of parameters were studied for
standard and deviant responses, each of them taken individually was
not sufficient to clearly separate the two categories of patients.

Classification using a two-dimensional map
Based on the parameters we extracted in the previous subsection,

we generated two-dimensional maps: for the map associated to
standard stimuli, each patient has the P = [σX, r(X,Y)] coordinates,

while for deviant stimuli, we used the P = (NE, |1V|) coordinates.
In various plots, we normalized the coordinates in a population
(X1, ..Xn) by:

X̃i =
Xi −< Xi >
√
Var(X1, ..Xn)

, (6)

Where Xi is the average over the points Xi and Var is the variance.
We mapped all points for all patients, where patients with bad

versus good neurological outcome are shown in blue (vs red). Patients
with good neurological outcome formed a cluster that will be the basis
of the classification and prediction described below. The classification
probability of a patient characterized by its coordinates was obtained
by computing a score that measures the proximity to one of the two
categories of patients.

To study the maps defined above as predictive tools, we used
three independent statistical classifiers (SVM, Gaussian estimator,
K-nearest neighbors). Because the present database did not contain
many patients and to guarantee the robustness of our approach,
we decided to use three classifiers (SVM, Gaussian mixture, and
k-neighbors). As a small size database is also associated with
overlearning, and to overcome this difficulty, we chose to use simple
models for classification: Support Vector Machines (SVM) seems
to be particularly suitable, as its classification is dependent only
on a reduced number of patients. In fact, we wished to assign a
good neurological outcome probability to any point that would be
added on the map based on the ensemble of previous data points
already classified. Using the assumption that statistics associated
to patients (features) are independent from each other, we used a
Bayesian classification.

SVM classification

To classify the data, we used the standard SVM algorithm
(Cherkassky and Mulier, 1998), which determines the hyperplane
that best separates the two classes. Briefly, the chosen hyperplane
maximizes the distance between itself and the closest points of each
class, while all points of a given class are located on one of the two
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FIGURE 2

Statistical features associated to standard responses. (A) Left: average evoked responses computed over a time window of
[
0− 10

]
min (period 1, red),[

10− 20
]
min (period 2, blue) and over the entire period (

[
0− 20

]
min, black). Right: the standard deviation σ and the average correlation function

s (similarity), between the response over the entire period (
[
0− 20

]
min) and over one of the n periods ([0− 20]min or

[
10− 20

]
min), here n = 2.

(B) Example of features distribution of dataset from the Cz electrode: standard deviation (Left) and similarity (Right) computed over the entire period; red
(good neurological outcome) and blue (bad neurological outcome). These two parameters taken separately are insufficient to properly discriminate the
two groups of patients.

FIGURE 3

Statistical features associated to deviant responses. (A) Left: the average filtered evoked response (blue) to deviant stimuli computed over the entire time
window contains NE local extrema ei (minimum or maximum), which is the first feature. The second feature is the oscillation |1V| =

∑
i |V(ei)− V(ei+1)|,

which is the sum of the absolute value of the difference between two consecutive extrema of the average evoked response. (B) Example of feature
distributions of dataset from all electrodes: local extrema (Left) and oscillation (Right) over the entire period; red (good neurological outcome) and blue
(bad neurological outcome).

sides (Valiant, 1984). If no such hyperplane is found, which is the
case here, the dimension of the space where the data are embedded
is increased, a procedure known as kernelling (Aizerman, 1964).
In a higher dimensional space, the classes are well separated by a
higher dimensional hyperplane. If the two classes are still not well
separated, a penalty is inflicted for every misclassified data point
(Cortes and Vapnik, 1995). Here, the kernel is the Radial Basis
Function K(x, x

′

) = exp(− γ||x− x
′

||
2), with γ = 1 and a penalty

coefficient C = 10. Note that we obtained similar confusion matrix
for all pairs (γ,C)∈[0.5,2.5]× [3,30] for SVM.

We implemented the SVM using the Scikit Learn module
(Pedregosa et al., 2011; Buitinck et al., 2013). Data analyses and
classification codes were performed using Python.

Gaussian estimator

In case of a Gaussian estimator, we estimated the mean and the
covariance matrix for the 2 categories of patients. The probability
of each class is computed empirically using the maximum likelihood
estimator (Supplementary methods). We recall that for an ensemble
of n data Sn = (x1, ..xn) that are separated into two classes, C1 and
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C2, the probability that a patient X belongs to one class, conditioned
on the ensemble Sn:

p (X ∈ C1 | X = x,Sn) =

1

1+ 1−5
5
|61 |

1
2

|61 |
1
2
exp

(
−

1
2 (x− µ1)T6−1

1 (x− µ1)+
1
2 (x− µ2)T6−1

2 (x− µ2)
)
(7)

where (µi, 6i)i = 1,2 are the mean and variance computed from each
class C1 and C2 from Sn. We used the fraction π = ns

ns+nd
= ,

ns for the number of patients with good neurological outcome at
discharge and nd for the other patients. Formula 7 is derived in the
Supplementary methods.

K-nearest neighbors classifier and weighted K-nearest
neighbors

To classify the standard stimuli, we used the K-nearest neighbors
classifier. We computed the ratio for the probability of belonging to a
class. For a given point X, the probability to belong to class C1 ("good
neurological outcome") given the distribution of point x is computed
empirically as the number of neighbors out of a total of K.

p (X ∈ C1 | x) =
kr
K

(8)

where kr is the number of neighbors that belong to the class "good
neurological outcome at discharge" among K closest points.

To classify deviant stimuli, we used a variant of the K-neighbors
method by adding distance-relative weights to the points inside
the dataset. The two classes labeled "bad neurological outcome" and
"good neurological outcome" are defined as C1 and C2, respectively.
The ensemble of points Sn in dimension 2 are given by the
coordinates xn =

(
NE,n, 1Vn

)
, extracted in subsection “Analysis

of responses to deviant stimuli.” To compute the classification
probability, we defined K-nearest neighborhood NK(x) for the point
x as the K shortest points from x, computed from the Euclidean
distance (between two points xn, xm),

d (xn, xm) =

√(
NE,n − NE,m

)2
+ (1Vn −1Vm)2 (9)

NK (x) =
{
y1, ..yK ∈ Sn, d

(
x, y1

)
≤ d

(
x, y1

)
.. ≤ d

(
x, yK

)}
.

(10)
To obtain an accurate classifier, we used a different version of the

K-neighbors classification, where the weight depends on the distance
between the point to classify and the K-nearest neighbors (formula
11), defined by

p (x ∈ C1 | x) =

∑N
i = 1

1yi∈C1
d(yi,x)∑N

i = 1
1

d(yi,x)

. (11)

Cross-validation

We used a Leave-one-out cross-validation approach to validate
the classification algorithm: we excluded a patient at a time and
computed the probability of a good neurological outcome at
discharge, based on the remaining elements in the data basis (Kohavi,
1995). In other words, we separated the patient database into a
testing and a training group, with one patient out, 28 in the other
group and ran this test 28 times so that each of the 29 patients was
alternatively included in the 1 group patient. We then computed this

probability using the three classifiers, SVM, Gaussian estimators and
K-neighbors and compared the result to the true result. We followed
the protocol: 1- a patient Pi, i = 1..N is selected inside the data
basis; 2- we trained the classification algorithm on the database of
all patients {Pk, k = 1..N} − Pi. We evaluated the prediction of
the model on the excluded patient, leading to a score si. We recall
that si = 1 if the prediction is correct, otherwise, si = 0. We
then replaced the patient Pi inside the database and reiterated the
procedure until each patient has been exactly excluded once. This
allowed us to reclassify with a given probability for each patient
outcome based on the new map determined by the other patients.
The final score of the model is computed as

s =
1
n

n∑
1

si. (12)

Finally, the confusion matrix defined as

C =

(
Tp FN
Fp TN

)
(13)

for the true positive Tp (number of patients who have a good
neurological outcome at discharge and are classified correctly), true
negative Tn (number of patients who have a bad neurological
outcome and are classified correctly) and false positive Fp (number
of patients who have a good neurological outcome and are classified
incorrectly) and false negative Fn (number of patients who have a
bad neurological outcome at discharge and are classified incorrectly).
We calculated for each of the classifiers accuracy, sensitivity
and specificity.

Combined probability for outcome decision

We proposed to use for the predictive decisional probability pdec
the minimum of the ones estimated for the standard (relation 8) and
deviant (relation 11) classifications. For a patient of coordinate x in
each map, survival probability is:

pdec(x ∈ C1|x) = min ( pdev(x ∈ C1|x)), pnon−dev(x ∈ C1|x)).
(14)

Iteration and changing k-neighbors k

The approach developed here is iterative and any new additional
case enriches the database and the classifications maps. For the
K-neighbors approach, adding a point does not require any changes
in the computation, although we expect that the number of neighbors
that will enter progressively into the computation could diminish
as the number of cases added in the map increases. For the
Gaussian classification, the mean and the variance are recomputed
following each new case.

Results

Overall patient characteristics

Data of twenty-nine consecutive patients were analyzed. Seven
patients out of twenty-nine survived, but only 6 out of 7 were able
to follow verbal command at hospital discharge. None of the patients
was lost of follow-up. The last patient returned home but the degree
of disability is unknown. At 3–6 months, GOS-E was scored at 3 for
the patient who was unable to follow verbal command at discharge
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TABLE 1 Comparison of clinical and electrophysiological characteristics between the two groups.

Bad neurological outcome (n = 23
unless otherwise specified) (/29)

Good neurological
outcome (n = 6) (/29)

p

Age (years), mean± SD [min-max] 60± 16 [24–87] 47.5± 16 [26–64] 0.07

Median [IQR 25–75] 62 [54–68.5] 52.5 [34.75–59]

Male, n 20 5 1

Shockable rhythm*, n 6 2 1

Etiology 0.57

Cardiac 10 4

Non-cardiac 12 2

Undetermined 1 0

No-flow (minutes), mean± SD 8.3± 8.4 (/21) 2.7± 4.3 0.07

Median [IQR 25–75] 7 [1–15] 0 [0–4.5]

Low-flow (minutes), mean± SD
Median [IQR 25–75]

24.9± 16.4
20 [18.5–35]

16.4± 11.7
15.5 [10.75–21]

0.22

Time to ROSC (≤25 min), n 8 (/21) 4 0.20

GCS on admission /15), mean± SD 3.1± 0.4 3.5± 1.2 0.21

Median [IQR 25–75] 3 [3–3] 3 [3–3]

SAPS II score, mean± SD 73± 15 62.5± 18 0.15

Median [IQR 25–75] 72 [63–85] 54 [49–76]

Sedation, n 8 3 0.65

EEG Grade I: predominant alpha with some theta, n 0 1

EEG Grade II: predominant theta with some alpha, n 0 0

EEG Grade III: predominant theta, n 3 5 0.0002

EEG Grade IV: delta activity, n
Generalized epileptiform periodic activity (GPEDs), n

7
6

0
0

EEG Grade V electrocerebral silence, n 3 0

Burst suppression patterns, n 4 0

EEG reactivity, n 3 2 0.27

SSEP (N20 -), n 7 (/22) 1/5 0.64

AEP (MMN+), n 4 2 0.57

GOS-E (6 months) (n) 3 (1/23) 4–8 (5/6)

*As the first documented rhythm; ROSC, return of spontaneous circulation; GCS, Glasgow Coma Scale; SAPS II score, simplified acute physiology score II; EEG, electroencephalography patterns
according to the five major grades of severity scale for brain injury; SSEP, cortical somatosensory evoked potentials; AEP, auditory evoked potentials; MMN, mismatch negativity. No-flow data were
missing in two patients and SSEP (N20 response) data in one patient (underlying Charcot Marie Tooth disease). GOS-E, Glasgow Outcome Scale-Extended.

and died 27 months later without neurological improvement. GOS-
E was scored at 4 for one patient, at 5 for one patient, at 6 for
one patient and at 8 for the last two patients. Age, sex, medical
history, characteristics of CA and electrophysiological features are
presented in Table 1. At the time of recording, all patients were
still hypothermic (<35◦C). Sedation was present in 11 out of the 29
patients (38%) at the moment of the electrophysiological recordings.
For the non-surviving patients, 18 out of 22 died after withdrawal of
life-sustaining therapies.

All six patients with good neurological outcome presented an
EEG pattern graded between I to III for all, whereas 20 out of the
23 of the patients with final bad neurological outcome or death
presented an EEG pattern graded IV or V (p < 0.0002), including the
patient who survived 27 months with bad neurological outcome. EEG
reactivity (2/6 versus 3/23) and presence of MMN (2/6 versus 4/23)
were more frequent in the group with good neurological outcome,
whereas N20 was less frequently absent (1/5 versus 7/22), but none
of these last markers were statistically different between the two

groups. Only 2 patients presented congruent favorable prognostic
factors with a present N20 at SSEP, a positive MMN and EEG pattern
graded I to III (areactive EEG for both), among whom one patient
did not survive. By contrast, four patients presented congruent
bad prognosis factors with absent N20, absent MMN and an EEG
pattern graded IV or V and all of them died. ERP obtained at Cz
location were the most reproducible and the only ones used for
visual analysis. Artifacts prevented the interpretation of SSEP in one
patient of each group.

Prognosis map constructed from bayesian
statistical inference

Since each parameter taken individually for standard (standard
deviation and similarity) and deviant (number of extremum NE
and oscillation|1V|) responses were not sufficient to obtain a
clear separation between the two patient categories, we decided to
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FIGURE 4

Predictive probability maps of good neurological outcome. (A) Probability maps computed from features of the standard stimuli responses. From left to
right: maps computed from SVM, Gaussian, and the k-nearest neighbors classifier (k = 6, the worst case scenario). (B) Probability maps computed from
features of the deviant stimuli features. From left to right: maps computed from SVM, Gaussian, and the k-nearest neighbors classifier with
distance-related weights, k = 6 for example.

combine them into a two-dimensional map (Figure 4). Interestingly,
we found that this map allowed a clear separation that we
quantified using various a priori classifiers: SVM, Gaussian, and
the K-neighbor classifiers (Hastie et al., 2001; Table 2). When
mapping all the features first taken individually for standard and
deviant responses, we found a cluster formed of patients with
a “good” neurological outcome, bounded in red, well separated
from the area in which were found the other patients (non-
surviving or “bad” neurological outcome). This partition between
two distinct areas was present in all classifiers: SVM, Gaussian, and
k-neighbors, confirming that this partition was robust independently
of the choice of the classification methods (Supplementary Figure 1
for other choices of k for the k-neighbor algorithm). Moreover,
we found a similar partition into two categories of patients
when classifying the standard or the deviant responses, which
strengthens the robustness of our study (Figure 4). The present
classification maps for both standard and deviant responses studied
separately showed that the neurological outcome of post-anoxic
comas can be predicted (Table 2). Combining the probability
computed in each map, we proposed a decision probability
with a high specificity, which does not misclassify patients with
good neurological outcome in the category of patients with bad
neurological outcome.

Classification efficiency of the
two-dimensional maps

To test the predictive strength of the standard and deviant
responses classification, we computed the confusion matrix (formula
13) as described in the methods. The confusion matrix computed
for the Gaussian estimator showed a 89 % accuracy, and a 100%
validation accuracy for the SVM classifier. The confusion matrix

computed for the k-neighbors classifier showed that it was less
performant than the SVM classifier. The sensitivity remained high
and could be improved with the increasing number of classified
patients (k = 4; similar results were obtained for other values of
k). The distance-dependent weight showed this estimator introduces
type I error, with an accuracy of 0.90, a sensitivity of 0.83 and a
specificity of 0.91.

Finally, we also computed the confusion matrix obtained from a
visual analysis of patient MMN, performed by a medical professional,
and we obtained an accuracy of 0.72, a sensitivity of 0.33 and a
specificity of 0.82. If MMN remained an interesting indicator, it
showed a very weak sensitivity in these patients (Tables 2, 3).

Discussion

Our exploratory study was designed to identify mathematical
parameters extracted from the AEP recording that could be more
powerful than visual inspection of MMN in the routine ICU setting
and used to predict neurological prognosis in these patients. The
originality of the present strategy was to consider independently
deviant from standard responses, not only in the time window of
the mismatch negativity (that results from the difference between
the two responses), but using the total amount of information
that is generated during the procedure. We found that our new
classification method, combining standard deviation and similarity
(correlation) for standard auditory stimuli, and number of extrema
and oscillations for deviant auditory stimuli, allowed clustering
patients in two-dimensions, in one of the two categories of good
or bad neurological prognosis. Importantly, we did not select these
parameters a priori to obtain a best separation of patients as explained
in the method’s section.
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TABLE 2 Accuracy, sensitivity, and specificity obtained by cross-validation for responses to standard, deviant stimuli; k is the number of neighbors used in
the classification algorithm.

k = 3 k = 4 k = 6 k = 8 SVM Gaussian

Accuracy

Standard responses 0.96 0.96 0.89 0.85 1.0 0.92

Deviant responses 0.89 0.89 0.89 0.89 1.0 0.89

Sensitivity

Standard responses 0.83 0.83 0.83 0.66 1.0 0.66

Deviant responses 0.83 0.83 0.83 0.83 1.0 0.5

Specificity

Standard responses 1.0 1.0 0.9 0.9 1.0 1.0

Deviant responses 0.91 0.91 0.91 0.91 1.0 1.0

TABLE 3 Classifications scores.

Accuracy Sensitivity Specificity

SVM 1 1.0 1

Gaussian 0.89 0.5 1

k-neighbors 0.9 0.83 0.91

MMN 0.72 0.33 0.82

To evaluate the robustness of our method, we used three
classifiers, showing similar maps classification results. Finally, using
leave-one-out cross-validation, we computed a score for each
classifier, demonstrating that any of the three classification methods
was more robust than simply analyzing the MMN in a binary
response, using logistic regression or single-trial topographic analysis
(De Lucia and Tzovara, 2015). We showed that good neurological
prognosis probability maps allow us to predict the neurological
outcome of post-anoxic comatose patients with a very good accuracy
of 0.90, sensitivity of 0.83 and specificity of 0.91 when considering the
least efficient classifier (Tables 2, 3).

We have used the standard deviation and the similarity index to
analyze the standard responses, while we used the number of extrema
and oscillations for the deviant in order to have two independent
set of parameters and increase the robustness of the results, and
preventing a potential bias by choosing a single set of parameters. We
could have decided to use these two latest parameters in this study
for all cases or use all four parameters that could have led to a more
robust result, but also to a four-dimensional classification, that we
wanted to avoid in order to obtain an easy-to-use tool. Moreover,
the standard deviation and the similarity index would not really be
appropriate to study the deviant sounds.

We can consider three other developments that could be
built on this present investigation. The first one is to evaluate if
repeating this procedure with this algorithm several days apart can
present a potential additive value, as explained in Tzovara et al.
(2013) who showed the additional prognostic value of repeating
MMN. The second one is to test whether this procedure could
be generalized to other auditory oddball paradigms. At last, it
would be interesting to evaluate whether such a method could
be applied to classical electroencephalography with more sparse
auditory and nociceptive stimuli than the one developed here
using auditory evoked potentials with frequent and regular auditory
stimuli. Indeed, electroencephalography is a neurophysiological

tool which is more widespread than auditory evoked potentials.
Characterizing electrophysiological features to predict the outcome
of post-anoxic coma remains a genuine challenge. There is currently
no satisfactory, efficient and simple tool to predict comatose patient
outcome accurately, especially at the acute phase, when patients are
sedated and/or hypothermic. Standard electroencephalography is the
most common method used to predict prognosis in those patients.
If highly malignant pattern (suppressed background discharges
without discharges or with continuous periodic discharges, or burst
suppression background with or without discharges) is highly specific
of poor outcome, as shown in our study, it has a sensitivity of only
50% (Westhall et al., 2016). The absence of cortical N20 response
at SSEP after stimulation of median nerves has an almost 100%
specificity for non-awakening prediction (Sandroni et al., 2014). By
contrast, the predictive value of the visual analysis of MMN for post-
CA comatose patients, limited to a binary response (presence/absence
of a detectable peak of the MMN between the standard and deviant
responses) is poorly sensitive, as shown in our study, even when
choosing parameters that better discriminate standard and deviant
sounds (Azabou et al., 2018). To overcome, the poor sensitivity
of MMN at visual analysis, several statistical methods have been
developed. Some are based on sample-by-sample paired t-test in
the specific time window where MMN is ussually visualized. Others
are based on wavelet transform, multivariate, cross-correlation and
probabilistic methods (Fischer et al., 1999; Naccache et al., 2005,
2015; Daltrozzo et al., 2007; De Lucia and Tzovara, 2015, 2016;
Gabriel et al., 2016; Juan et al., 2016). Tzovara et al. (2013) choose
an alternative strategy: they showed that the progression of MMN
auditory discrimination (and not one single analysis) over the first
2 days of coma was of good prognosis, suggesting that collecting
repetitive data within days, or at an earlier phase, could reveal changes
that could have a higher predictive value. Overall, this explains why a
multimodal prognostication approach is still recommended in these
patients, including clinical examination, serum biomarkers and brain
imaging in addition to electrophysiological recordings (Sandroni
et al., 2014; Nolan et al., 2021).

In that small series, none of the classical electrophysiological
tools were sensitive or specific enough to give a reliable neurological
prognosis. Only 2 patients presented congruent favorable prognostic
factors with a present N20 at SSEP, a positive MMN and EEG
pattern graded I to III (benign pattern according to the ACNS
EEG terminology) (Westhall et al., 2015) and areactive for both,
among whom one patient did not survive. By contrast, four patients
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presented congruent bad prognosis factors with absent N20, absent
MMN and an EEG pattern graded IV or V (highly malignant pattern
according to the ACNS EEG terminology) and all of them died,
suggesting that congruent pejorative factors are strongest indicators
of prognosis than congruent good prognosis factors, in accordance
with literature. It is to note that one third of the patients with
bad outcome and 50% of the patients with good outcome were
under sedation at the time of recording, which is known to impede
electrophysiology interpretation. Our study was not designed to
compare our tool with classical electrophysiological examinations
but sensitivity and specificity were higher in that small cohort that
needs to be validated in a larger cohort. The total amount of data we
collected for all epochs during the 20 min of auditory stimulations
and not only during the time window used for MMN might explain
our more sensitive results.

Our present study has several limitations. First, as a retrospective
study, neurological prognosis was evaluated on the ability of the
patient to follow verbal command at discharge, which remains a
subjective assessment that may have led to patient’s misclassification.
However, in the 7 surviving patients, GOS-E was available for 6
of them at 3–6 months post-discharge and was found at 3 in the
patient who was initially unable to follow verbal command and
from 4 to 8 for the others, indicating that no patient was initially
misclassified. Second, this cohort may not be representative of all post
CA patients since electrophysiological assessment was performed
relatively late, up to 6 days after admission, in patients still comatose
at the time of the evaluation, and the relatively small sample size
prevents generalization of our results that need to be replicated in
a larger cohort. Third, our cohort between patients with good and
bad prognosis was unbalanced, that we tried to offset using a leave-
one out cross validation. Fourth, our new approach did not consider
the order of the different sounds. For instance, a standard sound that
would start a new sequence just after a deviant sound or ending a
series of standard sounds just before a deviant sound, may not be
processed the same. This point could deserve a specific attention in
future studies, but as we averaged all our data, this probably does not
bias our results.

To conclude, we developed a new promising classification
method that could be self-sufficient, easily used by intensivists
(only one electrode, with minimal cost and easy training),
without the help of the neurophysiologists and in sedated
and/or hypothermic patients, since these conditions represent
actual limitations to electrophysiological data acquisition in the
ICU. Moreover, electrophysiological recordings may be particularly
difficult to acquire at the acute phase where patients combine
aggressive care (extracorporeal membrane oxygenation (ECMO),
haemodialysis, mechanical ventilation), and invasive methods of
monitoring, generating artifacts. Finally, potential amplitudes are
smaller under sedation and more difficult to extract from the
background (Yppärilä et al., 2004). Our preliminary results suggest
that all these issues could be addressed by this new method. The
produced maps can be refined and upgraded by adding new cases
and thus increase the performance of the probabilistic classifier. In
the future, and according to the local human and logistical resources,
the software could be implemented with other electrophysiological
and clinical variables to provide an optimal estimated probability
of the patient outcome, independently from neurophysiologists.
Developing such algorithms, ready-to-use by the intensivits, would
enable more aggressive management in patients with predicted good
neurological outcome. Whether this approach could be secondarily

applied to other predictive situations and generalized to other comas
remains to be validated.
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