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Introduction: A device comprising two generic earpieces with embedded dry

electrodes for ear-centered electroencephalography (ear-EEG) was developed. The

objective was to provide ear-EEG based sleep monitoring to a wide range of the

population without tailoring the device to the individual.

Methods: To validate the device ten healthy subjects were recruited for a 12-night

sleep study. The study was divided into two parts; part A comprised two nights with

both ear-EEG and polysomnography (PSG), and part B comprised 10 nights using

only ear-EEG. In addition to the electrophysiological measurements, subjects filled

out a questionnaire after each night of sleep.

Results: The subjects reported that the ear-EEG system was easy to use, and that

the comfort was better in part B. The performance of the system was validated by

comparing automatic sleep scoring based on ear-EEG with PSG-based sleep scoring

performed by a professional trained sleep scorer. Cohen’s kappa was used to assess

the agreement between the manual and automatic sleep scorings, and the study

showed an average kappa value of 0.71. The majority of the 20 recordings from

part A yielded a kappa value above 0.7. The study was compared to a companioned

study conducted with individualized earpieces. To compare the sleep across the

two studies and two parts, 7 different sleeps metrics were calculated based on

the automatic sleep scorings. The ear-EEG nights were validated through linear

mixed model analysis in which the effects of equipment (individualized vs. generic

earpieces), part (PSG and ear-EEG vs. only ear-EEG) and subject were investigated.

We found that the subject effect was significant for all computed sleep metrics.

Furthermore, the equipment did not show any statistical significant effect on any

of the sleep metrics.

Discussion: These results corroborate that generic ear-EEG is a promising alternative

to the gold standard PSG for sleep stage monitoring. This will allow sleep stage

monitoring to be performed in a less obtrusive way and over longer periods of time,

thereby enabling diagnosis and treatment of diseases with associated sleep disorders.

KEYWORDS

electroencephalography, sleep monitoring, ear-EEG, long-term sleep monitoring, home
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Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.987578
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.987578&domain=pdf&date_stamp=2023-02-01
https://doi.org/10.3389/fnins.2023.987578
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.987578/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-987578 January 25, 2023 Time: 16:19 # 2

Tabar et al. 10.3389/fnins.2023.987578

1. Introduction

Lack of sleep and poor sleep quality is a grand societal challenge.
Poor sleep quality has a negative impact on health, the feeling
of wellbeing, quality of life and on human cognitive performance.
This has large negative consequences for society, productivity,
and economy. Recently, sleep researchers and physicians of sleep
medicine have emphasized the importance of sleep on human’s
health (Naismith et al., 2011; Galbiati et al., 2019; Stefani and
Högl, 2020). However, the development within the field of sleep
monitoring has not evolved much beyond today’s gold standard,
polysomnography (PSG). As its name describes, PSG is a method
that encompasses multiple modalities to describe the sleep. These
measurements are typically recorded in sleep clinics and include
recordings of brain activity [electroencephalography (EEG)], eye
movements [electrooculography (EOG)], muscle [electromyography,
(EMG)] and heart activity [electrocardiography (ECG)] (Berry et al.,
2012). The PSG’s range of sensors and wiring means that PSG
monitoring is discomfortable and in consequence has a negative
impact on the sleep. Furthermore, sleep monitoring often takes place
in a sleep clinic instead of in the patient’s home environment and
sleeping in an unfamiliar environment also has a negative impact
on sleep. Although patients may to some extent become accustomed
to the equipment and unfamiliar environment, so that the effects
become less of a problem over time, the phenomenon is well-known
and are called the “first night effect” and implies e.g., a reduced
total sleep time, a decrease in sleep efficiency, and delayed and
decreased REM sleep (Agnew et al., 1966). These aspects, together
with the dependence on health professionals and the significant cost
associated has limited the PSG’s use in long-term sleep monitoring.
In this light, there is a need for an efficient, comfortable, and easy to
use device for monitoring sleep at home.

Alternative sleep assessment methods such as sleep diaries and
actigraphy are currently used in many sleep studies and clinical
investigations (Sadeh, 2015; Zhu et al., 2018). Unfortunately, the
amount of information gained from these methods is limited
compared to that of PSG. They are therefore mainly used in parallel
with PSG (Gaina et al., 2004). In recent years, several simple
monitoring systems have been introduced for sleep assessment. These
devices rely on fewer sensors (mostly dry EEG electrodes) to increase
comfort and ease of use. The Dreem headband (Arnal et al., 2019),
the forehead mounted Prodigy device (Younes et al., 2017) and ear-
centered electroencephalography (ear-EEG) device (Mikkelsen et al.,
2019; Nakamura et al., 2019) are some examples. While comfort and
ease of use make these devices ideal for sleep assessment, they are still
to be validated in vaster studies before they can be implemented in
the clinic.

Ear-centered electroencephalography was first introduced in
2011 (Looney et al., 2011). The original aim was to provide a more
comfortable and affordable solution for several neurophysiological
problems at a negligible performance cost. Ear-EEG is a method in
which EEG signals are recorded from electrodes in or around the ear.
A large variety of different solutions have been proposed, including
electrodes placed solely around-the-ear (Bleichner and Debener,
2017), electrodes on customized earpieces (Mikkelsen et al., 2015)
and more generic type earpieces (Goverdovsky et al., 2015). One
of the most advanced methods are based on dry-contact electrodes
embedded on individualized earpieces made of soft silicone (Kappel
et al., 2018). The first ear-EEG sleep assessment study was performed

in 2019 (Mikkelsen et al., 2019, 2021b; Tabar et al., 2020, 2021) using
custom made earplugs and a commercial amplifier. In the current
study we deployed a recent advancement in the development of a
comfortable, generic, and ready to use setup for sleep assessment,
without the sacrifice of performance. In this article, we present an at-
home sleep monitoring setup with generic earpieces and a proprietary
amplifier for ear-EEG sleep assessment in healthy people.

The focus of this article is on the comfort of the presented ear-
EEG device, the data quality of the recordings and the resulting
hypnograms. First, we present the generic earpiece design. Then,
we introduce our custom EEG amplifier. Next, we present the
feedback on the comfort of the earpieces. Finally, the data quality and
hypnograms are presented.

2. Materials and methods

2.1. Experimental setup

2.1.1. The generic earpieces
A prerequisite for this study was the development of a generic

earpiece accommodating ear-EEG based sleep monitoring to a wide
range of the population. The generic earpiece should provide a
reliable and robust contact between the body and the electrodes
embedded in the earpiece, and at the same time the earpiece should fit
most human ears, be easy to use and be comfortable to sleep with. To
begin the design process, we studied the anatomy of the human ear, to
identify sizes, curves, and anatomical landmarks. This was achieved
by examination of a large number of 3D scans of human ears and
through review of existing literature in the domain (Toivonen et al.,
2002; Lee et al., 2018; Modabber et al., 2018). This was used as the first
input to the design process. The earpiece design process was iterative
and in each step in the process we evaluated both the comfort, the
ease of use and the EEG signal quality.

There is a very large variety in anatomical shape and sizes of
human ears, and to accommodate most ears, it was necessary to
design four different earpieces. All four earpieces had the same basic
shapes but varied in sizes. The earpieces consisted of three main
features: an ear canal part, a tail, and a main body. The ear canal
part was given a tulip-like shape to ensure easy insertion in the ear
canal, while still filling out the cross section of the ear canal. The
ear canal was designed in three different sizes, equivalent to cross
sectional diameters of 7, 8, and 9 mm. Essential to the comfort is
how deep the earpiece goes into the ear canal and how well it fits the
anatomy of the ear. In our design the earpiece was relative shallow
and was not going more than 5–6 mm into the ear canal. The tail was
designed to keep the earpiece in place by applying pressure on the
outer edge of concha. The main body acted as a connector between
the two other parts and formed a smooth transition between the
concha and the outer part of the ear canal. Additionally, the main
body served as a strain relief for the cable to minimize motion artifact
from cable pulling. Both the main body and tail were available in two
sizes. Eventually we selected four size combinations of the three main
features to be used in the study.

The comfort of an earpiece is related to a wide range of
factors including mechanical properties of the earpiece material, the
number and placement of electrodes, and the ergonomic design.
Our experience was that the earpieces should be made of a soft and

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.987578
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-987578 January 25, 2023 Time: 16:19 # 3

Tabar et al. 10.3389/fnins.2023.987578

compliant material. Thus, the earpieces were molded in a soft silicone
material (Detax Software 2.0, DETAX GmbH, Germany).

Regarding the number and position of the electrodes, for sleep
monitoring the most important factor is to have a good cross-ear
derivative; this aspect has been investigated in detail in Mikkelsen
et al. (2021a). Thus, the number of electrodes in each ear is a trade-
off between comfort and redundancy; increasing the number of
electrodes gives a higher degree of redundancy at the cost of lower
comfort. In our design we decided to use two recording electrodes
in each ear, which is significantly lower than the six electrodes in
each ear used in previous studies (Mikkelsen et al., 2017, 2019). The
electrodes were placed where the earpiece seemed to apply the largest
pressure toward the body, because this is believed to give the best
contact between the electrode and the body.

Finally, the shielded cables where assembled in a form-stable and
arc-formed tube guiding the cables around the superior part of the
Helix of the ear, see Figure 1. This further reduces the effect of cable
movement and make the earpiece more discrete. Electrodes were
embedded in the earpieces; the remaining electronics were placed in
a box outside the ear to ensure good comfort.

2.1.2. Custom-designed EEG-amplifier and
electrodes

The EEG amplifier was a 4-channel “EEG-to-digital converter”
application specific integrated circuit (ASIC) specifically developed
for ear-EEG measurements. The ASIC was optimized for high input
impedance, high common mode rejection, low current noise, and low
power consumption. The ASIC was a revised version of the design
described in Zhou et al. (2016); it was extended from 2 to 4 channels
and a digital control block was included to make it easier to store the
data. The EEG amplifier was connected to the electrodes embedded in
the earpieces. Two electrodes in each earpiece were used as recording
electrodes, one electrode in the left earpiece was used as reference
electrode and one electrode in each earpiece was used as ground. The
sleep study measurements were all recorded at 250 Hz sampling rate
and with 14 bit resolution.

The electrodes were made of Titanium with a porous coating
of Iridium Oxide at the contact surface, see (Kappel et al., 2018)
for a detailed description and characterization. The electrodes were
circular with a diameter of 2.6 mm and with a slight concave shape,
whereby the electrodes protruded slightly from the surface of the
earpieces. Each electrode was connected to the amplifier with a Ø
0.53 mm coaxial cable. The cable shielding was extended all the way
to the back side of the electrode. The shield was actively driven by a
unity gain amplifier in the ASIC.

2.2. Sleep recordings

This study was approved by the Central Denmark Region
Committees on Biomedical Research Ethics (Ref. nr. 1-10-72-13-
20) as well as the Danish Medicines Agency (ref. nr. 2020012619).
Written informed consent was obtained from the participants prior
to participation. 10 subjects (4 f, 6 m) participated in this study.
The ages of the subjects ranged between 22 and 35, with a mean
of 27.4 years. Participants were screened for hearing loss, sleep
disorders, neurological disorders, bruxism, pregnancy, drug usage,
allergies, chronic pain, and sleep apnea. Each participant attended an
earpiece fitting session prior to the recordings. During this session,

the earpieces with the best fit to the participant’s ears was determined
by visual inspection of the EEG signal, and the participants were
trained in mounting the earpieces themselves. The subjects were
instructed to put on the earpieces and start recording whenever
they wanted to go to bed and stop the recording when they wake
up. They were free to spend any time in bed before sleeping. The
participants were asked to fill a sleep diary during the recording and
a questionnaire immediately after the wake up.

The study was divided in two parts, Part A and Part B. In Part
A, participants slept two nights with the partial PSG (EEG, EOG,
and EMG electrodes) and ear-EEG setup. Please refer to Mikkelsen
et al. (2019) for more details about the partial PSG. Following two
successful recordings in Part A, the study proceeded to Part B in
which the participants recorded ten full nights using only the ear-
EEG setup. The recordings were performed in the participants’ own
home. In Part A, participants visited the laboratory on the day of the
recording to get the partial PSG mounted. The participants mounted
the earpieces themselves just before the start of the recording. Ear-
EEG and partial PSG were recorded using different data acquisition
devices. The participants were asked to press a trigger button on
both devices simultaneously for signal alignment. The partial PSG
recordings were manually scored by a trained professional sleep
technologist according to the AASM manual for the Scoring of Sleep
and Associated Events (Berry et al., 2012).

In the following sections the recordings described above will be
referred to as sG, a dense form referring to the study with generic
earpieces. Specifically, sG will refer to the complete dataset, and sG.A
and sG.B will refer to the dataset related to Part A and Part B,
respectively. In addition to this dataset, we also used a companioned
dataset from a previous ear-EEG sleep monitoring study (Mikkelsen
et al., 2019, 2022) in which custom-made earpieces and a commercial
amplifier were used. This dataset will be referred to as sC, a dense
form referring to the study with custom earpieces. sC was structured
in the same way as sG, but with 20 subjects recorded four nights with
both partial PSG and ear-EEG in part A (referred to as sC.A) and 10
subjects recorded 12 nights with only ear-EEG in part B (referred to
as sC.B). A summary of the datasets used in this article is presented
in Figure 2. It is important to note that in the current study, sC was
only used for training the sleep scoring classifier and for statistical
comparisons.

2.3. Assessment of sleep quality, comfort
and ease-of-use

The participants reported perceived sleep quality, comfort and
ease-of-use of the device by rating six questions on a Likert scale.
The six questions and the corresponding Likert scale can be seen in
Figure 3. The participants were instructed to fill out the questionnaire
just after they woke up in the morning. Inter, intra subject variation
values were computed as the standard deviation of the ratings
between the subjects and within the subjects.

2.4. Signal pre-processing and channel
selection

A signal pre-processing pipeline was applied to the recorded
ear-EEG data. Each channel was bandpass filtered (0.1–100 Hz),
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FIGURE 1

(Left) Generic earpieces with mounted electrodes. The placement of the three main features (ear canal, tail, and main body) are specified for each
earpiece. The generic earpiece was molded in soft silicone in one piece to ensure good comfort. Cable relief was incorporated in the design to reduce
movement artifacts from cable pulling. Also, a formed tube was designed to guide the cables behind the ear to further reduce cable movement, to
increase comfort and to make the earpiece more discrete. EL1, EL2, ER1, and Er2: data electrodes, D1 and D2 ground electrodes, ref: reference
electrode. (Right) Earpiece mounted in the ear.

FIGURE 2

Overview of the data. sG refers to data from the study with generic earpieces, and sC to data from the study with custom earpieces. Both datasets have a
Part A and a Part B. Part A were recorded with both polysomnography (PSG) and ear-centered electroencephalography (ear-EEG), whereas Part B were
recorded from ear-EEG only.

and notch filtered at 50 and 100 Hz to suppress power line noise.
Artifacts were identified and removed following several steps. For
the sG dataset we observed periodic noise spikes with a period of
200 ms. The noise was related to internal communication in custom
developed amplifier and the severity of the noise increased with
electrode impedance, i.e., the higher the electrode impedance the
more prone the channel was to the device induced noise. The noise
was detected by an algorithm looking for spikes with a repetition rate
of 200 ms. If a spike was detected it was removed and the signal was
interpolated based on the clean signal in the neighboring samples.

Spikes of short duration and high amplitude were also detected
and removed. These spikes are usually due to small changes in the
electrode-skin connection. Poor electrode-skin connection can also
lead to dominant high frequency noise in the signal. Long periods

(>30 s) with such a noise were detected by thresholding the high
frequency power. Finally, any sample with an absolute value greater
than 350 µV were rejected. Exclusion of unsuccessful recordings
from the dataset was performed if more than 30% of the signal was
noisy or if the duration of the recording was less than 5 h.

In the Supplementary material, we have supplied figures
showing the effect of both spike removal and general noise removal.

Finally, the four data channels were combined to construct a
single channel signal. To extract this signal, a channel selection
method based on root mean square (RMS) was employed. The
method relied on the idea that noisy signals tend to yield higher
RMS values. Accordingly, for every 30 s epoch, RMS values were
computed for any possible cross-ear combination of the channels.
The combinations were constructed by using channels from right ear
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FIGURE 3

The participants rated the comfort and ease-of-use of the device after each night. In Part A, they slept wearing both the polysomnography (PSG) setup
and the earpieces, whereas in Part B they only wore the earpieces. This figure shows a summary of their ratings. The numbers in the bars reflect the
number of responses (20 in total for Part A and 100 in total for Part B). Inter subject variation (Inter Std) and Intra subject variation (Intra Std) are shown
for each question-part combination.

[ER1, ER2, and Avg(ER1,ER2)] referenced to the channels from left
ear [EL1, EL2, Avg(EL1,EL2), and ref]. The channel combination that
yielded that lowest RMS value was selected.

2.5. Automatic sleep scoring

Following the pre-processing step and the construction of a single
channel signal, an automatic sleep scoring algorithm was applied
to the resulting signal. The goal of the automatic sleep scoring was
to assign a correct sleep stage (N1, N2, N3, REM, and wake) to
every 30 s epoch.

First, the signal was segmented into 30 s long epochs. Then, a
feature extraction step was applied to every epoch resulting in 84
features for each epoch. The feature set was selected to include time
domain, frequency domain, Continuous Wavelet Transform (CWT)
based, EMG proxy, EOG proxy, sleep event proxies, and non-linear
features [adapted from Mikkelsen et al. (2019)]. The list of features is
presented in Supplementary Table 1. Since sC and sG were recorded
with different devices, the computed features were normalized using
the normalize function in MATLAB. The normalization process was
applied to each recording separately.

The epochs were then classified using a five-class random forest
classifier consisting of 100 decision trees. This method has been
used in several ear-EEG sleep scoring studies (Khademi et al.,
2018; Mikkelsen et al., 2019; Tabar et al., 2021). The classification
performance was measured using Cohen’s kappa value (Cohen,
1960) which reflects the agreement between automatic and manual
scoring. A “leave-one-subject-out” (LOSO) cross-validation was used
to validate the results. This means that for each subject, the classifier
was trained using only recordings from the remaining subjects. Since
manual scoring was only available for the Part A recordings, the
classification results were computed only for Part A.

2.6. Analysis of the effects of equipment,
part, and subject

The Part B recordings were performed without PSG and therefore
the performance of the automatic sleep scoring cannot be validated
using Cohen’s kappa value. Instead, we computed the following sleep
metrics for all recordings:

REMfr =
number of REM epochs
total number of epochs

(1)

N3fr =
number of N3 epochs

total number of epochs
(2)

SE
(
sleep efficiency

)
=

sleep duration
duration of the recording after first sleep epoch

(3)

NREMtoNREM =
number of NREM to NREM transitions

total number of NREM epochs
(4)

NREMtoREM =
number of NREM to REM transitions

total number of NREM epochs
(5)

REMtoREM =
number of REM to REM transitions

total number of REM epochs
(6)

REMtoNREM =
number of REM to NREM transitions

total number of REM epochs
(7)

We investigated the effect of equipment (individualized vs.
generic earpieces), part (PSG and ear-EEG vs. only ear-EEG) and
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subject on each of these metrics using Linear Mixed Models (LMM).
The objective was to investigate if differences in sleep characteristics
could be explained by the equipment, part or inter-subject variation.
For each sleep metric, a LMM was designed as [in Wilkinson notation
(Wilkinson and Rogers, 1973)]:

Sleep metric ∼ 1+ subject + part + study+
(
1

∣∣ recording
)

(8)

Where equipment = 1, 2 (corresponding to individualized and
generic earpieces), part = A, B (corresponding to combined PSG and
ear-EEG, and only ear-EEG), and subject = 1, . . ., 20 were included
as fixed effects and recording = 1, . . ., 16 / recording = 1, . . ., 12 was
included in the model as a random effect. By fitting the models to the
data, we examined the effect of each variable on the sleep metrics.

3. Results

Ten healthy participants (6 m/4 f) aged 27.4 ± 4.9 years were
included in the study. From these 10 subjects, we collected 20
nights of combined PSG and ear-EEG and 100 nights of ear-EEG
sleep recordings. Three recordings from Part A and nine recordings
from Part B were rejected and repeated due to ear-EEG recording
problems. The reasons for rejection of these recordings were: bad
earpiece mounting (five recordings), low battery on recording device
(four recordings) and earpiece fallen out of the ear during sleep
(three recordings). Partial PSG recordings were not checked for
noise. However, two recordings were repeated due to failure of the
acquisition device.

3.1. Comfort and ease-of-use

Following each night, the participants rated the comfort and ease-
of-use of the device by answering a questionnaire. A summary of
the answers is illustrated in Figure 3. During the part of the study
where sleep was assessed using both PSG and ear-EEG (Part A), 65%
of the responses reported that sleep quality was “bad” or “bearable.”
In part B, using only the generic earpiece, 62% reported a “good”
or “very good” sleep quality. This shift in perceived sleep quality fits
well with their ratings of the comfort of the earplugs compared to the
PSG setup, where 75% of the responses showed that the comfort was
“good” or “very good.” Inter and intra subject variation values are also
presented in Figure 3. These values were observed to be generally low
for all question-part combinations.

3.2. Data quality

The artifact rejection procedure described in section “2.4. Signal
pre-processing and channel selection” led to rejection of on average
10.2% of the data. The proportion of each artifact rejection criterion
was: device related noise: 3.2%, spikes 2.6%, high frequency: 3.9%,
high amplitude: 0.5%. A summary of the pre-processing data
rejection is presented in Figure 4.

The channel selection procedure described in section “2.4. Signal
pre-processing and channel selection” was used to find the cross-ear
combination with the least RMS among the accepted channels. Using
this procedure, the average number of rejected epochs was 4.4%. The

inter subject variation for data rejection was 0.027 for part A and
0.036 for part B.

3.3. Sleep scoring algorithm

The performance of the sleep scoring algorithm was validated
using the sC.A and sG.A datasets. Different training and testing
strategies were used to assess the sleep scoring, in which LOSO cross
validation was used where applicable. sC.A included 80 recordings
from 20 participants and sG.A included 20 recordings from 10
participants. The classifier was trained separately using sC.A, sG.A
and a combination of sC.A and sG.A, and tested on both sC.A
and sG.A. For simplicity, we called each of these cross-validation
schemes XY, where X is the train set and Y is the test set, e.g., sCGsG
means trained with sC.A and sG.A combined and tested on sG.A.
A summary of the results of the different combinations is shown
in Table 1. The confusion matrix for 5 class classification using the
sCGsG method is presented in Figure 5.

While the average kappa value for sCsG was 0.68, it increased
to 0.69 for the sGsG method. The number of recordings in the
training set was only 18 in sGsG compared to 80 in sCsG. However,
it still resulted in slightly better classification performance. The
average kappa value further increased to 0.71 when both datasets were
included in the training set in sCGsG. This is the highest kappa value
we achieved for sG.A.

The right panel in Figure 6 shows the kappa values for each
recording using the sCsG, sGsG and sCsG cross validation scheme.
The kappa values of subjects 3 and 7 were conspicuously lower than
for the other subjects. The scoring of the remaining 7 subjects resulted
in a mean kappa well over 0.7 regardless of the training set. The three
left panels in Figure 6 shows the distribution of kappa values for each
cross-validation scheme. For the sGsG and sCGsG cross validation
schemes the majority of the recordings have kappa values above 0.7.
The average kappa value is shown for each method with a colored
dashed line.

The proportion of decision trees voting for a given sleep stage can
be interpreted as an estimate of the likelihood for that sleep stage. The
output of the classifier is the sleep stage with the largest proportion
of votes, and the proportion itself can be interpreted as a confidence
measure of the classifier’s decision. In a previous study (Mikkelsen
et al., 2020), we observed that the mean value of the confidence
measure across all epochs in a recording is a reliable estimate of
the overall scoring performance. Thereby the confidence measure
can be used to assess the sleep scoring performance for unlabeled
data. To illustrate this relation between kappa and confidence the
left panel in Figure 7 shows the confidence versus the kappa for
the sG.A recordings. It is clear that the confidence values correlate
positively with kappa values, which corroborate that the confidence
is a reliable estimate of the kappa value. For these G.A recordings, the
25th, 50th, and 75th percentiles of the kappa values were 0.66, 0.72,
and 0.76, respectively. In other words 75% of the recordings had a
kappa value larger than 0.66, and the 25% best recordings had a kappa
value larger than 0.76. The corresponding confidence values were
0.68, 0.70, and 0.71, respectively. The distribution of the confidence
values for the sG.B recordings are shown in the second and third
subfigure of Figure 7. In 58% of the Part B recordings, a confidence
value above 25th percentile of Part A was achieved. This value was
42% for 50th percentile and 26% for 75th percentile. All subjects had
at least 2 recordings with a confidence above the 25th percentile.
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FIGURE 4

Percentage of rejected data is illustrated for each noise category for each electrode. The overall rejection percentage was 10.2% before and 4.4% after
channel selection. EL1, left electrode 1; EL2, left electrode 2; ER1, right electrode 1; ER2, right electrode 2.

TABLE 1 The kappa values for each train-test pair together with the applied cross validation method.

Method sCsC sCsG sGsG sGsC sCGsC sCGsG

Training set sC.A sC.A sG.A sG.A sC.A,sG.A sC.A,sG.A

Test set sC.A sG.A sG.A sC.A sC.A sG.A

Cross validation LOSO – LOSO – LOSO LOSO

kappa 0.73 0.68 0.69 0.66 0.73 0.71

Highest performance on the sG.A dataset is marked in bold.

FIGURE 5

Confusion matrix for sleep scoring with the sCGsG cross-validation method.

The average kappa value for the sCsC method was found to be
0.73 which is similar to the value reported in Mikkelsen et al. (2019).

3.4. Effect of equipment, part and subject

We investigated the change of the different sleep metrics with
the equipment, part and subject differences. In order to compare
the computed sleep metric values between different sets, these values

is shown in Figure 8. The distributions of these metrics for sC.A,
sC.B, sG.A, and sG.B are presented with different colors. Each circle
indicates the value of the related sleep metric for one subject. We
observed similar distributions in the data for the different studies and
parts. It should be noted that the number of recordings in Part B is
considerably larger than in Part A for both studies.

The results of the LMM analysis are presented in Table 2. Each of
the models in section “2.5. Automatic sleep scoring” were applied to
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FIGURE 6

(Left panels) Histograms of kappa values for sG recordings (cross-validation scheme: sGsG: purple, sCsG: blue, sCGsG: green). Dashed lines represent
the average of each method. For the sGsG and sCGsG schemes, the majority of the recordings yielded a kappa value above 0.7. (Right panel) Kappa
values for each subject for all three cross-validation schemes. Each point represents one recording.

FIGURE 7

(Left) Confidence versus kappa value for the sG.A recordings. The 25th, 50th, and 75th percentiles of the kappa values and the corresponding
confidences are shown with dashed lines. (Center) Histogram of the confidence values for the sG.B recordings. (Right) Confidence values for each
recording. The 25th, 50th, and 75th percentile confidence values are presented with dashed lines in all plots.

the sC, sG and sCsG datasets separately. The p-value was computed
for each fixed effect (subject, part, and equipment).

The Subject parameter had a significant effect on the variation
of all metrics for all datasets. Furthermore, the Part effect was only
significantly different in the N3fr metric for sCsG dataset. The model
coefficient for the fraction of N3 sleep (N3fr) in the combined
dataset sCsG was 2.8%. The Part effect was insignificant in all other
metric/dataset combinations. The Equipment parameter was also
insignificant for all the metrics and datasets.

4. Discussion

This study evaluated a new generic ear-EEG system for sleep
monitoring. The system comprised a set of generic earpieces designed
to fit most human ears, and the earpieces were connected to a
recording device comprising a custom 4-channel “EEG-to-digital
converter” ASIC. Both the EEG signal quality and the comfort are
essential for a good sleep monitoring device, and the design of the
earpieces are important for both these key parameters. The signal
quality is intimately related to the electrode-skin interface, and the
purpose of the earpiece is to provide a firm and stable electrode-skin
connection. The comfort of an earpiece is related to a wide range of
factors including mechanical properties of the earpiece material, the
number and placement of the electrodes embedded in the earpiece,
and the ergonomic design. The earpiece design process was iterative
and in each step in the process we evaluated both the comfort and the

signal quality. Some of the key experiences obtained in the process,
and the consequences for the earpiece design, are summarized here:
The earpieces need to be made of a soft and compliant material; in
our design the earpieces were made of a silicone material with shore
60. Essential to the ergonomic design is how deep the earpiece goes
into the ear canal and how well it fits the anatomy of the ear. In our
design the earpiece was relative shallow and was not going more than
5–6 mm into the ear canal.

The signal quality was quantified in terms of the percentage of
rejected data epochs after the pre-processing step. Rejection of epochs
with poor signal quality is a common practice in sleep monitoring.
Poor signal quality can be due to several factors, but the signal quality
depends in almost all situations on the electrode-skin contact. Thus,
if the signal quality is challenged by e.g., movements, the effect on
the signal quality will be further exacerbated by a poor electrode-skin
connection. Therefore, the proportion of rejected epochs is a good
measure for assessing the quality of the electrode-skin connection–
the lower the proportion of rejected epochs the better the electrode-
skin interface. In the companion study (sC), using individualized
earpieces with six electrodes in each ear and a commercial EEG
amplifier, 9% of the epochs were rejected (Mikkelsen et al., 2019). The
amount of rejected epochs after the single channel signal construction
was 4.3%. In this study (sG), we recorded 20 nights with partial
PSG and ear-EEG, as well as 100 nights with only ear-EEG. In these
120 nights of recording, the pre-processing pipeline rejected 10.2%
of the epochs, which decreased to 4.4% after single channel signal
construction. This value is very similar to our previous rejection
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FIGURE 8

The distribution of the value of the sleep metrics (REMfr, N3fr, SE, NREM to NREM, NREM to REM, REM to REM, and REM to NREM) for sC.A, sC.B, sG.A,
and sG.B datasets show a large overlap and no clear equipment or part differences.

rate. This demonstrates that changing from custom made to generic
earpieces and lowering the number of electrodes did not have a
significant effect on the cross-ear single channel signal’s quality.

During the study, we identified several factors that caused poor
signal quality and occasional rejection of the recording. The main
factor was fitting the earpieces. We observed that the subjects were
able to easily fit the earpieces after the third or fourth night. Although,
the subjects were able to fit the earpieces properly, in some cases,
the subject relocated the earpiece during the night without properly
fitting it causing the electrodes to lose the connection. In one other
case, the subject had excessive movement during the night, which
caused the earpiece to fall out of the ear. Otherwise, the subjects were
successful in fitting the earpieces. In general, subjects were able to use
the device without any problem. Only in few cases, the subjects forgot
to charge the device before the recording. We believe that the device
can be used easily by a normal user.

Comfort and unobtrusiveness are paramount in long-term sleep
recording for at least two reasons: (1) If the sleep monitoring device
is not sufficiently comfortable, subjects will not endure it and thus
the disadvantages in terms of discomfort will outweigh the benefits
of the sleep monitoring. (2) If the monitoring device interferes with
the sleep, the sleep information acquired will be biased and thus
not provide an accurate impression of the sleep. Therefore, subjects
were asked to answer questionnaires after every night to rate their
perceived sleep quality, their perceived comfort, the ease of use of
the device and whether their sleep had been affected by the earpiece.
Based on their answers, we saw that the comfort of the generic
earpieces was similar to that of custom-made earpieces from our

previous study (Mikkelsen et al., 2019). One of the proposed reasons
for this is that it was previously discovered that the depth of the ear
canal part of the earpiece was highly correlated with the perceived
comfort of the earplug. The generic earpiece was designed to not go
further than the second bend of the ear canal, which is the same depth
as what the custom earplugs are modeled to. This could explain why
the comfort assessments are similar to our previous study. Another
important feature in the development of a generic ear-EEG system
is the ease-of-use, when asked, most of the subjects reported that
the earpieces were easy to mount. In general, subjects preferred the
earplugs to the partial PSG setup. The participants responded to
comfort and sleep quality questions with a few bad/very bad answers.
For most of the questions, the intra subject variation was observed to
be higher than the inter subject variation. This shows that the comfort
changes more with the recording night rather than the subject.

Another important aspect to consider in this new approach to
sleep monitoring is its performance in sleep analysis and scoring.
The first part of it, which was mentioned earlier, is the data
quality. Poor data quality and missing data is detrimental for sleep
scoring. Fortunately, the new earpiece design and the introduction
of the customized and application specific amplifier and recording
device, did not affect the amount of data rejection. Next, we
evaluated the performance of our sleep scoring algorithm on different
combinations of this current dataset (sG.A) and a dataset (sC.A)
collected in a previous study, with custom earpieces and a commercial
amplifier. By combining the datasets, we augment our database and
thereby the training and test set of our automatic sleep scoring
algorithm. Although the earpiece, amplifier and the number of

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.987578
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-987578 January 25, 2023 Time: 16:19 # 10

Tabar et al. 10.3389/fnins.2023.987578

TABLE 2 Results from the linear mixed model (LMM) analysis on the
sleep metrics.

Metric Effect sC sG sCsG

REMfr Subject P < 0.01* P < 0.01* P < 0.01*

Part P = 0.16 P = 0.87 P = 0.26

Equipment NA NA P = 0.83

N3fr Subject P < 0.01* P < 0.01* P < 0.01*

Part P = 0.18 P = 0.38 P < 0.01*

Equipment NA NA P = 0.46

SE Subject P < 0.01* P = 0.02* P < 0.01*

Part P = 0.17 P = 0.09 P = 0.92

Equipment NA NA P = 0.74

NREM to
NREM

Subject P < 0.01 * P < 0.01* P < 0.01*

Part P = 0.30 P = 0.18 P = 0.69

Equipment NA NA P = 0.13

NREM to REM Subject P < 0.01* P < 0.01* P < 0.01*

Part P = 0.31 P = 0.31 P = 0.20

Equipment NA NA P = 0.16

REM to REM Subject P < 0.01* P < 0.01* P < 0.01*

Part P = 0.28 P = 0.43 P = 0.49

Equipment NA NA P = 0.43

REM to NREM Subject P < 0.01* P < 0.01* P < 0.01*

Part P = 0.11 P = 0.39 P = 0.23

Equipment NA NA P = 0.49

The subject effect was significant for all sleep metrics. The part effect was only significant in
the combined dataset in the fraction of N3 sleep. The equipment effect was insignificant for
all sleep metrics.
*Significant effects are marked.

electrodes were different in those studies, we were able to perform
successful automatic sleep scoring by training with one dataset and
testing on the other one. First, we observed that training and testing
on sG.A yielded a higher performance than training on sC.A and
testing on sG.A. This is probably reflecting a combination of two
effects: (i) the new setup introduces a certain unique fingerprint in
the recordings which is not explained by sC.A. (ii) The characteristic
features of sleep in the ear-EEG are largely preserved across the
two datasets. Combining the sC.A and sG.A datasets in the training
set increased the scoring performance for the sG.A dataset. This
combination probably allowed the algorithm to generalize over a
larger population of subjects and still learn the unique fingerprints
of the new setup. However, combining the datasets did not increase
the performance on the old dataset (sC.A). This is likely because
sC.A is a sufficiently large dataset for the algorithm to generalize
over the population of subjects, therefore adding more training
data from sG.A does not add any significant new information.
Ultimately, the algorithm continues to have most of its knowledge
from sC.A and therefore no increase is observed in the performance
on sC.A. The performance of the sCGsG scheme was lower than
for the sCGsC scheme. It should be mentioned that sC.A is 4
times larger than sG.A, wherefore train-test on sC.A gives a better
generalization. We expect this difference to diminish significantly as
our database grows. Subject-wise, we observed that two subjects had
considerably lower kappa values compared to the other subjects in

all dataset combinations. We suggest that this is caused by different
subject specific factors like earplug fitting, sleep characteristics and
sleep environment. According to Figure 5, the sCGsG method was
successful in detecting N2 and N3 stages and less successful in
detecting N1 stage. This is similar to what we observed in our
previous studies (Mikkelsen et al., 2019; Tabar et al., 2021).

One important aspect of the proposed sleep monitoring system is
to provide longitudinal sleep recordings via only ear-EEG recordings.
Therefore, it is critical to predict the performance of the sleep scoring
algorithm in the part B recordings. While the lack of manual scorings
in part B makes it impossible to validate the automatic scorings in
the conventional way, we validate them using two analytical methods.
The first method is based on the confidence measure derived from
the random forest classifier. In a previous study (Mikkelsen et al.,
2020), we found a strong correlation between the confidence measure
and the kappa value, and this strong relationship was also observed
in the current study. This allows us to predict the expected kappa
value for part B recordings based on their confidence values. While
there is not a one-to-one correspondence between the confidence
measure and the kappa value it still provides a good assessment of
the performance for the unlabelled data in Part B. As a result, we
expect 42% of the Part B recordings to have kappa value above 0.72
which is the median kappa value for part A. Additionally, 58% of the
part B recordings were predicted to have kappa value over 0.66 (25th
percentile), where 26% of them were predicted to have kappa over
0.76 (75th percentile). While the distribution of the predicted kappa
values was highly subject dependent, all the recordings had at least 2
recordings with a kappa above 0.66.

In the second method, we investigated the sleep characteristics of
the recordings to see if there was a difference between the estimated
sleep characteristics of part A and B for any individual subject. We
also aimed to explore whether the new devices (study effect) changed
the distribution of the sleep characteristics and ultimately the sleep of
subjects. Linear mixed models were constructed for six sleep metrics
in which the effects of equipment, part and subject on the sleep metric
were investigated. The part effect reflected the effect of the partial
PSG setup on the sleep characteristics. We found that the effect of
the partial PSG setup was only significant in one sleep metric, namely
the fraction NREM stage 3 (N3) sleep for the sCsG dataset. In this
case the fraction of N3 sleep increased by 2.8 % from Part A (partial
PSG + ear-EEG) to Part B (ear-EEG). The effect of part on all other
sleep metrics were insignificant.

Furthermore, we did not find any significant effect of the
equipment on any of the sleep metrics, which means that the effect of
the new generic earpiece with two electrodes and the new amplifier
is negligible. This is in concordance with the fact that we were able
to get high classification performance by combining both datasets.
The subject effect was significant for all sleep metrics. This shows that
changes in the sleep characteristics were related to subject specific
idiosyncrasies rather than from which part or which equipment the
recordings came from.

These results suggests that generic ear-EEG is a promising
method for long-term sleep monitoring. This may have application
within e.g., treatment of diseases such as insomnia, chronic pain and
many psychiatric disorders, prognostication of recovery after stroke,
concussion and traumatic brain injury, and as an early biomarker in
neurodegenerative diseases such as Parkinson’s disease, Levy Body
dementia and Alzheimer’s disease.
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5. Conclusion

A comfortable and unobtrusive device for long-term sleep
monitoring will have great clinical value in diagnosis and treatment
of many diseases. We have developed an ear-EEG based sleep
monitoring device based on a generic ear-EEG with two recording
electrodes in each ear, a proprietary amplifier and an associated
automatic sleep scoring algorithm. In this study, we have assessed
perceived sleep quality, comfort and ease-of-use and compared the
sleep scoring performance against partial PSG scoring. The proposed
generic earpiece design was found to be as comfortable as the
custom-made design. The EEG signal was recorded from 2 electrodes
in each ear with an amplifier made specifically for the current
application. The quality of the recorded signal was similar to our
previous setup, resulting in successful sleep scoring with an average
kappa value equal to 0.71. Automatic sleep scoring was also applied
to recordings where no manual scoring was available. We used a
confidence measure provided by the sleep stage classifier for assessing
the quality of the unlabelled sleep scorings and found that 42% of
the part B recordings were estimated to have kappa value above
0.72. Finally, we analyzed the sleep patterns, based on a linear mixed
model analysis of seven different sleep metrics, and did not find
any statistically significant differences between individualized and
generic earpieces, or between PSG-nights and ear-EEG nights. These
results suggests that sleep monitoring based on generic ear-EEG
devices is a promising alternative to PSG for long-term monitoring
of sleep stages.
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