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Introduction: Obesity presents a significant public health problem. Brain plays a

central role in etiology and maintenance of obesity. Prior neuroimaging studies have

found that individuals with obesity exhibit altered neural responses to images of food

within the brain reward system and related brain networks. However, little is known

about the dynamics of these neural responses or their relationship to later weight

change. In particular, it is unknown if in obesity, the altered reward response to

food images emerges early and automatically, or later, in the controlled stage of

processing. It also remains unclear if the pretreatment reward system reactivity to

food images is predictive of subsequent weight loss intervention outcome.

Methods: In this study, we presented high-calorie and low-calorie food, and

nonfood images to individuals with obesity, who were then prescribed lifestyle

changes, and matched normal-weight controls, and examined neural reactivity using

magnetoencephalography (MEG). We performed whole-brain analysis to explore and

characterize large-scale dynamics of brain systems affected in obesity, and tested

two specific hypotheses: (1) in obese individuals, the altered reward system reactivity

to food images occurs early and automatically, and (2) pretreatment reward system

reactivity predicts the outcome of lifestyle weight loss intervention, with reduced

activity associated with successful weight loss.

Results: We identified a distributed set of brain regions and their precise temporal

dynamics that showed altered response patterns in obesity. Specifically, we found

reduced neural reactivity to food images in brain networks of reward and cognitive

control, and elevated reactivity in regions of attentional control and visual processing.

The hypoactivity in reward system emerged early, in the automatic stage of

processing (< 150 ms post-stimulus). Reduced reward and attention responsivity,

and elevated neural cognitive control were predictive of weight loss after six months

in treatment.

Discussion: In summary, we have identified, for the first time with high temporal

resolution, the large-scale dynamics of brain reactivity to food images in obese

versus normal-weight individuals, and have confirmed both our hypotheses. These
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findings have important implications for our understanding of neurocognition and

eating behavior in obesity, and can facilitate development of novel integrated

treatment strategies, including tailored cognitive-behavioral and pharmacological

therapies.

KEYWORDS

obesity, magnetoencephalography (MEG), preconscious, reward system, neural reward
reactivity, food image processing, predict weight loss, automatic process (vs. controlled)

1. Introduction

Obesity is a highly prevalent condition (Chooi et al., 2019; WHO,
2020) with significant health and economic implications (Flegal et al.,
2005; Wyatt et al., 2006; Finkelstein et al., 2009; Cecchini et al.,
2010). Multiple factors contribute to its development and persistence;
however, energy imbalance driven by overconsumption of high-
calorie food is the main cause of obesity (Swinburn et al., 2009; Hall
et al., 2012; Crino et al., 2015). Brain regulates appetite and food
intake, and thus plays a central role in promoting and maintaining
obesity (Morton et al., 2006; Rolls, 2007; Berthoud and Morrison,
2008; Berthoud et al., 2017). However, the exact neural mechanisms
that support obesogenic behavior are still poorly understood.

The most prevalent neurocognitive theories of obesity have
focused on brain reward system, suggesting that food-related reward
reactivity is the primary driver of obesogenic behavior (Stice and
Yokum, 2016; Devoto et al., 2018; Stice and Burger, 2019). According
to the dynamic vulnerability model (Stice and Yokum, 2016; Stice and
Burger, 2019), an initial aberrant neural reward response to high-
calorie food intake, which is presumably an inborn characteristic,
promotes overeating, which with time results in blunted reward
response to food intake and elevated response to associated cues
(e.g., images of food). Consequently, reward hyper-responsivity to
food cues, which induces craving when these cues are encountered,
becomes the main driver of overeating.

Other models have prioritized cognitive control network of the
brain, suggesting that the capacity of this network to regulate reward
system reactivity to food cues is the primary driver of eating behavior,
rather than the reward system responsivity itself (Lowe et al., 2019).
Thus according to this model, poor recruitment of cognitive control
regions and weaker modulatory control over reward system during
food cue processing leads to overeating and weight gain. Balance
models on the other hand suggest that eating behavior may not
result from the brain reward and cognitive control networks acting
independently or in direct competition, but may result from a balance
between their activities in response to food cues (Lopez et al., 2017;
Devoto et al., 2022). Overeating in this case will ensue when activity
balance favors reward over cognitive control network.

Neuroimaging studies supporting these models have found that
food images relative to non-food stimuli activate brain regions
associated with reward processing, cognitive and attentional control,
and visual processing (van der Laan et al., 2011; Dagher, 2012;
García-García et al., 2013; Hollmann et al., 2013; Huerta et al., 2014).
Additional evidence indicates that these activations, modulated by
person’s current homeostatic state (Cornier et al., 2007; Führer et al.,
2008; Siep et al., 2009), various cognitive processes (Grabenhorst
et al., 2008; Kober et al., 2010; Hare et al., 2011; Frankort et al., 2012;
Hollmann et al., 2012; Siep et al., 2012; Silvers et al., 2014;
Pohl et al., 2017; Franssen et al., 2020), perceived caloric content

(Goldstone et al., 2009; Murdaugh et al., 2012; Killgore et al., 2013),
and other internal and external factors (Devoto et al., 2022), affect
their food perception and eating behavior. Notably, increased food-
cue reactivity within the reward system has been associated with
craving (Siep et al., 2012; Frankort et al., 2014; Miedl et al., 2018)
and weight gain (Yokum et al., 2011, 2014; Demos et al., 2012; Stice
et al., 2015), while activity within the cognitive control network has
been associated with anti-obesogenic behavior (Lopez et al., 2014,
2016; Weygandt et al., 2015) and weight loss (Weygandt et al.,
2013; Neseliler et al., 2019), and negatively associated with weight
gain (Kishinevsky et al., 2012). Brain regions of the reward system
implicated in these studies include orbitofrontal cortex (OFC),
ventromedial prefrontal cortex (VMPFC), anterior cingulate cortex
(ACC), striatum, insula and amygdala. Regions of the cognitive
control network most commonly activated in response to food cues
are inferior frontal gyrus (IFG) and dorsolateral prefrontal cortex
(DLPFC).

In line with these findings, a volume of literature has shown an
association between elevated weight and altered brain function. Most
neuroimaging studies have found greater reward system reactivity
to images of food in obese and overweight individuals compared
with normal-weight controls (Rothemund et al., 2007; Stoeckel et al.,
2008; Bruce et al., 2010; Martin et al., 2010; Dimitropoulos et al.,
2012; Nummenmaa et al., 2012; Scharmüller et al., 2012; Pursey et al.,
2014), although contrary and null results have also been reported
(Frankort et al., 2012; Murdaugh et al., 2012). Furthermore, neural
reactivity to food cues in the cognitive control network has been
found to be reduced in obese individuals (Dimitropoulos et al., 2012;
Nummenmaa et al., 2012; Brooks et al., 2013; Tuulari et al., 2015),
and negatively correlated with body mass index (BMI) in food-related
cognitive control tasks (Batterink et al., 2010; Giuliani et al., 2014;
Janssen et al., 2017; Han et al., 2018). It is thus evident from the extant
literature that altered food cue reactivities in the reward system and
cognitive control network play key roles in etiology and maintenance
of obesity. However, to fully understand their exact roles and the
intricate neural mechanisms associated with obesity, information
about temporal dynamics of these neural activations in obese and
normal-weight individuals is needed, but so far remains unknown. It
is also unknown if the altered responses in obesity arise in the early,
automatic or late, controlled stage of information processing. This
information could greatly extend and refine current neurocognitive
models, which are based on findings from fMRI studies, and therefore
unable to exploit the precise temporal dynamics of neural activity.

Lifestyle intervention for obesity, including reduced-
calorie diet, increased physical activity and behavioral therapy
(Jensen et al., 2014), is an effective and widely used weight loss
strategy (Curioni and Lourenco, 2005; Douketis et al., 2005;
Franz et al., 2007; Webb and Wadden, 2017). However, there is a
considerable variability in treatment response across individuals
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(Curioni and Lourenco, 2005; MacLean et al., 2011; Twells et al.,
2021). Understanding the potential predictors of success in weight
loss interventions can lead to development of effective tailored
treatment strategies.

Negative energy balance induced by lifestyle intervention triggers
hormonal response that aims to maintain the higher body weight
(Klok et al., 2007; Sumithran et al., 2011). Among other systems,
appetite hormones (e.g., leptin, ghrelin) influence neural circuits that
regulate eating behavior in favor of increased calorie intake (Morton
et al., 2006, 2014), including modulating food cue reactivity in the
reward system (Farooqi et al., 2007; Malik et al., 2008; De Silva et al.,
2011; Aotani et al., 2012) and cognitive control network (Rosenbaum
et al., 2008; Guthoff et al., 2010). In addition to circulating levels of
appetite hormones, genetic makeup (Stice et al., 2008, 2010, 2015;
Yeo and Heisler, 2012; Lamiquiz-Moneo et al., 2019), personality
traits (Grimm et al., 2012; Van Der Laan and Smeets, 2015; Vainik
et al., 2019; Nakamura and Koike, 2021), cognitive function (Siep
et al., 2012; Weygandt et al., 2013, 2015; Dalle Grave et al., 2014;
Gettens and Gorin, 2017) and environment (Malik et al., 2011;
Gorin et al., 2013; Blechert et al., 2016; Lowe et al., 2018) can
modulate brain activity and affect eating behavior. Thus body weight
regulation is a complex multifactorial process where neural systems
that control appetite and eating behavior play a main role (Morton
et al., 2006, 2014; Berthoud et al., 2017; Makaronidis and Batterham,
2018). In line with this, several longitudinal studies have found that
increased neural activity in cognitive control regions during food cue
processing predicts success of reduced-calorie diet (Weygandt et al.,
2013, 2015), and that this activity, rather than appetite hormones,
plays a critical role in weight loss (Neseliler et al., 2019).

Few studies have investigated whether reward system reactivity
to food cues can predict the outcome of lifestyle intervention, but
with equivocal results (Murdaugh et al., 2012; Hermann et al., 2019).
Murdaugh et al. (2012) has found a significant association between
high levels of pretreatment reactivity to high-calorie food images in
striatum, ACC and insula of the brain’s reward system and poorer
outcome in a 12-week lifestyle weight management program. In
contrast, Hermann et al. (2019) failed to find a significant relationship
between pretreatment neural response to high-calorie food images
and outcome in a 6-month weight loss intervention; although they
found that changes in food cue reactivity in striatum between
pretreatment and 1 month in the treatment program predicted the
6-month outcome. Thus the utility of pretreatment neural reward
reactivity to food cues in predicting the outcome of weight loss
intervention is still unclear. Few prevalent models, such as the
incentive sensitization and dynamic vulnerability models (Stice and
Yokum, 2016; Stice and Burger, 2019), have emphasized association
between elevated reward responsivity to food cues and future weight
gain; however, explicit predictions regarding association of reward
system reactivity and voluntary weight loss are missing from the
current models.

The main objectives of the present study are to investigate the
temporal dynamics of food cue reactivity in the reward system as
well as other brain regions in obese versus normal-weight individuals,
and examine the relationship of this reactivity to future weight
change. More specifically, we aim to determine whether the altered
neural reward response to images of food in obesity emerges in the
early, automatic or late, controlled stage of information processing,
and whether pretreatment levels of this reactivity may predict the
outcome of the lifestyle weight loss intervention. Therefore, we
propose two hypotheses: First, we hypothesize that neural reward
response to images of food is altered in obesity beginning from the

early, automatic stage of information processing. This hypothesis
is based on the observations that reward-related neural signals can
emerge in the brain as early as 100–150 ms after stimulus onset
(Doñamayor et al., 2012; Thomas et al., 2013; Bach et al., 2017) and
that obese individuals exhibit an automatic attentional bias toward
food cues (Castellanos et al., 2009; Nijs et al., 2010a; Hume et al.,
2015). Second, we hypothesize that the pretreatment magnitude of
food cue reactivity in the reward system can predict the outcome
of lifestyle intervention. Considering that increased neural food
reward activity is associated with craving (Siep et al., 2012; Frankort
et al., 2014; Miedl et al., 2018) and weight gain (Yokum et al.,
2011, 2014; Demos et al., 2012; Stice et al., 2015), and that thinking
about health consequences of food and conscious suppression of
craving decreases this activity (Siep et al., 2012), we expect that
reduced food cue reactivity in the reward system will be associated
with successful weight loss. Further, we aim to perform whole-brain
analysis to explore the dynamics of other brain systems affected in
obesity. Characterization of the large-scale dynamics of brain activity
during food cue processing and validations of our hypotheses will
significantly improve our understanding of the neural mechanisms
associated with obesity, and may have important implications for the
development of appropriate intervention strategies.

Conscious access to visual sensory information occurs around
200 ms after stimulus onset (Koivisto and Grassini, 2016; Förster
et al., 2020) or even later (Dehaene and Changeux, 2011; Sergent,
2018). In this study, we consider the neural responses occurring
before 150 ms post-stimulus to reflect preconscious automatic
information processing. To achieve our objectives, including
investigating the neural temporal dynamics of food cue reactivity
and differentiating the early, automatic and late, controlled brain
processes, we exploit high temporal resolution and whole-brain
coverage of magnetoencephalography (MEG) and distributed source
imaging (Ioannides, 2006; Baillet, 2017).

2. Materials and methods

2.1. Participants

Twenty-four patients with class 2 or 3 obesity who intended
to lose weight (18 women; BMI: range 35–66.7, mean [M] = 44.8,
standard deviation [SD] = 8.1 kg/m2; age: M = 40.3, SD = 11.1 years)
and 24 age- and gender-matched normal-weight controls (18 women;
BMI: range 18.6–25, M = 22.6, SD = 2.3 kg/m2; age: M = 40,
SD = 8.9 years) participated in the present study. All participants were
right-handed, had normal or corrected-to-normal visual acuity, and
had no history of mental or neurological disorder, diabetes, substance
abuse or addiction, or serious medical illness. Patients were recruited
from the outpatient clinic at the obesity, endocrine, and metabolism
center of King Fahad Medical City (KFMC). Controls were recruited
through hospital announcements and social media channels.

The study was approved by KFMC ethics committee.
Written informed consent was obtained from all participants
prior to the study.

2.2. Weight loss intervention

All patients were prescribed lifestyle changes, including a
low-calorie diet with a recommended consumption of 1500 kcal/day
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and moderate physical activity of at least 180 min/week, and
were counseled about these topics on individual basis. They
were then followed up as deemed medically necessary (typically
every 6 months).

Patients’ motivations and potential obstacles to weight loss were
examined and addressed as needed. They were educated about
low-calorie dieting, and were encouraged to voluntarily reduce
their intake by 500 kcal/day to reach 1500 kcal/day. Patients were
asked to keep detailed food diaries, including the names, types and
specifications (fat, protein, carbohydrates etc.) of the consumed food,
places of consumption (home, restaurant etc.) and portion sizes.
They were also asked to note their thoughts on how the lifestyle
changes and gained knowledge influenced their eating behavior,
attitudes and understanding of nutrition. In the follow-up visits, the
implementation of the recommended lifestyle changes was discussed
and the experienced difficulties were examined and addressed.
Further dietary and exercise counseling was given on individual basis.

2.3. MEG experiment

One day before the experiment, the participants were instructed
to fast overnight (only drinking water was allowed). The experiments
started between 8.00 and 10.00 am. Hunger enhances neural reward
response (Gottfried et al., 2003; Führer et al., 2008; Siep et al., 2009;
Berridge et al., 2010) and visual attention to food cues (Stockburger
et al., 2009; Loeber et al., 2013; Kumar et al., 2016). Therefore, as well
as for standardization purposes, we assessed our study participants
in fasted state, similar to a number of previous studies, e.g., (Stoeckel
et al., 2008; Murdaugh et al., 2012; Mokhtari et al., 2018).

Each participant was scanned with MEG at rest and in two
experimental runs. In resting-state, spontaneous brain activity was
recorded for 10 min during which participants were comfortably
seated in the MEG scanner with eyes open and no stimuli
presented. In the experimental runs, participants were presented
with images of high-calorie food, low-calorie food and nonfood
items (Figure 1; Führer et al., 2008). High-calorie food images
included fatty and carbohydrate-rich items, such as fast food
hamburger and cake. Low-calorie food images included healthy
low-fat items, such as fresh salads and fruits. Food images were
categorized into high- and low-calorie by a clinical dietician based on
McCance and Widdowson (2014) and Nutrinics software.1 Nonfood
images included tools and everyday items that were clearly unrelated
to food, such as watch and key. All presented food, as well as
nonfood, images were of common items that are widely available

1 https://www.nutritics.com

in Saudi Arabia and were very familiar to participants. All pictures
were matched for luminance, resolution and size, and had identical
background and top-view angle, which one would typically obtain by
sitting at a table.

Each run included 90 experimental trials in which 30 images
from each of the three stimulus categories (high-calorie food, low-
calorie food and nonfood) were presented to participants in a random
order. To ensure that participants were alert and focused on visual
stimuli, 13 attention-check trials, randomly interspersed among the
experimental trials, were added. In these trials, a finger click icon
image was presented, and participants were instructed to respond
by pressing a button with the right index finger. The run was
repeated if the participant missed two consecutive button presses.
All images in experimental and attention-check trials were presented
on a homogenous gray background on a screen located 1 m in
front of the participant, with a duration of 2 s and interstimulus
interval varied randomly between 2.8 and 3.2 s. Overall, across two
experimental runs, 206 trials (180 experimental and 26 attention-
check) were recorded in each participant, with 60 trials for each image
category. Attention-check trials were excluded from the data analysis.

After the experiment, participants were shown all the food images
on the computer screen or printed paper and were asked to select five
foods in the order of preference that they would most likely have at
that time. Additionally, they were asked to choose a portion that best
fits their needs, which could be quarter, half, full, or more than one
portion. This post-experimental inquiry was made in an attempt to
assess each participant’s current preference for high- or low-calorie
food (however, see the section “4.3. Limitations”).

2.4. Data acquisition and preprocessing

Participants’ weights and heights were measured before the
MEG experiment and approximately 6 months after it, during the
scheduled follow-up at the obesity clinic.

Magnetoencephalography data were acquired using 306-sensor
(102 magnetometers and 204 planar gradiometers) whole-head
Vectorview system (MEGIN/Elekta Oy, Helsinki, Finland), inside
a magnetically shielded room, at a sampling rate of 2000 Hz
and band-pass of 0.3–660 Hz. Simultaneously and in synchrony
with MEG, electrocardiogram (ECG) and electrooculogram (EOG)
were recorded to eliminate the corresponding artifacts from
the MEG signals.

Raw MEG signals were visually inspected to identify noisy
channels and time segments. Temporally extended signal space
separation and movement correction algorithms, implemented in
vendor’s Maxfilter software (MEGIN/Elekta Oy, Helsinki, Finland),
were applied to suppress external and internal interferences, and

FIGURE 1

Stimuli. Examples of food and nonfood images presented to the subjects. Taken from Führer et al. (2008).
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compensate for noisy channels and subject’s head movement during
the recording (Taulu et al., 2004; Taulu and Simola, 2006).

Subsequent data preprocessing and analysis were performed with
Brainstorm (Tadel et al., 2011), which is freely available online.2 We
followed in general the group analysis pipeline described in Tadel
et al. (2019) and used several in-house developed Brainstorm plugins
and scripts. MEG signals were low-pass filtered at 250 Hz, notch
filtered at 60 Hz and its harmonics, and resampled to 1000 Hz.
Independent component analysis (ICA), together with ECG and
EOG, and followed by visual inspection of the identified independent
components in spatial and temporal domains, were used to eliminate
the eye and cardiac artifacts from the MEG data (Makeig et al., 1996;
Lee et al., 1999). The preprocessed clean MEG data were divided
into epochs, from −500 to 1000 ms with respect to stimulus onset,
and were averaged separately for each stimulus category (high-calorie
food, low-calorie food and nonfood) in each run.

2.5. MEG source analysis

For each participant, a pseudo-individual anatomy was created
by warping the ICBM152 MRI template (Fonov et al., 2009) to the
individual digitized head shape (more than 1,000 points). The lead
fields for each run were computed using the overlapping spheres
method (Huang et al., 1999) with the original sensor positions, and
a volumetric grid source space with 5 mm isotropic resolution. The
noise covariance was estimated from the 10-min resting-state MEG
data. Weighted minimum norm estimate (MNE) with Brainstorm’s
default parameter settings was used for solving the inverse problem
(Baillet et al., 2001). MNE estimates the amplitude of neuroelectric
currents at each point in the source grid, producing a brain activation
map at 5 mm isotropic resolution.

The brain activation maps were averaged across the two
experimental runs for each subject and stimulus category weighted
by the number of good trials in each run. These subject-level averages
(one per stimulus category) were standardized by applying z-score
transformation with respect to the pre-stimulus baseline (−500 to
−1 ms), and were projected onto the ICBM152 template (Fonov et al.,
2009) for further group analysis.

2.6. Group statistical analysis and regions
of interest (ROI)

We used two-tailed independent-samples permutation t-test
with 1,000 randomizations to contrast z-scored brain activation
maps (in ICBM152 template space) between obese and normal-
weight individuals separately for each stimulus category. Brain
regions showing statistically significant differences at P < 0.05
(false discovery rate [FDR] corrected) for a minimum duration
of 20 ms were defined as regions of interest (ROI). The MNI
coordinates of the ROI centroids, and their extents (number of source
grid point within the ROI) and corresponding significant latency
ranges were identified and extracted using an in-house developed
Brainstorm plugin (Tables 1, 2). The ROIs were labeled based on
the AAL3 atlas (Rolls et al., 2020) and their putatively associated

2 http://neuroimage.usc.edu/brainstorm

brain networks [reward (Berridge and Kringelbach, 2015), cognitive
control (Miller and Cohen, 2001; Ridderinkhof et al., 2004), attention
(Corbetta and Shulman, 2002), and vision (Tootell et al., 2003)] were
determined from established literature.

2.7. Regression analysis

To investigate whether pretreatment brain responses to images of
food can predict weight change after 6 months in treatment, multiple
regression analysis was performed on patient data. The ROIs were
first merged into larger areas according to their associated brain
network (reward, cognitive control, attention and vision), and the
mean brain activations across each of these network-specific areas
in the 50–150, 150–300, and 300–1000 ms post-stimulus periods was
calculated. We selected these specific time periods (50–150, 150–300,
and 300–1000 ms), as it is recognized that brain responses occurring
before 150 ms reflect automatic preconscious information processing,
and activations occurring after 300 ms include controlled conscious
level processing, while the presence of conscious processing in
the 150–300 ms latency range is currently debated (Dehaene and
Changeux, 2011; Koivisto and Grassini, 2016; Sergent, 2018; Förster
et al., 2020).

A mixed-effect linear regression model was constructed including
the BMI percentage change as the dependent variable, the brain
activation in each network and time period (12 variables),
food stimulus category (high-calorie versus low-calorie food) and
pretreatment BMI as the fixed-effect independent variables, and
the subject as the random-effect independent variable (random
intercept). A stepwise backward elimination approach minimizing
the Akaike information criterion (AIC) was then used to find
the best-fit model. Variance inflation factors (VIF) and correlation
matrix plots (Supplementary Figure 1) were used to detect possible
multicollinearity between the independent variables. To evaluate
significance of fixed-effects in the best-fit model, analysis of variance
(ANOVA) with χ2 test was used to compare it with a null model,
which included only the random intercept.

2.8. ROI temporal dynamics

To explore the precise temporal dynamics of the identified
ROIs, their activation time courses were generated by averaging,
for each time sample (−500–1000 ms with a step of 1 ms), the
activations (z-score values) across source grid points within
the ROI (scouts time series with Mean scout function in
Brainstorm). The ROI time courses were generated separately
for each subject and stimulus category, and were then
averaged across subjects in each group (obese and normal-
weight). The time courses were baseline corrected (−500
to −1 ms) and smoothed with a 5 ms running window for
illustrative purposes.

2.9. Statistical analysis of weight change
data

Generalized linear model was used to evaluate associations of
the degree of weight change with the subject group (obese versus

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.948063
http://neuroimage.usc.edu/brainstorm
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-948063 February 2, 2023 Time: 15:21 # 6

Poghosyan et al. 10.3389/fnins.2023.948063

normal-weight), gender (male versus female), food preference (high-
calorie versus low-calorie) and pretreatment BMI. χ2 test was
used to assess the association of subject group with the preferred
food category and portion size. Fisher’s exact test was used when
the crosstabulation contained a cell with a frequency of less than
five. Statistical analyses were performed using R (R Core Team,
2022).

TABLE 1 Significant differences between obese and normal-weight
individuals for high-calorie food images.

ROI Network MNI
coordinates

No.
points

Latencies
(ms)

Obese < normal-weight

sgACC L Reward −3, 32,−5 23 139–563

sgACC R Reward 7, 35,−2 16 139–733

VMPFC R Reward 10, 41,−7 11 143–485

aOFC R Reward 31, 36,−16 37 156–637,
799–978

IFGorb R Control 32, 32,−10 16 171–637,
799–820

Caudate R Reward 17, 21,−2 23 172–586

VMPFC L Reward −9, 34,−12 11 186–724

mOFC L Reward −14, 25,−20 62 191–733

Caudate L Reward −12, 16, 0 50 266–821,
962–1000

NAc L Reward −8, 15,−8 19 269–733

Olfactory
cortex L

−7, 17,−11 25 269–733

PHG L −25,−10,−33 13 288–896

Olfactory
cortex R

6, 25,−3 6 290–408

NAc R Reward 11, 20,−4 11 324–424

IFGorb L Control −24, 30,−9 15 340–815,
971–1000

TP L −24, 11,−37 12 344–673

Amygdala L Reward −24, 1,−22 11 360–1000

MFG L Control −33, 47, 9 29 433–1000

Insula L Reward −25, 28, 3 7 442–721

Obese > normal-weight

MCC 3, 8, 44 18 79–121, 207–272

Calcarine
cortex

Vision 5,−87,−7 32 91 – 125

IPL L Attention −31,−54, 35 9 157 – 254

MOG L Vision −26,−89, 7 27 168 – 310

Lingual gyrus
R

Vision 20,−69,−9 14 211 – 280

Regions of interest (ROI) with significantly reduced (obese < normal-weight) and elevated
(obese > normal-weight) responses in obese versus normal-weight individuals, their putatively
associated brain networks, MNI coordinates of centroids, number of source grid points and
significant latency ranges are shown. L, left; R, right; sgACC, subgenual anterior cingulate cortex;
VMPFC, ventromedial prefrontal cortex; aOFC, anterior orbitofrontal cortex (OFC); IFGorb,
inferior frontal gyrus pars orbitalis; mOFC, medial OFC; NAc, nucleus accumbens; PHG,
parahippocampal gyrus; TP, temporal pole; MFG, middle frontal gyrus; MCC, midcingulate
cortex; IPL, inferior parietal lobule; MOG, middle occipital gyrus.

TABLE 2 Significant differences between obese and normal-weight
individuals for low-calorie food images.

ROI Network MNI
coordinates

No.
points

Latencies
(ms)

Obese < normal-weight

pOFC L Reward −19, 18,−21 45 365–1000

Putamen L Reward −15, 14,−4 34 406–1000

NAc L Reward −10, 14,−8 12 508–1000

Olfactory
cortex L

−16, 9,−16 16 406–1000

Insula L Reward −25, 13,−19 9 406–1000

PHG L −22,−4,−30 28 416–1000

TP L −27, 9,−34 57 402–1000

Amygdala L Reward −21, 1,−20 13 417–1000

Precuneus R 9,−62, 52 12 607–1000

Obese > normal-weight

Calcarine
cortex

Vision 3,−89,−10 37 91–130

MOG L Vision −26,−89, 7 27 168–310

Fusiform
gyrus R

Vision 27,−75,−13 13 415–1000

IPL L Attention 39,−51, 43 20 305–501

MCC R −8,−29, 43 17 79–116

pOFC, posterior OFC. Remaining conventions as in Table 1.

3. Results

3.1. Weight change data

Results of generalized linear model analysis showed only a
significant main effect of subject group (β = 4.7, t(33) = 2.17,
P = 0.037). Patients, who pursued lifestyle changes, lost an average of
5.89% of their initial body weight in 6 months, significantly more than
controls (0.45%, Figure 2). Fifty-four percent of patients (13 of 24)
lost more than 5% weight, and no patient gained 5% or more weight.
In the control group, 8% (2 of 24) lost and 8% (2 of 24) gained more
than 5% weight.

The post-experimental assessment of each participant’s
preference for high- or low-calorie food revealed that more
controls than patients preferred high- than low-calorie food (62%
versus 21%, χ2 = 9.5, P = 0.001). There was no significant group
difference between the preferred portions sizes (P = 0.61), with 87%
of patients and 87% controls selecting a full portion. However, see
also the section “4.3. Limitations.”

3.2. MEG data

3.2.1. Differences in brain activity between obese
and normal-weight individuals

We found significant differences in brain activity between obese
and normal-weight individuals (P < 0.05, FDR-corrected) for high-
and low-calorie food stimuli (Tables 1, 2), but not for nonfood
stimuli. The differences elicited by high-calorie food images were
observed within brain networks associated with reward processing
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FIGURE 2

Boxplots of BMIs in obese (left column) and normal-weight (right
column) individuals before and 6 months after the start of lifestyle
weight-loss intervention. In each plot, boxes represent the
interquartile ranges (IQR) with the lower and upper hinges
corresponding to the first and third quartiles, and the line inside the
box indicating the median; whiskers represent the lowest and highest
values within 1.5 × IQR of the hinges (the first or third quartiles); black
dots represent outlying values beyond the whiskers. The notches
show the 95% confidence interval for the medians (1.58 × IQR/

√
n).

(Berridge and Kringelbach, 2015), cognitive control (Miller and
Cohen, 2001; Ridderinkhof et al., 2004), attention (Corbetta and
Shulman, 2002) and visual processing (Tootell et al., 2003). Reward
system reactivity was lower in obese than normal-weight individuals
beginning at around 100 ms after stimulus onset, and reaching
statistical significance at 139 ms in bilateral subgenual ACC (sgACC,
Figure 3) and at 143 ms in right VMPFC. The most extensive
difference was found in the left medial OFC (mOFC) between 191
and 733 ms post-stimulus (Figure 4A). In addition to the reward
system, significantly reduced responses in obese were found in the
cognitive control network (Ridderinkhof et al., 2004; Niendam et al.,
2012), such as in left middle frontal gyrus (MFG, Figure 4B) and
bilateral IFG pars orbitalis (IFGorb). Greater reactivity in obese
than normal-weight individuals was observed in brain regions of
attentional control (Figure 4C) and visual processing (Figure 4D).

Visual inspection of the ROI time courses revealed an earlier
transient with a peak at ∼90 ms after stimulus onset, which was
strongest in the left hemisphere subcortical structures, including
amygdala (Figure 5) and striatum (caudate and NAc). While this
early peak was higher in obese than normal-weight individuals in
a number of ROIs (left amygdala, caudate, mOFC and bilateral
NAc), the differences were not significant according to our criteria
(FDR-corrected P < 0.05 and minimum duration of 20 ms).

Neural reactivity to low-calorie food images was significantly
lower in obese than normal-weight individuals in the reward system,
and was greater in brain regions of attentional control and visual
processing (Table 2). Visual inspection of the ROI time courses
showed that most ROIs and latencies identified for high-calorie food
images were similarly affected also in response to low-calorie food
images; however, here the obesity-related effects reached statistical
significance (P< 0.05, FDR-corrected) only in a subset of regions and

FIGURE 3

Right sgACC response to high-calorie food images. (Upper row) Brain
region showing the earliest significantly (P < 0.05) reduced response
in the reward system in obese versus normal-weight individuals at
139 ms post-stimulus. (Lower row) Group-averaged activation time
courses of the sgACC R ROI. Gray shaded area indicates time period
with significant difference between obese and normal-weight
individuals.

latencies. Two notable differences were evident. First, no significant
alteration was identified in the cognitive control network in response
to low-calorie food images. Second, reward system activity was
significantly altered only in the late, controlled stage of processing
(300–1000 ms). The only additional difference in response to low-
calorie food images was found in a small region in the right precuneus
area at later latencies (607–1000 ms).

3.2.2. Pretreatment brain activity predicting weight
loss after 6 months in treatment

The best-fit mixed-effect regression model, obtained by stepwise
backward elimination approach, included fixed effects of brain
activations in the reward system in the 300–1000 ms period,
cognitive control network in the 300–1000 ms period, attentional
control region in the 50–150 ms and 300–1000 ms periods, and
visual cortex in the 50–150 ms period, and random effect of
subject. The other variables including remaining brain activations
(7 of 12 variables), food stimulus category and pretreatment BMI
were eliminated by the stepwise backward approach. Of note, all
activations in the 150–300 ms period were eliminated. This model
performed significantly better than the random intercept-only null
model (χ2(5) = 96.36, P < 0.0001), and showed significant main
effects of the reward system (β = 0.91, t(19.76) = 8.16, P < 0.0001),
cognitive control network (β = −0.43, t(19.76) = −3.9, P = 0.0009)
and attentional control region (β = 0.37, t(19.76) = 4.03, P = 0.0007)
in the 300–1000 ms period, and only attentional control region in
the 50–150 ms period (β = 0.28, t(19.76) = 2.68, P = 0.015). For all
variables, the VIF was less than 5, which together with the correlation
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FIGURE 4

Number of brain regions showing differential responses to
high-calorie food images in obese versus normal-weight individuals.
Complete list of ROIs is provided in Tables 1, 2. Activations are shown
at the peak latency of the principle ROI in each panel. (A) Reduced
responses within the reward system (mOFC L, aOFC R, and caudate L).
(B) Reduced response within the cognitive control network (MFG L).
(C) Elevated response in the attentional control region (IPL L).
(D) Elevated response within the visual cortex (MOG L), as well as
elevated response in IPL L, and reduced responses in sgACC R and
caudate R.

matrix plots (Supplementary Figure 1), indicates that there was no
significant collinearity between the independent variables. Follow-up
simple linear regression analyses confirmed the direct effect of each of
these significant variables (activations in reward system and cognitive
control network in the 300–1000 ms period, and attentional control
region in the 50–150 and 300–1000 ms periods) on BMI percentage
change, with 0.22 ≤ | R2| ≤ 0.47, and P < 0.05. Figure 6 shows
the significant relationship between reward system reactivity to food
cues in the 300–1000 ms period and BMI change after 6 months in
treatment, in accord with our second hypothesis.

4. Discussion

In the present study, we have identified, for the first time
with high temporal resolution, the large-scale dynamics of brain
reactivity to food cues in obese versus normal-weight individuals.
Distributed sets of brain regions associated with the brain networks

FIGURE 5

Group-averaged activation time courses of the amygdala L ROI. Gray
shaded area indicates time period with significant difference between
obese and normal-weight individuals. Note the early peak at 83 ms
that was greater in obese than normal-weight individuals, but was not
statistically significant.

FIGURE 6

Scatterplot showing significant correlations between BMI change after
6 months in treatment and mean pretreatment reward system
response to high-calorie (red) and low-calorie (green) food images in
the 300–1000 ms period (P = 0.0002 and P = 0.0009, respectively).

of reward (Berridge and Kringelbach, 2015), cognitive control (Miller
and Cohen, 2001; Ridderinkhof et al., 2004), attention (Corbetta
and Shulman, 2002) and visual processing (Tootell et al., 2003)
displayed altered responses in obesity, in good agreement with earlier
fMRI studies (Brooks et al., 2013; García-García et al., 2013; Pursey
et al., 2014). Furthermore, pretreatment neural responses in the
reward system, cognitive control network and attentional control
region significantly predicted the outcome of the lifestyle weight loss
intervention. As hypothesized, the brain responses to high-calorie
food images in the reward system were altered in obesity beginning
from the early, automatic stage of information processing (<150 ms).
Consistent with our second hypothesis, the magnitude of food cue
reactivity in the reward system significantly predicted the degree of
weight loss after 6 months in treatment.
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Our results are broadly consistent with the main tenets of the
current neurocognitive models of obesity (Nederkoorn et al., 2006,
2010; Stice and Yokum, 2016; Lowe et al., 2019; Stice and Burger,
2019) in that we found that future weight change is positively
correlated with food cue reactivity in the reward system and
attentional control region (Stice and Yokum, 2016; Stice and Burger,
2019), and negative correlation with reactivity in the cognitive
control network (Nederkoorn et al., 2006, 2010). Furthermore,
neural responses elicited by food cues in obese versus normal-
weight individuals were stronger in attention-related brain regions
and weaker in the cognitive control network. However, our results
are inconsistent with the assumed consequence of the incentive
sensitization theory of obesity (Stice and Yokum, 2016; Stice and
Burger, 2019) in that in the current study, food cue reactivity in
the rewards system was reduced rather than elevated in obese versus
normal-weight individuals. In sum, our findings are largely consistent
with the theory that obesogenic behavior is mediated by increased
attention and reward sensitivity to food cues, and reduced cognitive
control over these processes. The current neurocognitive models are
based on findings from fMRI studies, and therefore are unable to
take advantage of the precise timing of neural activity. Our findings
provide the temporal dynamics as well as the neural correlates of food
cue processing, and can be utilized to extend and refine the current
models.

4.1. Altered brain responses in obesity

4.1.1. Hypoactivity in the reward system
We found lower reward system reactivity to food cues in obese

than normal-weight individuals beginning at 139 ms post-stimulus.
To our knowledge, this is the first study showing altered neural
responses in the reward system in the early, automatic stage of
information processing. This early altered reward response will likely
have a widespread impact on ensuing neural processes, greatly
affecting many aspects of brain function, including mood and choice
behavior. Individuals with obesity may so require additional efforts
and special cognitive strategies or medical treatment to regulate these
automatic and controlled processes, and eating behavior. We suggest
that to be effective, therapies should consider this aspect and design
interventions that can target automatic reward processing.

The vast majority of neuroimaging studies of obesity and reward
have used fMRI to investigate the reward system reactivity. However,
due to the inherently poor temporal resolution of fMRI, it has not
been possible to differentiate between early, automatic and late,
controlled neural processes or examine the precise timing of reward
processing in the brain. MEG and electroencephalography (EEG),
which provide superior temporal resolution, could be used to address
these shortcomings. However, previous MEG (Tschritter et al., 2006;
Dubbelink et al., 2008; Stingl et al., 2010, 2012; Guthoff et al., 2011)
and EEG (Nijs et al., 2008, 2010a,b; Hofmann et al., 2015; Hume et al.,
2015; Reyes et al., 2015; Carbine et al., 2018; Chen et al., 2018; Iceta
et al., 2020; Wang et al., 2022) studies have focused primarily on other
aspects than the timing of neural reward processing. To the best of
our knowledge, this is the first study examining the dynamics of the
reward system reactivity to food stimuli in obesity.

The reward system brain regions identified in the current
study have often been associated with obesity by earlier
neuroimaging studies (Rothemund et al., 2007; Stoeckel et al., 2008;

Bruce et al., 2010; Martin et al., 2010; Dagher, 2012; Dimitropoulos
et al., 2012). However, contrary to the most studies and the prevailing
view in the literature (García-García et al., 2013; Pursey et al., 2014),
we found that in response to food images, especially high-calorie
food images, activity in these regions was reduced rather than
elevated in obese compared with normal-weight individuals. Similar
“unexpected” findings in satiated overweight women have been
reported earlier by Frankort et al. (2012). Further, in line with our
results, few studies have observed negative correlation between
activity in brain regions of reward system and BMI in normal-weight
individuals (Killgore and Yurgelun-Todd, 2005; Toepel et al., 2012).
Evidence suggests that both elevated and reduced responsivity of
reward system to food are associated with obesity, and that the
direction of association may depend on individual’s genotype (Stice
et al., 2008, 2010, 2015).

Since cognitive and motivational factors can modulate neural
activity within the reward system (Berkman, 2018; Giuliani et al.,
2018; Roefs et al., 2018), it is also possible that in our patients, the
subconscious negative attitude toward food, induced by their goal
of losing weight through improved diet, resulted in suppression of
reward system reactivity to food images. In line with this reasoning, in
the post-experimental assessment, patients preferred less high-calorie
and more low-calorie food than normal-weight controls, which is
in accord with earlier studies showing higher dietary restraints in
overweight individuals (Frankort et al., 2012; Ramírez-Contreras
et al., 2021). In the present study, we recruited patients with class
2 or 3 obesity (BMI > 35 kg/m2), while previous studies have
typically used subjects with overweight or class 1 obesity. It is possible
that different neural mechanisms underlie food cue reactivity in
individuals with severe versus moderate obesity or overweight.

Few other alternative, albeit less likely, explanations for these
divergent results exist. Previous studies have used blood oxygenation
level-dependent (BOLD) fMRI to examine food reward processing,
while we have used MEG in the present study. BOLD fMRI and
MEG measure distinct physiological processes, hemodynamics and
electrophysiology, at considerably different time scales, seconds and
milliseconds, respectively. Their signals behave differently, especially
for neuronal activity at lower frequencies (<50 Hz) where a negative
correlation between them is observed (Zumer et al., 2010; Hall
et al., 2014). Moreover, the relationship between BOLD fMRI and
MEG signals can vary across brain regions, activation frequencies
and tasks (Mukamel et al., 2005; Furey et al., 2006; Zumer et al.,
2010; Conner et al., 2011; Kujala et al., 2014). Although fMRI may
provide a more accurate spatial localization of activity in some
brain areas, MEG provides a more direct measure of neural activity
with a millisecond time resolution at which brain operates. Another
explanation, suggested by Frankort et al. (2012), relates to differing
experimental designs. In this and Frankort et al. (2012) studies lower
neural reward reactivity was found in overweight versus normal-
weight participants using event-related design, whereas in the other
studies with the opposite findings, blocked design was employed. In
blocked design, brain activity is measured in response to a group of
stimuli. Event-related design, on the other hand, allows measurement
of responses to individual stimuli, and therefore may provide more
accurate results (Frankort et al., 2012).

4.1.2. Hypoactivity in the cognitive control network
We found reduced reactivity to high-calorie food images in the

cognitive control network (bilateral IFGorb and left MFG) in obese
compared with normal-weight individuals, indicating diminished
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inhibitory control over food cue processing in obesity (Aron et al.,
2004; Aron, 2007; Jahanshahi et al., 2015), in accord with earlier
neuroimaging studies (Batterink et al., 2010; Nummenmaa et al.,
2012; Giuliani et al., 2014; Tuulari et al., 2015; Janssen et al., 2017; Han
et al., 2018). Thus individuals with obesity may fail to suppress the
prepotent responses to food cues, leading them to crave and overeat
(Batterink et al., 2010). The altered response in this network emerged
at 171 ms, in the intermediate stage of processing (150–300 ms), in
the right IFGorb, where it continued until 637 ms post-stimulus.
The most consistent ERP finding in obesity research is that the
amplitude of the fronto-central P300 component (positive-going
waveform ∼300–600 ms post-stimulus) in tasks requiring inhibitory
control is smaller in obese than normal-weight individuals (Babiloni
et al., 2009; Reyes et al., 2015; Chen et al., 2018; Iceta et al., 2020;
Wang et al., 2022). The brain source of this ERP component has been
localized to the inferior frontal cortex (Enriquez-Geppert et al., 2010),
in agreement with our findings.

4.1.3. Hyperactivity in the visual and attentional
control regions

Greater responses in obese than normal-weight individuals
were observed in regions of visual cortex and attentional control.
The altered visual processing began early, in the primary visual
cortex at 91 ms post-stimulus and extended to extrastriate cortex
in the ∼150–300 ms period, indicating an automatic attentional
engagement and enhanced processing of food images in individuals
with obesity. This attentional bias has often been associated with
overeating and weight gain (Berridge et al., 2010; Nijs et al., 2010b;
Werthmann et al., 2011, 2014). In accord with this result, ERP studies
have found that the P200 component (positive-going waveform
∼200–300 ms), which is associated with visual and attentional
processing, in response to food-related stimuli is significantly greater
in overweight (Hume et al., 2015) and obese (Nijs et al., 2010a)
than normal-weight individuals. Further, two behavioral experiments
using eye-tracking and visual probe paradigms have shown that
obese individuals automatically direct their attention to food-related
stimuli (Castellanos et al., 2009; Nijs et al., 2010b), supporting our
findings. However, recent meta-analysis of 19 studies showed that
behavioral measures of attentional bias in visual probe, emotional
Stroop and eye-tracking tasks did not differ between obese and
normal-weight individuals, but ERP P200 response to food images
was enhanced in individuals with obesity (Hagan et al., 2020). Thus,
enhanced early neural processing of food images, supported by
our findings, is currently the most reliable evidence in support of
automatic attentional bias toward food stimuli in obesity.

4.1.4. Hyperactivity in the midcingulate cortex
In this study, the earliest altered response to high-calorie food

images in individuals with obesity was found at 79 ms post-stimulus
in midcingulate cortex (MCC, or dorsal ACC), which is a key brain
region involved in detection and resolution of cognitive conflicts
(Botvinick et al., 2001, 2004; Ridderinkhof et al., 2004). It has been
suggested that cognitive conflicts, indexed by MCC activity, are
negatively reinforcing events (due to their high levels of information
processing demands) that induce avoidance learning by suppressing
reward reactivity to stimuli associated with the conflict (Botvinick,
2007). This account fits well with our findings. High-calorie food
images induce greater cognitive conflict in obese individuals between
the prepotent desire to eat and long-term goal of losing weight, which
is reflected in significantly greater activity in MCC beginning at 79 ms

post-stimulus. This response may then suppress food cue reactivity
in the reward system, as seen in our data (beginning at 139 ms), to
reinforce avoidance learning and behavior, in accord with patients’
motivational goals.

In ERP studies (Nieuwenhuis et al., 2003; Enriquez-Geppert et al.,
2010), conflict detection and MCC activity have been associated
with the fronto-central N200 component (negative-going waveform
∼200–300 ms). In line with our results (enhanced obesity-related
MCC response in the 207–272 ms period), Chen et al. (2018) have
found larger N200 amplitudes in a go/no-go paradigm in obese
compared to normal-weight adolescents, and Watson and Garvey
(2013) have found significant correlation between food-related N200
amplitude and BMI, but only in female participants. However,
other studies did not find significant differences in N200 amplitudes
between obese and normal-weight individuals (Reyes et al., 2015;
Carbine et al., 2018; Wang et al., 2022).

4.1.5. Comparison with previous ERP studies
A key contribution of the current study is the provision of

temporal dynamics of altered regional brain activations in obesity,
and their relation to processing stages. Hereof our results are
largely consistent with a number of ERP studies that have found
obesity-related alterations in the N200 (Watson and Garvey, 2013;
Chen et al., 2018), P200 (Nijs et al., 2010a; Hume et al., 2015),
and fronto-central P300 (Chen et al., 2018; Wang et al., 2022)
components. While a clear correspondence between these ERP
components and brain sources identified in our study may not
be established, we speculatively suggest that they correspond to
altered responses in MCC (207–272 ms), extrastriate visual areas
(∼150–300 ms) and IFGorb (171–637 ms), respectively. Our results
provide additional spatiotemporal details, which have not been
obtained in earlier studies. We have identified larger network of
dysfunctional brain regions than could be suggested from the
previous ERP studies. Importantly, the earliest functional alterations
identified here occur ∼100 ms earlier that the effects reported in
previous studies. ERP signal analysis is substantially less sensitive
than our MEG source analysis, and therefore such investigations
have likely missed substantial spatiotemporal details, including the
earliest obesity-related functional alterations. To our knowledge, this
is the first report providing temporal dynamics of altered neural
activity in an extended number of brain regions in obesity, and
showing altered brain responses in obesity before 150 ms post-
stimulus.

4.1.6. Differences between responses to high- and
low-calorie food images

More widespread and larger differences between obese and
normal-weight individuals were found for high- than low-calorie
food images. In contrast to high-calorie food images, statistically
significant differences elicited by low-calorie food images did not
involve cognitive control regions, or reward system activity in the
early, automatic stage of processing. Based on these results and
previous evidence showing that high- and low-calorie food stimuli
may be processed by different networks in the brain (Killgore et al.,
2003; Toepel et al., 2009), it is tempting to suggest that different brain
networks and neural mechanisms are involved in altered processing
of high- versus low-calorie food cues in obesity. Most notably
differentiating between altered reward responses that emerged early
in the automatic stage of processing for high-calorie food stimuli
versus such responses that occurred only later, in the controlled
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stage of processing for low-calorie food images. Furthermore, neural
processing of low-calorie food images in individuals with obesity may
be properly regulated by cognitive control regions.

However, our exploratory analysis revealed that most brain
regions and latencies that were affected in obesity in response to high-
calorie food stimuli, including the early reward system activations,
were qualitatively similarly affected also in response to low-calorie
food images, even though the differences in many cases did not
reach statistical significance. Thus it is also possible that the same
network of brain regions mediates the altered processing of food cues
in obesity, independent of food’s caloric content. In the case of low-
calorie food images, the obesity-related effects may be small, possibly
due to their less rewarding nature, such that we do not have the
statistical power to distinguish them.

4.2. Pretreatment neural reactivity
predicting outcome of weight loss
intervention

Pretreatment neural responses to food cues significantly
predicted the outcome of the lifestyle weight loss intervention.
As expected from earlier empirical studies, future weight change
was positively correlated with neural reactivity to food images
in the reward system (Yokum et al., 2011, 2014; Demos et al.,
2012; Murdaugh et al., 2012; Stice et al., 2015; Hermann et al.,
2019) and attentional control region (Calitri et al., 2010; Nijs
et al., 2010b; Murdaugh et al., 2012; Werthmann et al., 2014), and
negatively correlated with reactivity in the cognitive control network
(Kishinevsky et al., 2012; Weygandt et al., 2013; Neseliler et al.,
2019). Thus lower reward and attention responsivity, and higher
neural cognitive control during food cue processing at the start of
the lifestyle weight loss intervention were predictive of successful
weight loss after 6 months in treatment, in general agreement with
the current neurocognitive models (Nederkoorn et al., 2010; Stice
and Yokum, 2016).

Many neuroimaging studies have examined association between
food cue reactivity and future weight gain (Stice et al., 2010, 2015;
Yokum et al., 2011, 2014; Demos et al., 2012; Kishinevsky et al., 2012);
however, relatively few studies have focused on neurofunctional
predictors of treatment-related weight loss (Murdaugh et al., 2012;
Weygandt et al., 2013; Hermann et al., 2019), reporting some
consistent, but also conflicting results. In accord with our results,
Murdaugh et al. (2012) have found that pretreatment neural reactivity
to high-calorie food images in brain regions of the reward system
(e.g., ACC, insula) and attentional control (e.g., IPL) is positively
correlated with weight change after 12 weeks in a lifestyle weight
loss program. However, they did not find association between activity
in cognitive control regions (e.g., IFG) and the treatment outcome,
which is in contrast to our findings and those of Weygandt et al.
(2013). Weygandt et al. (2013) have found that weight change after
12 weeks of dieting was positively correlated with pretreatment
neural reactivity in insula (part of the reward system) and negatively
correlated with reactivity in DLPFC (part of cognitive control
network), which are concordant with our findings. However, in
contrast to our results and those of Murdaugh et al. (2012), they
have found also a negative correlation between the weight change
and activity in VMPFC, which is part of the reward system.

Hermann et al. (2019) found no relationship between pretreatment
neural responses and weight change after 6-month intervention.
However, they found that changes in striatum reactivity between the
pretreatment and 1 month in treatment could significantly predict
treatment outcome. Diet-induced early changes in activity of the
cognitive control network have also been shown to predict weight loss
(Neseliler et al., 2019).

Our result regarding the predictive role of reward system
reactivity in weight loss is generally consistent with and complements
the results of recent neuroimaging studies showing that increased
reward reactivity to food cues predicts future weight gain (Yokum
et al., 2011, 2014; Demos et al., 2012; Stice et al., 2015). In line
with these findings, increased activity in brain reward regions
has been associated with hunger and craving (Del Parigi et al.,
2002; Siep et al., 2012; Frankort et al., 2014; Miedl et al., 2018),
which are counterproductive for weight loss and promote weight
gain. It is possible that our patients with higher reward reactivity
experienced greater food craving when encountered such cues, which
could have contributed to their relative lack of success in losing
weight. Although responses in brain reward regions were altered in
obesity in all investigated time periods beginning from the early,
automatic stage of processing, only the activity in the 300–1000 ms
period showed significant association with weight change, which
may suggest that conscious downregulation of food reward reactivity
plays an important role in successful weight loss through lifestyle
intervention.

IPL response in the 50–150 ms time period was the earliest neural
activity significantly associated with the degree of weight change. This
area is a key node in the frontoparietal attentional network that is
involved in directing attention toward motivationally salient stimuli
(Behrmann et al., 2004; Ptak, 2012; Igelström and Graziano, 2017).
Responses in IPL related to selective attention have been identified in
various tasks as early as 40 ms after stimulus onset (Poghosyan and
Ioannides, 2008; Burra et al., 2016), suggesting that this region can
affect visual stimulus processing already at the very early, automatic
stage of neural processing. Regarding visual food stimuli, directing
attention to their hedonic value versus visual features has been shown
to enhance reactivity in bilateral IPL (Franssen et al., 2020).

Behavioral studies have shown that food cues automatically
capture attention, with hungry individuals exhibiting greater
attentional bias (Mogg et al., 1998; Piech et al., 2010). Furthermore,
significant correlation has been found between selective attention
to food cues and subsequent food intake (Overduin et al., 1995;
Kakoschke et al., 2014; Kemps et al., 2014; Werthmann et al., 2014).
An association between attentional bias toward food cues and reward
system reactivity has also been suggested (Siep et al., 2009; Pohl et al.,
2017; Franssen et al., 2020). Accordingly, patients with elevated IPL
response to food cues may have a greater automatic attentional bias,
which could contribute directly, or indirectly through modulation
of reward regions, to their difficulty in losing weight. This suggests
that early differences in attentional processing can have significant
behavioral and health effects.

Consistent with our finding on the predictive role of cognitive
control regions, such as inferior and middle frontal gyri, several
studies have found that activity in these regions during a delay
discounting task is positively correlated with weight loss maintenance
(Weygandt et al., 2015) and negatively correlated with weight gain
(Kishinevsky et al., 2012). Furthermore, reduced activity in DLPFC
and IFG in response to high-calorie food images has been associated
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with increased food intake (Cornier et al., 2010; Tryon et al., 2013;
Lopez et al., 2014, 2016). It is evident from these and our findings
that greater recruitment of cognitive control regions during food
cue processing promotes anti-obesogenic behavior, likely through
inhibitory influence or balanced interaction with the reward system
(Jahanshahi et al., 2015; Lopez et al., 2017; Lowe et al., 2019). Similar
to the reward system, only activity in the 300–1000 ms time period
was significantly associated with future weight change, which may
suggest that conscious cognitive regulation is necessary for successful
weight loss through lifestyle changes.

In summary, our results suggest neural markers that may
predict outcome of lifestyle weight loss intervention, which are well
consistent with the known neural vulnerability factors for obesity
and weight gain (Stice and Yokum, 2016; Stice and Burger, 2019),
as well as with the reward-centered (Stice and Yokum, 2016; Stice
and Burger, 2019), cognitive control-centered (Lowe et al., 2019) and
balance-based models (Lopez et al., 2017) of obesity. They provide
additional support to some of the predictive markers suggested by
earlier fMRI studies (Murdaugh et al., 2012; Weygandt et al., 2013)
and add crucial information on processing stages of predictive neural
responses. The pattern of brain activations presented here suggests
that lowered sensitivity to food cues as well as heightened self-control
may be necessary for successful weight loss through lifestyle changes.

4.3. Limitations

The present study has several limitations. First, in our
experimental design, we did not consider or control for the exact
mental processes in which the participants were engaged in during
the passive viewing of stimuli. This limits our ability to definitely
associate altered neural activity with specific cognitive processes or
interpret the results in such terms. Second, the food preferences
obtained in post-experimental inquiry could be misleading. Evidence
suggests that social norms influence food choice (Nook and Zaki,
2015). Hence, after the experiments, our participants could have
chosen the foods in line with the social norms rather than subjective
preference. This alternative explanation nevertheless does not affect
our main findings. Third, majority of our participants (18 of 24)
were women. While having a large proportion of women participants
is a common practice in most such studies, e.g., (Murdaugh et al.,
2012; Weygandt et al., 2013; Hermann et al., 2019), there are known
gender differences in brain activations associated with food cue
processing and obesity (Cornier et al., 2010; Killgore and Yurgelun-
Todd, 2010; Geliebter et al., 2013; Sala et al., 2019). Women typically
exhibit greater reactivity to high-calorie food images in many of
the brain regions identified in the current study, including reward
and cognitive control regions. Fourth, we examined participants
in a fasted state only. The neurofunctional differences between
obese and normal-weight individuals could be different in fasted
versus satiated state. Previous studies have reported that food cue
reactivity in several regions of the reward system is typically greater
in obese than normal-weight individuals in fasted than satiated
state (Page et al., 2011; Martens et al., 2013). Since we observed
reduced reward system reactivity in obese than normal-weight
individuals, our findings should be valid also for the satiated state.
Nevertheless, it would be informative to study the same groups
of participants in both states to better understand the effect of
satiety on neural processing of food cues in obese and normal-
weight individuals. Finally, we have identified a distributed set of

brain regions and their temporal dynamics, but did not assess
the functional connectivity between these regions or their network
structure and dynamics.

5. Conclusion

The current study provides several novel findings. First is
the detailed characterization of the temporal dynamics of altered
regional brain activations during food cue processing in obesity.
Second is the uncovering of altered automatic neural processes
in obesity, including altered automatic responses to high-calorie
food images in the reward system. This is the first report
showing altered brain activations in obesity before 150 ms, and
as early as 79 ms after food stimulus onset. Third is the
identification of the pretreatment brain activation profiles in the
reward system, attentional control region and cognitive control
network, which are predictive of the outcome of lifestyle weight
loss intervention. We corroborate and add to the findings of
previous neuroimaging studies of obesity and weight change,
showing that conflict monitoring, selective attention, reward
valuation and inhibitory control are impaired in obesity, and that
decreased attention and reward valuation, and increased cognitive
control during food cue exposure promote anti-obesogenic behavior
and weight loss.

These findings significantly advance our understanding of neural
mechanisms affected in obesity and supporting anti-obesogenic
behavior, and can have important implications for the development
of targeted therapies. We suggest that integrated strategies targeting
multiple brain systems governing reward processing, attentional and
cognitive control could improve the treatment outcomes. In addition
to tailoring established pharmacological and cognitive-behavioral
therapies, promising new approaches, such as noninvasive brain
stimulation and neurofeedback (Ioannides, 2018), may be used to
directly target these brain systems (Dalton et al., 2017).
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