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Brain signal patterns generated in the central nervous system of brain-computer

interface (BCI) users are closely related to BCI paradigms and neural coding.

In BCI systems, BCI paradigms and neural coding are critical elements for BCI

research. However, so far there have been few references that clearly and

systematically elaborated on the definition and design principles of the BCI

paradigm as well as the definition and modeling principles of BCI neural coding.

Therefore, these contents are expounded and the existing main BCI paradigms

and neural coding are introduced in the review. Finally, the challenges and

future research directions of BCI paradigm and neural coding were discussed,

including user-centered design and evaluation for BCI paradigms and neural

coding, revolutionizing the traditional BCI paradigms, breaking through the

existing techniques for collecting brain signals and combining BCI technology

with advanced AI technology to improve brain signal decoding performance. It

is expected that the review will inspire innovative research and development of

the BCI paradigm and neural coding.

KEYWORDS

brain-computer interface (BCI) paradigm, neural coding, brain imaging technology,
neural decoding, BCI

1 Introduction

Brain-computer interface (BCI) is a revolutionizing human-computer interaction
(Graimann et al., 2013), which directly bypasses peripheral nerves and muscles to establish
a new communication and control channel between the brain and external devices
(Wolpaw and Wolpaw, 2012). It has the potential to monitor, replace, improve/recover,
enhance, and supplement damaged or impaired inputs or outputs of the central nervous
system (CNS) (Ramsey and Millán José del, 2020).

In the BCI system, brain signal patterns generated in the CNS of the BCI user are
closely related to BCI paradigms and neural coding (Allison et al., 2012), which are the
foundation for decoding correctly the user’s intent. Therefore, BCI paradigms and neural
coding are critical in BCI research. To date, there have been many references on brain
signal processing and classification algorithms in BCI systems. For instance, Lotte et al.
(2007, 2018) provided a comprehensive overview of the modern classification algorithms
used in electroencephalogram (EEG) -based BCIs, and Bashashati et al. (2007) provided
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a comprehensive review of the signal processing techniques in
BCI systems. However, there have been few references focusing
on the definition and design principles of the BCI paradigm as
well as the definition and modeling principles of BCI neural
coding. For example, Abiri et al. (2019) reviewed EEG-based BCI
paradigms, and Xu et al. (2021) reviewed the EEG-based BCI
brain coding and decoding mechanisms. In addition to EEG-
based BCI paradigms and neural coding, there are also other BCI
paradigms and neural coding based on brain imaging techniques,
such as intracortical local field potentials (LFP) (Hochberg et al.,
2012; Willett et al., 2021, 2023), electroencephalogram (ECoG)
(Luo et al., 2022; Branco et al., 2023; Metzger et al., 2023),
functional near-infrared spectroscopy (fNIRS) (Abdalmalak et al.,
2021; Paulmurugan et al., 2021; Eastmond et al., 2022), functional
magnetic resonance imaging (fMRI) (Naselaris et al., 2011; Du
et al., 2019), magnetoencephalography (MEG) (Xu et al., 2022;
Bu et al., 2023), and hybrid brain-computer interface (hBCI)
(Choi et al., 2017; Mussi and Adams, 2022). Therefore, we
systematically elaborated on the definition and design principles
of the BCI paradigm as well as the definition and modeling
principles of BCI neural coding and introduced the existing
main BCI paradigms and neural coding. Finally, the challenges
and future research directions of the BCI paradigm and neural
coding were discussed. It is expected that the review will inspire
innovative research and development of the BCI paradigm and
neural coding.

2 Definition and design principles of
the BCI paradigm

2.1 Definition of BCI paradigm

Brain-computer interface paradigm is a set of specific mental
tasks or external stimuli carefully selected/designed by the BCI
developer to represent the user’s intentions under specific brain
imaging techniques. The purpose of the BCI paradigm is to "write"
the user’s intentions into brain signals, which represent or code the
user’s intentions. It is expected that the brain imaging technology
used can detect the neural coding of the user’s intentions, laying
the foundation for subsequent "reading" or decoding of the user’s
intentions (Chavarriaga et al., 2017; Wolpaw et al., 2020). It is
worth noting that it is difficult for BCI to decode the arbitrary
or random mental activity of the user, as well as the arbitrary or
random external stimulus received by the user.

Specific mental tasks are implicit mental activities, such as
motor imagery (MI), visual imagery, speech imagery, mental
arithmetic, and reasoning; specific external stimuli are explicit
attentional tasks, such as visual, auditory, and tactile stimuli.
Specific features of brain signals are induced by mental tasks or
external stimuli, and identify specific mental tasks and specific
stimuli, which provide the basis for subsequent BCI decoding.
Mental tasks or external stimuli correspond to specific brain
functions and brain activities, which are closely related to
specific brain regions and brain networks/brain circuits. Figure 1
illustrates the relationship between the BCI paradigm, specific
brain functions, and structures. Special attention should be paid
to the fact that BCI paradigms are usually discussed in the

context of specific brain imaging techniques, which means that
BCI paradigms are closely related to specific brain imaging
techniques.

2.2 Principles for designing BCI paradigm

There have been several BCI paradigms so far, such as MI,
steady-state visual evoked potential (SSVEP), and P300 paradigms.
These paradigms have their advantages and disadvantages, and
many researchers are still improving these paradigms. The
innovative design of BCI paradigms is one of the critical contents
of BCI research. To translate the designed BCI paradigms
into practical applications, the principles for designing the BCI
paradigm are based on user-centered design (Kübler et al., 2014;
Chavarriaga et al., 2017; Lyu et al., 2023) and human factors
engineering of BCI (Allison et al., 2012; Kübler et al., 2013, 2020;
Liberati et al., 2015; Martin et al., 2018; Kübler, 2020; Ramsey and
Millán José del, 2020; Wolpaw et al., 2020; Branco et al., 2021)
to evaluate it. The principles for designing the BCI paradigm are
proposed in Table 1.

2.2.1 CNS signals evoked by BCI paradigm
specific tasks should have good separability

Brain-computer interface paradigms require users to perform
specific mental tasks or receive specific external stimuli. Brain
signal features evoked by the user performing the designed BCI
paradigm task are significantly differentiable for different mental
tasks or external stimuli under specific brain imaging techniques, or
the relevant CNS activity better coded the mental tasks or external
stimuli designed by the BCI paradigm. Better separability is the
basis for subsequently achieving higher BCI decoding accuracy. It
is worth noting that specific brain imaging techniques need to be
considered in the innovative design of BCI paradigms.

When screening various mental tasks and external stimuli
for combination, the classification performance of various mental
tasks combinations or external stimuli combinations (Jang et al.,
2022) needs to be evaluated to determine the most suitable
mental tasks combinations or external stimuli combinations for
customized BCI.

2.2.2 BCI paradigm tasks are easy for users to
perform

Some mental tasks are easy to perform, while others are not,
usually choosing tasks that users are proficient in and natural
in their daily life and work. Mental tasks are designed to be as
simple as possible, suitable for users, approved, and even enjoyed
by users. Easy to perform BCI paradigm tasks can increase user
acceptance of BCI technology and promote its translation into
practical applications.

2.2.3 BCI paradigm tasks are safe for the user
The brain imaging technology involved in the BCI paradigm is

required to be safe for users and not harmful to their physical and
mental health (Liberati et al., 2015). In addition, external stimuli
have a lower risk of causing brain diseases in users, and mental tasks
and external stimuli are less likely to cause excessive fatigue in users,
to reduce mental load.
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FIGURE 1

Schematic diagram for the relationship between the BCI paradigm, specific brain functions, and structures.

TABLE 1 The principles for designing the BCI paradigm.

No. Design principles

1 CNS signals evoked by BCI paradigm specific tasks should have good
separability

2 BCI paradigm tasks are easy for users to perform

3 BCI paradigm tasks are safe for the user

4 BCI paradigm tasks bring the user a good experience and comfort level

5 Tasks specified by BCI paradigm are consistent with tasks controlled by BCI

6 BCI paradigm tasks are designed to the needs of specific user

7 The overall user satisfaction of BCI paradigm tasks is high level

BCI paradigm tasks include specific mental tasks and/or external stimuli.

2.2.4 BCI paradigm tasks bring the user a good
experience and comfort level

The user experience and comfort of the BCI paradigm are
related to the comfort of the sensors used to collect brain
signals, as well as the experience and comfort of mental tasks or
external stimuli. They are also related to the decoding performance
(stability, accuracy, and speed of decoding) under the BCI
paradigm, which affects the user’s acceptance of BCI. The BCI
paradigm is required to have a high user rating for experience and
comfort, which can be evaluated by an experience and comfort
questionnaire. At present, the user experience and comfort of the
existing BCI paradigm are not high, and the acceptance of BCI by
users is not high.

2.2.5 Tasks specified by the BCI paradigm are
consistent with tasks controlled by BCI

Brain-computer interface paradigm tasks are designed to avoid
non-transparent mappings, which are inconsistencies between
mental tasks and control commands, such as the use of left-handed
MI to imagine the corresponding commands to control the robot’s
movement to the right. Non-transparent mappings may lead to
changes in autonomous intentions, which may affect the user’s
performance during brain-computer interaction. For this reason,
when designing a BCI paradigm task, it is important to consistent
the mental task with the task controlled by the BCI.

2.2.6 BCI paradigm tasks are designed to the
needs of specific user

During the screening of BCI paradigm tasks, the combination
of mental tasks or external stimuli should be designed according

to the specific needs of the application, the more mental tasks or
external stimuli are not the better. It is necessary to just simply
fulfill its requirements. In the case of rehabilitation training for
movement disorders, it is appropriate to choose the MI of the
corresponding limbs as the paradigm, but if it is to realize the simple
communication of “YES” or “NO,” it is not appropriate to use the
left or right limb MI as the mental task.

2.2.7 The overall user satisfaction of BCI
paradigm tasks is high level

User satisfaction with BCI paradigm tasks is related to
several factors that include the above-mentioned BCI paradigms
should have good separability, be easy for the user to perform,
be safe for the user, bring the user a good experience and
comfort level, consistent with tasks controlled by BCI, and fit
in the application needs of a specific user, which need to be
considered and evaluated comprehensively to design a user-friendly
BCI paradigm task.

The BCI paradigm task has a significant impact on whether
potential BCI users accept and enjoy using the BCI system, and for
this reason, the mental tasks that drive BCI need to be designed and
optimized according to the user’s ability characteristics.

3 Definition and mechanisms
models of BCI neural coding

Based on the definition and design principles of the BCI
paradigm elaborated above, the following sections elaborate on
the definition and design principles of BCI neural coding, the
relationship between BCI paradigm, BCI neural coding, and BCI
neural decoding, and the relationship between BCI neural coding,
brain neural coding, and computer information coding.

3.1 Definition of BCI neural coding

Brain-computer interface neural coding refers to the coding
of different user intentions into central neural signals under a
specific BCI paradigm, which is characterized by distinguishable
brain signal features. Brain signals with encoded intentions can
be detected by specific brain imaging techniques, at last, user
intentions can be recognized by BCI neural decoding algorithms.
The process of BCI neural coding is shown in Figure 2.
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FIGURE 2

Schematic diagram for the process of BCI neural coding.

FIGURE 3

The schematic diagram for the relationship between BCI paradigm,
BCI neural coding, and BCI neural decoding.

It is worth noting that BCI neural coding is closely related
to the chosen level and parameter settings of brain imaging
technology, such that the level of technology used to record the
ECoG signals and the hardware settings (including the sampling
frequency and hardware filters) affect the types of features that can
be extracted and analyses that can be performed (Hill et al., 2012;
Shirhatti et al., 2016).

3.2 Principles for modeling BCI neural
coding

Modeling BCI neural coding requires consideration of specific
BCI paradigms, mechanisms of brain neural coding, neural signal
features collected by different brain imaging techniques, and
efficient decoding of the user’s intentions.

(1) Modeling neural coding under a specific BCI paradigm.
Different BCI paradigms, such as SSVEP-BCI, P300-BCI, MI-
BCI, and other paradigms have different neural coding models.

(2) Modeling BCI neural coding based on the mechanisms of
brain neural coding. The mechanisms of brain neural coding
characterize the hypothesized relationships between external
stimuli or mental tasks and the response of specific neuronal

populations, as well as the relationships between the electrical
activity of neurons within neuronal populations (Johnson,
2000; Brown et al., 2004). An implantable BCI neural coding
model can be modeled based on these relationships within the
mechanisms of brain neural coding.

(3) Considering the features from the time domain, frequency
domain, and spatial domain of neural signals collected using
different brain imaging techniques when modeling BCI neural
coding. Given the different temporal and spatial resolutions
of brain imaging techniques, such as EEG, fNIRS, fMRI,
MEG, ECoG, intracortical LFP, or Spikes, the measured brain
activities (electrical activities of central neurons or metabolic
activities of brain tissue) are different.

(4) BCI neural coding model being beneficial for subsequent
neural decoding. The purpose of modeling BCI neural coding
is to efficiently decode the user’s intentions.

3.3 Relationship between BCI paradigm,
BCI neural coding, and BCI neural
decoding

Brain-computer interface paradigm tasks are usually designed
first, then the neural coding under the BCI paradigm is
revealed, followed by the extraction of brain signal features from
neural coding laws, and finally the neural decoding. The BCI
paradigm with BCI neural coding is the basis or premise of BCI
decoding. It should be emphasized that in BCI systems, there
is no corresponding neural coding without the BCI paradigm,
no neural decoding without BCI neural coding, or no high-
performance neural decoding performance without good BCI
paradigms and neural coding. Figure 3 illustrates the relationship
between BCI paradigm, BCI neural coding, and BCI neural
decoding.

3.4 Relationship between BCI neural
coding, brain neural coding, and
computer information coding

Brain neural coding is the basis of BCI neural coding, which
characterizes the hypothesized relationships between external
stimuli / mental tasks and the responses of specific neurons
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or populations of neurons (Johnson, 2000; Brown et al., 2004).
According to the theory that sensory and other information
is represented in the brain by a network of neurons, it is
believed that neurons can encode both digital and analog
information (Thorpe, 1990). Computer information coding is
the process of converting information from one form or format
to another and can be used to represent the relationship
of things, which can be represented by numbers, letters,
special symbols, or combinations of them, to convert data
into codes or coded characters that can be translated into
the original data form. Figure 4 illustrates the relationship
between BCI neural coding, brain neural coding, and computer
information coding.

Inspired by the brain neural coding model in Figure 4, BCI
neural coding models can be proposed, as shown in Table 2, and
will be reviewed in sections 3.5–3.11. These BCI neural codes will
eventually be transformed into computer information coding to be
processed by computers.

3.5 Frequency/rate coding for BCI

Frequency/rate coding for intracortical BCI can be inspired
by traditional models of neuronal firing rate coding. In most
sensory systems, the firing rate increases, generally non-
linearly, with increasing stimulus intensity (Kandel et al.,
2000). Since the sequence of action potentials generated by a
given stimulus varies from trial to trial, neuronal responses
are typically treated statistically or probabilistically. The spike
count rate for a single trial can be calculated from Equation (1)
(Gerstner and Kistler, 2002).

SCR =
Nspikes

Dtrial
(1)

FIGURE 4

The schematic diagram for the relationship between BCI neural
coding, brain neural coding, and computer information coding.

TABLE 2 The BCI neural coding model.

No. Coding model

1 Frequency/rate coding for BCI

2 Time coding for BCI

3 Phase-of-firing coding for BCI

4 Intracortical neuronal population coding for BCI

5 Correlation coding for BCI

6 Sparse coding for BCI

7 Hybrid coding for BCI

The Dtrial is the duration of a trial, with typical values of 100 ms or
500 ms (Gerstner and Kistler, 2002), and Nspikes is the number of
spikes occurring within the Dtrial.

The time-dependent rate of issuance in a time-
dependent stimulus can be calculated from Equation (2)
(Gerstner and Kistler, 2002).

FRtd =
NK/K
4t

(2)

where NK is the number spike appearing on all repeated trials
from time t and t+1t, K is the number of retrials, t is the start
time relative to the stimulus sequence, and 1t is the time interval,
usually in the range of a millisecond or a few milliseconds. The
FRtd applies to both resting and time-dependent stimuli, but it is
unlikely to be the coding scheme used by neurons in the brain
(Gerstner and Kistler, 2002).

3.6 Time coding for BCI

Intracortical BCI time coding can be inspired by time coding
models in neural coding (Butts et al., 2007; Gollisch and Meister,
2008). The time resolution of neural coding is on the millisecond
time scale, suggesting that precise spike timing is an important
element in neural coding (Theunissen and Miller, 1995). For
example, the ability of many organisms to discriminate between
stimuli (such as visual stimuli, auditory stimuli, tactile stimuli,
gustatory stimuli, and olfactory stimuli) on a millisecond time scale
suggests that time coding is also a model that functions in sensory
systems (Gollisch and Meister, 2008).

The spiking activity features that can be extracted by time
coding are time-to-first-spike after the stimulus onset (Victor, 2005;
Carleton et al., 2010), phase-of-firing for background oscillations,
features based on the second and higher statistical moments of the
ISI probability distribution (Kostal et al., 2007), spike randomness,
or precisely timed groups of spikes (Thorpe, 1990; Jolivet et al.,
2006; Chen et al., 2009).

Information on the time structure of stimulus-evoked spike
trains or dispensing rates is determined by the dynamics of the
stimulus, the properties of the stimulus, and the nature of the neural
coding process (Montemurro et al., 2008). In Equation (2) the code
is rate coding if FRtd changes slowly with time and time coding if it
changes rapidly.

3.7 Phase-of-firing coding for BCI

Intracortical BCI phase coding can be inspired by phase-of-
firing coding models in neural coding (Havenith et al., 2011).
Phase-of-firing coding is a neural coding scheme that this type of
code takes into account the spike count coding and a time label
for each spike according to a time reference based on the phase of
local ongoing oscillations at low (Montemurro et al., 2008) or high
frequencies (Fries et al., 2007; Havenith et al., 2011). The feature
of this code is that neurons adhere to a preferred order of spiking
between a group of sensory neurons, resulting in a firing sequence
(Havenith et al., 2011). For example, each neuron in the visual
cortex has its own preferred/preferred relative firing time during
the gamma oscillation cycle.
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3.8 Intracortical neuronal population
coding for BCI

Intracortical BCI neuron population coding can be inspired
by the joint activity of multiple neurons to characterize stimuli or
mental activity. In BCI intracortical neuronal population coding,
each neuron has a distribution of responses over some set of
inputs, and the responses of many neurons may be combined to
determine corresponding stimulus or mental activity about the
inputs. Neuronal population coding captures the essential features
of neural coding (Wu et al., 2002).

Experimental studies have revealed that this coding paradigm
is widely used in the sensor and motor areas of the brain. for
example, Neurons are modulated to the moving/motor direction
in the visual area medial time (Maunsell and Van Essen, 1983).
However, Individual neurons fire fastest or slower in one direction
depending on the distance of the target from the neuron’s
"preferred" direction, the vectors of all neurons, and the coding of
motion signals.

Typical neuronal population coding involves neurons with
Gaussian modulation curves whose mean value varies linearly with
stimulus intensity. Positional coding in a population of neurons
can be used to encode continuous variables such as joint position,
eye position, color, or sound frequency. Rate coding of the entire
population ensures higher fidelity and accuracy than rate coding of
individual neurons (Mathis et al., 2012).

3.9 Correlation coding for BCI

Intracortical BCI correlation coding can be inspired by the
correlation coding model of neuronal firing (Panzeri et al., 1999).
This model suggests that correlations between action potentials or
"spikes" within a spike sequence may carry additional information
beyond the simple timing of the spikes (Ahmadi et al., 2021; Zhang
and Constandinou, 2023). Correlations may also carry information
that is not present in the average firing rate of the two pairs of
neurons (Decharms and Merzenich, 1996).

3.10 Sparse coding for BCI

Intracortical biometric sparse coding can be inspired by the
sparse coding model of neural coding, in which each activity of
a stimulus or mental activity is encoded by the strong activation
of a relatively small set of neurons, which do not use the full
set of available neurons, but rather a subset of them. In the BCI
decoding stage, algorithms for sparse signal representation and
processing can be used.

The fact that only a few neurons in a population of neurons
respond to a given stimulus and that each neuron responds
to only a few stimuli out of all possible stimuli, may be
a biological selective response. Theoretical studies of sparse
distributed memory have shown that sparse coding increases
the capacity of associative memory by reducing the overlap
between representations (Kanerva, 1988). Experimentally, sparse
representations of sensory information have been observed
in several systems, including visual (Vision, 2000), auditory

(Hromádka et al., 2008), tactile (Crochet et al., 2011), and olfactory
(Ito et al., 2008).

Sparsity may be focused on time sparsity, for example, the
features extracted from all frequency bands during motion imagery
are not all well separable (Olshausen and Field, 1996); It may also
focus on spatial sparsity, as in the sparsity of neuronal populations
activated, or the sparsity of brain regions/brain networks activated,
such that it is the sensory-motor-related brain regions or brain
networks that are predominantly activated during MI.

Most sparse coding models are based on linear generative
models (Rehn and Sommer, 2007), as shown in Equation (3)
(Lee et al., 2006).

−→
ξ ≈

∑n

j = 1
sj
−→
bj (3)

where
−→
ξ εRk is the set of k-dimensional real input vectors,

−→
bj εRk is the set of n k-dimensional basis vectors, and
−→s = (s1, s2, . . . , sj, . . . , sn)εRn is the sparse n-dimensional
vectors and sj is the weight of each input vector bj are combined
linearly by Eq. (3) to approximate the inputs. Other models are
based on match tracking and dictionary learning (Pati et al., 1993;
Davis et al., 1994; Needell and Tropp, 2009).

3.11 Hybrid coding for BCI

To better or more fully characterize the relationship between
the stimulus / mental activity and the neural response, a
combination of several neural coding methods can be considered,
which is a hybrid neural coding approach. To more accurately
decode the stimulus or mental activity from the neural response,
intracortical BCI hybrid coding schemes can combine two or more
of the above models (Choi et al., 2017; Mussi and Adams, 2022).
For example, global features such as pitch or formant transition
profiles can be represented by both rate coding and place coding
(Miller and Sachs, 1983).

4 Existing main BCI paradigms and
neural coding

Brain-computer interface paradigms and neural coding are
directly related to specific brain imaging techniques. The existing
main BCI paradigms and neural coding models involve brain
imaging techniques including the acquisition of intracortical LFP,
ECoG, fNIRS, fMRI, MEG, EEG, and hybrid brain imaging
techniques, as shown in Table 3.

4.1 Intracortical LFP-BCI paradigms and
neural coding

The wrapping of intracortical electrodes has a significant effect
on the collection of individual neuronal Spikes but not on LFP
(Milekovic et al., 2018, 2019). LFP is expected to be used for long-
term cortical control of an artificial device and is a low-frequency
signal (<250 Hz) consisting of the sum of all the electrical activity
in the region adjacent to the tip of the electrodes implanted in
the cortex.
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TABLE 3 Existing main BCI paradigms and neural coding.

No. Existing main BCI paradigms and neural coding

1 Intracortical LFP-BCI paradigms and neural coding

2 ECoG-BCI paradigms and neural coding

3 fMRI-BCI paradigms and neural coding

4 fNIRS-BCI paradigms and neural coding

5 MEG-BCI paradigms and neural coding

6 EEG-BCI paradigms and neural coding

7 Hybrid BCI (hBCI) Paradigms and Coding

To date, most LFP-based BCI research has been carried
out based on typical center-out arm movements (Rickert et al.,
2005; Heldman et al., 2006; Wang, 2006), and some studies have
employed point-to-point motor tasks (Ahmadi et al., 2021; Zhang
and Constandinou, 2023). It has been shown that the M1 tune
encodes movement direction (Georgopoulos et al., 1986) and
velocity. There is a modest decrease in β-LFP amplitude beforehand
movement and a large increase in HF-LFP spectral amplitude
during hand movement. The time-domain characterization of LFP
can be used to control computer cursors (Kennedy et al., 2004)
and to encode motion parameters (Rickert et al., 2005; Ahmadi
et al., 2021). Examples of the main existing LFP-BCI paradigms
with neural coding studies are shown in Supplementary Table 1.

4.2 ECoG-BCI paradigms and neural
coding

Electroencephalogram is the recording of the overall activity
of a large population of neurons in a localized area by electrodes
placed on the supernatural or subdural cortex, with time and
spatial resolution of a few milliseconds and millimeters (ECoG is
superior to MEG and EEG) (Katzner et al., 2009; Dubey and Ray,
2019), which is less affected by muscle activity and ocular artifacts
(Ball et al., 2009), The ECoG has an excellent noise ratio. These
advantages favor the coding of stimuli or mental tasks so that
potential brain signal features are found to be well discriminated,
Therefore, the brain imaging technique of ECoG is better suited
for BCI.

The ECoG-BCI frequency coding model is the ECoG power
spectrum associated with a specific event (stimulus or mental
task), and studies have shown that the selection of appropriate
electrodes and power can encode movement trajectories (Jang
et al., 2022), and its temporal coding model is the peaks of
the raw ECoG signals when time-locked to a specific event
(a specific amount of time after stimulus presentation). It has
been shown that ECoG high-frequency broadband (200–300 Hz)
power variations carry a great deal of information about brain
function and are coding information of robustness (Hermes et al.,
2011, 2012; Siero et al., 2013, 2014; Vansteensel et al., 2016).
In addition, visual, auditory, and tactile evoked ECoG potentials
(Brunner et al., 2011; Hermes et al., 2015, 2017; Wittevrongel
et al., 2018) and ECoG narrow-band (α, β, and γ) power variations
(Crone et al., 1998; Pfurtscheller et al., 2003a; Miller et al., 2007;
Kubánek et al., 2009; Brunner et al., 2011; Gunduz et al., 2012;

Hermes et al., 2012, 2014; Burke et al., 2013, 2015; Brinkman et al.,
2014, 2016) can characterize the function of specific brain regions
and brain circuits, Their combination with high-frequency broad-
band (Miller et al., 2009, 2016) power changes can sometimes
improve decoding performance. Examples of the main existing
ECoG-BCI paradigms with neural coding studies are shown in
Supplementary Table 2.

4.3 fMRI-BCI paradigms and neural
coding

Functional magnetic resonance imaging (Ogawa et al., 1990)
has high spatial resolution (Logothetis et al., 2001), better
robustness and user-friendliness, and individualized flexibility.
The ability of fMRI to measure deep brain region structure and
activity, map functional connectivity networks, and allow the use
of amygdala and ventral striatum with BCI neurofeedback for user
(Mehler et al., 2018) has become a core technique for mapping
neuroplasticity (Seitz, 2010).

Spatial localization of brain functions using the fMRI-BCI
space coding model to produce spatially distinct patterns of brain
activation by engaging different combinations of brain regions
during the time that subjects are receiving external stimuli or
intentionally performing different mental activities (Yoo et al.,
2004; Boly et al., 2007; Monti et al., 2010; Senden et al., 2019).
Models of fMRI-BCI time coding reliably detect the onset, offset,
and duration of single-trial fMRI responses evoked by various
mental activities, which is the assignment of specific coding
intervals for specific intentions (Monti et al., 2010). Models of
fMRI-BCI amplitude coding using different fMRI signal levels
within specific brain regions to encode different movement
intentions (Yoo et al., 2001). The combination of fMRI-BCI hybrid
coding models using the above signal features (spatial, temporal,
and amplitude) can increase the degree of freedom to encode
different units of information or increase the distinguishability of
the evoked brain activation patterns, thus maximizing the decoding
accuracy (Sorger et al., 2012). Examples of the main existing
fMRI -BCI paradigms with neural coding studies are shown in
Supplementary Table 3.

4.4 fNIRS-BCI paradigms and neural
coding

Functional near-infrared spectroscopy measures the
hemodynamic response of brain tissue during resting state
(Abdalmalak et al., 2021; Paulmurugan et al., 2021; Eastmond
et al., 2022), external stimulus, and mental activity, including
changes in oxy-hemoglobin (HbO) and deoxyhemoglobin (HbR)
concentration, with the main advantage of good portability,
tolerating a certain degree of head movement of the subject, and a
favorable ecological effect. fNIRS-BCI can also be used to facilitate
the rehabilitation of patients with motor dysfunction and/or
cognitive dysfunction, such as those suffering from stroke and
spinal cord injury.

The fNIRS-BCI time coding model extracts time-domain
features of hemodynamic responses associated with a specific event
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(such as external stimulus or mental task), for example, the mean,
peak, and variance of HbO and HbR (Holper and Wolf, 2011;
Hwang et al., 2014; Naseer et al., 2014; Hong et al., 2015). Models
of fNIRS -BCI amplitude coding using different fNIRS signal
levels within specific brain regions to encode different movement
intentions (Coyle et al., 2007; Kaiser et al., 2014). Examples of the
main existing fNIRS -BCI paradigms with neural coding studies are
shown in Supplementary Table 4.

4.5 MEG-BCI paradigms and neural
coding

Magnetoencephalography is a non-invasive neuroimaging
technique for detecting weak magnetic field changes generated by
the electrical activity of central neurons (Xu et al., 2022; Bu et al.,
2023). The technique has high time (less than 1 ms) and spatial [2–
5 µm (Cetin and Temurtas, 2021)] resolution and low sensitivity
to artifacts generated by muscle activity, but its comfort, aesthetics,
and ease of use leave much to be desired.

The MEG-BCI time coding model characterizes mental tasks
or external stimuli by information such as the peaks of the
time-domain waveforms of the MEG signals as well as the time
points. The frequency coding model characterizes a specific event
(mental activity or external stimulus) by the MEG power spectral
features (Mellinger et al., 2007; Chen and Bai, 2009; Halme and
Parkkonen, 2016). MEG signals are complex non-linear and non-
stationary signals, which the single time or frequency coding
model will lose some feature information, and a time-frequency
coding model can be used to obtain the relationship between
signal frequency over time (Chholak et al., 2019). MEG-BCI space
coding models can be used to downsize the data using spatial
filtering methods to differentiate between mental activities or
external stimuli (Rathee et al., 2021). Examples of the main existing
MEG-BCI paradigms with neural coding studies are shown in
Supplementary Table 5.

4.6 EEG-BCI paradigms and neural
coding

4.6.1 MI paradigms and neural coding
Mental tasks involved in MI paradigms include slow, non-fine,

non-dexterous MI, fast, fine, and highly dexterous MI, MI involving
a unilateral limb, coordinated MI involving multiple limbs, a single
or repetitive MI, as well as kinematics or kinetics parameters
imagery. The neural coding of MI paradigms can be encoded
using (1) time-domain features such as movement-related potential
(MRP) or movement-related cortical potential (MRCP) (movement
preparation potentials, movement monitoring potentials, and end-
of-movement rebound potentials); (2) frequency-domain features
coding, such as neural oscillatory power change features of µ/β/γ
and other rhythms, which are commonly used event-related-
desynchronization/synchronization (ERD/ERS); and (3) space-
domain features coding, such as the primary motor area of the
hemispheres, the auxiliary motor area, and the premotor area. In
addition, the neural coding of some MI paradigms has yet to be
studied in depth.

4.6.1.1 Slow, non-fine, non-dexterous MI

Slow, non-fine, and non-dexterous movements usually involve
gross limb movements that do not require rapidity, fine
coordination, and a high degree of dexterity.

Slow movements are slow and do not require rapid responses
or high rates of execution, which include slow walking, strolling,
and soothing stretches are all slow movements (Pfurtscheller et al.,
2003b; Müller-Putz et al., 2007). Non-fine movements do not
require a high degree of fine coordination or precise control of
fine muscle groups. Comparatively, they favor holistic and basic
movements. Such as simple hand lifting, striding, and simple
dance movements (Pfurtscheller et al., 1997; Ramoser et al., 2000;
Kaiser et al., 2014). Non-dexterous movements do not require high
skills or complex combinations of movements. They focus more
on the simplicity and ease of realization of the movements. For
example, balancing simple objects, simple stretching, and bending
movements (Neuper et al., 2009).

4.6.1.2 Fast, fine, and highly dexterous movement imagery

Fast, fine, and highly dexterous movements usually involve
the movement of fine limbs, the execution of which requires fast,
accurate movements with a high degree of skill and coordination
These types of movements often require long periods of training
and practice to achieve a high level of skill.

Rapid movements are executed at a high speed. It requires rapid
reaction and movement execution. The users can react quickly
in a short period and complete the movement at a high rate.
Fine movements require a high degree of precision and care.
The users need to control the movement accurately, including
the coordination of small muscle groups and precise handling of
details. Highly dexterous movements demonstrate exceptional skill
and flexibility. The performer can perform the movement with
grace and agility. Implantable acquisition of brain signals with
high space resolution is usually used to encode and decode such
movements, and scalp EEG makes it difficult to encode and decode
such MI with stability and high precision.

4.6.1.3 MI involving the unilateral limb

In daily life, some movements involve only the unilateral
limb, such as tapping movements of the right or left index finger,
internal or external rotation of the wrist, flexion or extension of
the wrist, clenching of the fist, pinching of the thumb against the
other fingers, and extension of the arm. These movement exercises
favor unilateral limb strength, balance, and coordination, and help
improve symmetry and motor control (Pfurtscheller et al., 1997;
Ramoser et al., 2000; Neuper et al., 2009; Hashimoto and Ushiba,
2013). The difficulty of recognizing different imagined movements
in a single limb is greater compared to the recognition of imagined
movements in different limbs. For example, recognizing various
imagined movements in the affected limb of hemiparetic patients
poses a greater challenge.

4.6.1.4 Coordinated MI involving multiple limbs

In daily life, coordinated movement usually involves synergistic
movements of multiple limbs to cooperate in time and space to
effectively accomplish a desired task (Zhang et al., 2022). Examples
include walking and threading a needle. These types of movements
usually require some training making good coordination
and overall control between limbs (Müller-Putz et al., 2007;
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Hashimoto and Ushiba, 2013). The neural and decoding of
coordinated motor involving at least two limbs is to be studied in
depth.

4.6.1.5 A single or repetitive MI

A single MI BCI paradigm is different from the repetitive or
continuous MI BCI paradigm, and the BCI coding is different. The
Synchronous MI-BCI requires subjects to perform imagery tasks
according to a temporal sequence designed by the researcher, and it
is typically used to build classification models. The asynchronous
MI-BCI is much more challenging, where subjects’ imaginative
mental activity can be self-paced rather than performing the
imaginative task according to a temporal sequence designed
by the researcher.

4.6.1.6 Kinematic or kinetic parameters imagery

The kinematic parameters of the limb include the velocity
of movement, trajectory of movement, and time of movement.
The kinetic parameters of the limb include the driving force
of movement and acceleration of movement. For example, the
speed of the right index finger tap (such as slow, medium,
and fast), reaching and grasping processes, space navigation, and
grip size (Flint et al., 2022). Compared to kinematic parameter
imagery, kinetic parameter imagery coding and decoding have been
relatively less studied and more difficult.

4.6.2 External stimulus paradigms and neural
coding
4.6.2.1 P300-BCI paradigms and neural coding

In the P300-BCI paradigm, the probability of a target/target
stimulus (novel stimulus with small probability) is no more than
20%, and the probability of a non-target stimulus (standard
stimulus with large probability) is no less than 80%. When
a user is exposed to a target stimulus during 220–500 ms
(latency) a positive peak of 5–10 microvolts is induced, most
significant at the midline location (Pz, Cz, and Fz in the 10/20
international system). This component characterizes the target
stimulus. The visual P300-BCI speller was first implemented by
Farwell and Donchin (1988), and subsequently, there have been
many variants of the P300-BCI paradigm, mainly differences in
visual stimulus characterization and presentation. In addition to
the visual P300-BCI paradigm, there are also auditory P300-BCI
(Furdea et al., 2009; Klobassa et al., 2009) and tactile P300-BCI
(Müller-Putz et al., 2006; Brouwer and Van Erp, 2010).

Although the P300-BCI can provide effective input of
characters, the practicality still faces challenges. The system’s online
transmission rate is low, which makes it difficult to meet the current
real-time needs. The inseparability of external stimuli is tied to
attention such as vision and hearing, and offline training tends to
be prolonged, which causes fatigue to the users.

4.6.2.2 SSVEP-BCI paradigms and neural coding

In the SSVEP-BCI paradigm, when a subject gazes at a visual
stimulus of a certain flicker frequency [low band (<12 Hz),
middle band (12–30 Hz), and high band (>30 Hz)], a stabilizing
potential component of the same frequency as the stimulus
frequency or its higher harmonic frequencies is induced. The
SSVEP-BCI paradigm can be traced back to as early as a
1995 conference report (McMillan et al., 1995), but is not the

paradigm that is now commonly used; the paradigm that is now
commonly used comes from a 1999 conference report (Ming
and Shangkai, 1999). Subsequently, the SSVEP-BCI paradigm
has many innovative designs such as frequency modulation
combined with phase and amplitude modulation (Chen et al., 2015;
Zhang et al., 2021).

Although SSVEP-BCI has high performance (for example,
significant features, stable amplitude, high interference immunity,
high information transfer rate, less training, and large instruction
set), it requires highly accurate eye control (Herrmann, 2001;
Chang et al., 2014), and may lead to subject fatigue when using
low blinking frequency (Molina and Mihajlovic, 2010; Müller et al.,
2011; Volosyak et al., 2011) the interaction of SSVEP is unnatural,
and the user’s satisfaction remains to be further improved. SSVEP-
BCIs must essentially have flickering external visual stimuli, and
thus cannot be separated from visual attention. Examples of the
main existing EEG-BCI paradigms with neural coding studies are
shown in Supplementary Table 6.

4.7 hBCI paradigms and coding

A hybrid Brain-Computer Interface (hBCI) aims to improve
the usability or efficacy of BCI systems hBCI consists of a
mix of a BCI system (the main system) and an add-on system
that assists the BCI (Li et al., 2019). which can be a non-
external stimulus or non-psychological task-driven system, or
an AI system (e.g., a deep learning-based machine vision or
computer vision system) can be mixed to improve the accuracy
of target recognition by the main system BCI and increase
the number of brain-controlled/other commands. As shown in
Figure 5.

As can be seen from Figure 5, BCI paradigms of the main
system can be subsets of different external stimuli and mental
tasks. For example, the P300 paradigm can be designed by
visual, auditory, tactile, or olfactory stimuli according to the
Oddball paradigm. The P300 paradigm, the SSVEP paradigm,
and the kinesthetic imagery paradigm can be combined. BCI
paradigms of the main system induce electromagnetic/metabolic
activity signals related to brain activity, and multiple brain
activity patterns in these brain signals can encode external
stimuli and mental tasks. Non-external stimuli and mental
tasks such as eye movement, limb movement, or heartbeat in
the additional system can be characterized by other non-brain
activity physiological signal patterns. The AI system in the add-
on system can enhance the level of intelligence of the main
BCI system.

5 Challenges and future research
directions for BCI paradigms and
neural coding

So far, existing BCI paradigms and neural codes have
limitations that hinder the translational application of BCI. For
this reason, the innovative design and improvement of BCI
paradigms and neural codes is one of the key tasks in the
development of BCI systems.
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FIGURE 5

The schematic for hybrid BCI paradigms and coding. EOG, electrooculogram; EMG, electromyogram; ECG, electrocardiogram.

5.1 User-centered design and evaluation
for BCI paradigms and neural coding

The end user of BCI is the user, while the user itself is the
source of the CNS signals that drive the BCI. The user is the most
complex, active, and highly adaptive subsystem essential to the
BCI system. Therefore, BCI systems are the most typical human-
in-the-loop systems (the human brain is directly connected or
coupled to the machine, a closed-loop system with direct brain-
machine interaction), and the design and evaluation (usability
and satisfaction) of BCI paradigms and coding need to be user-
centered, taking into account BCI human factors engineering
(Lyu et al., 2023).

Brain-computer interface paradigms and neural coding are
closely related to the neural mechanisms of the user’s mental
activities/tasks (Liberati et al., 2015). The performance of a BCI
system (such as effectiveness and efficiency) is closely related to the
user’s mental activity, such that the performance of a movement-
imagery BCI system is largely dependent on the user’s effectiveness
or ability to perform MI (Kübler et al., 2014; Martin et al., 2018).

It is worth noting that to evaluate the first principle of BCI
paradigm design proposed in section 2.2, which states that CNS
signals evoked by BCI paradigm specific tasks should have good
separability, any innovatively designed BCI paradigm, and neural
coding model typically requires offline data analysis and model
establishment, and ultimately must be validated and evaluated by
neural decoding in an online BCI system.

5.2 Revolutionizing the traditional BCI
paradigms

The BCI paradigm, from a perspective of communication
principles and technology, is a coding protocol in which brain
intentions are encoded into signals generated by neural activity
through specific external stimuli or mental tasks.

So far, BCI has been developed for more than 50 years.
However, current BCI paradigms are more limited, and the
transformation faces great challenges, which need to significantly
improve, we need to break through the traditional classical BCI
paradigms (such as SSVEP-BCI, P300-BCI, and MI-BCI), and add
new BCI paradigms that are more natural and more effective to
interact with the user. In recent years, many important advances
have been made in the innovation of BCI paradigms (Willett et al.,
2021, 2023; Metzger et al., 2023).

5.2.1 Speech-BCI paradigm
Speech is the primary mode of human communication, and the

speech BCI paradigm is one of the more natural BCI paradigms.
Speech BCI has the potential to decode the neural activity triggered
by attempted speech into text or sound, thus promising to restore
rapid communication for paralyzed patients (Metzger et al., 2023;
Willett et al., 2023).

5.2.2 Handwriting imagery-BCI paradigm for
input text

To date, a major focus of BCI research has been the restoration
of motor skills to gross limbs such as reaching and grasping or
typing with computer cursor clicks. Willett et al. (2021) developed
an intracortical brain-computer interface that decodes attempted
handwriting actions via neural activity in the hand junction area
of the motor cortex and uses a recursive neural network decoding
method to translate neural activity in the motor cortex into text in
real-time.

5.3 Breaking through the existing
techniques for collecting brain signals

The performances of the BCI paradigm and neural coding are
directly related to the level of brain signal collection technology,
which requires a breaking through of brain signal collection
technology. How brain signals are acquired is crucial for the BCI
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FIGURE 6

The schematic for combining BCI technology with advanced AI
technology.

paradigm and neural coding, which is related to the quality of
the collected signals and the final BCI control effect. With the
continuous development of micro-nano processing technology
and electrode materials, electrodes for invasive BCI tend to be
flexible, miniaturized, high-throughput, and integrated. Currently,
the research and development of hydrogel EEG electrodes are
more active (Xue et al., 2023), stereotactic EEG (sEEG) (Herff
et al., 2020), and in-ear EEG electrodes (Wang et al., 2023)
have also made positive progress. In addition, minimally invasive
endovascular stent-electrode techniques (Oxley et al., 2016, 2021),
minimally invasive local-skull electrophysiological modification
methods (Sun et al., 2022), and other schemes have been proposed
to innovate brain signal acquisition.

5.4 Combining BCI technology with
advanced AI technology to improve brain
signal decoding performance

Currently, classical machine learning still has an advantage in
BCI neural decoding, but deep learning also has the potential to
enhance BCI decoding performance. Some studies have introduced
suitable deep learning algorithms in decoding brain signals, and
these studies show that BCI technology combined with advanced
AI techniques is expected to significantly improve brain signal
decoding performance (Willett et al., 2021, 2023; Metzger et al.,
2023). Figure 6 illustrates the introduction of AI into BCI
to improve the intelligence of BCI and facilitate the clinical
translational application of BCI.

6 Conclusion

In the BCI technology system, BCI paradigms and neural
coding are some of the key and important contents of BCI
research and development. In the paper, the definition of
BCI paradigms and seven design principles, as well as the
definition and coding model of BCI neural coding, including BCI
frequency/rate coding, time coding, phase coding, intracortical
neuron population coding, correlation coding, sparse coding,
and hybrid coding model are shown more systematically and

clearly. The existing main BCI paradigms and neural coding are
presented, including intracortical LFP-BCI, ECoG-BCI, fNIRS-
BCI, fMRI-BCI, MEG-BCI, EEG-BCI, and hybrid BCI paradigms
and neural coding. Finally, user-centered design and evaluation for
BCI paradigms and neural coding, revolutionizing the traditional
BCI paradigms, breaking through the existing techniques for
collecting brain signals and combining BCI technology with
advanced AI technology to improve brain signal decoding
performance are discussed. It is expected that this paper will
inspire the innovative research and development of BCI paradigms
and neural coding.
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