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Introduction: A�ective computing is the core for Human-computer interface

(HCI) to be more intelligent, where electroencephalogram (EEG) based emotion

recognition is one of the primary research orientations. Besides, in the field of

brain-computer interface, Riemannian manifold is a highly robust and e�ective

method. However, the symmetric positive definiteness (SPD) of the features limits

its application.

Methods: In the present work, we introduced the Laplace matrix to transform the

functional connection features, i.e., phase locking value (PLV), Pearson correlation

coe�cient (PCC), spectral coherent (COH), and mutual information (MI), to into

semi-positive, and themax operator to ensure the transformed feature be positive.

Then the SPD network is employed to extract the deep spatial information

and a fully connected layer is employed to validate the e�ectiveness of the

extracted features. Particularly, the decision layer fusion strategy is utilized to

achieve more accurate and stable recognition results, and the di�erences of

classification performance of di�erent feature combinations are studied. What’s

more, the optimal threshold value applied to the functional connection feature is

also studied.

Results: The public emotional dataset, SEED, is adopted to test the proposed

method with subject dependent cross-validation strategy. The result of average

accuracies for the four features indicate that PCC outperform others three

features. The proposed model achieve best accuracy of 91.05% for the fusion of

PLV, PCC, and COH, followed by the fusion of all four features with the accuracy

of 90.16%.

Discussion: The experimental results demonstrate that the optimal thresholds for

the four functional connection features always kept relatively stable within a fixed

interval. In conclusion, the experimental results demonstrated the e�ectiveness of

the proposed method.

KEYWORDS

emotion recognition, human-computer interface (HCI), electroencephalogram (EEG),

functional connection feature, Riemannian manifold, decision fusion

1 Introduction

Affective computing is a science involving multiple disciplines, such as psychology,

biology, and philosophy, amongwhich research on affectivemodels and emotion recognition

are two important branches in the field of affective computing. Generally, affective

models can be mainly categorized as discrete models and dimensional models. Discrete

emotion theorists think that people’s emotions consist of several basic emotions, such as

Ekman’s (1992) six-basic emotions model and Izard’s (2007) 10-basic emotions model.
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However, dimensional emotion theorists believe that human’s

emotions are continuous and have some special characteristics,

such as the valence-arousal model (Russell, 1980) and the Plutchik

(2001)’s Wheel of Emotions.

With the development of information technology and artificial

intelligence technology, emotion recognition plays an increasingly

important role in the field of human–computer interaction,

because machines can become more intelligent through emotional

interaction with humans (Picard, 2003). For this reason, emotion

recognition has received widespread attention from researchers

in various fields, such as emotion recognition based on facial

expressions, emotion recognition based on speech, and emotion

recognition based on EEG signals (Koolagudi and Rao, 2012;

Ko, 2018; Abramson et al., 2020; Houssein et al., 2022;

Yi et al., 2024). However, among the many directions of

emotion recognition, EEG signals can establish a closer and

more realistic mapping relationship with emotions due to their

“unconcealability,” that is to say, people can easily disguise their

true emotions by adjusting their expressions and voices, but

it is difficult to change the corresponding EEG signals at the

same time.

Feature extraction is one of the core modules in the EEG

emotion recognition process for highly discriminative features that

can help improve the performance of emotion recognition models.

In recent years, various features have been developed to solve the

EEG-based emotion recognition task, where these features can been

roughly divided into two classes, i.e., the single-channel features

and the multi-channel features. The calculation of single-channel

features does not depend on other channels of EEG, therefore,

the features of each channel can be considered independent of

each other. Duan et al. (2013) first developed differential entropy

(DE) to decode the EEG signals and classify different emotional

states, then Zheng and Lu (2015) verified that the DE features

have higher discrimination and robustness compared with other

features by experiments in two public emotional datasets, i.e., the

SEED and the DEAP (Koelstra et al., 2011). Moreover, the sample

entropy (SE) and the approximate entropy (ApEn) are also two

common entropy-based features to measure the uncertainty of

emotional EEG signals (Zeng et al., 2019; Wang et al., 2022). In

addition, the wavelet energy and the power spectral density (PSD)

are also two common features to measure the frequency domain

information for EEG signals (Zheng and Lu, 2015; Mohammadi

et al., 2017; Wang et al., 2022). Compared with single-channel

features, multi-channel features, or functional connection features,

are more concerned with measuring the interactive information

between channels. The differential asymmetry (DASM) and the

rational asymmetry (RASM) are widely employed to measure the

difference of EEG signals between the left and right hemispheres

(Zheng and Lu, 2015; Zhang et al., 2021). Both Dasdemir et al.

(2017) and Nguyen and Artemiadis (2018) used the phase-locking

value (PLV) to build a functional brain neural network and perform

the emotion recognition task. Khosrowabadi et al. (2010) utilized

the mutual information (MI) to establish a dynamic emotional

system. In addition, the Pearson correlation coefficient (PCC), the

spectral coherence coefficient (COH), the phase lag index (PLI),

and the covariance matrix (COV) are also usually adopted to

represent the emotional interaction information between different

channels of EEG (Jadhav et al., 2017; Keelawat et al., 2021;Wu et al.,

2022; Lin et al., 2023).

Furthermore, a large number of techniques have been

developed to construct the mapping relationship between EEG

features and emotions. Zheng and Lu (2015) introduced the

deep belief network (DBN) to decoding the DE features and

achieved 86.08% accuracy for positive, negative, and neutral

states. Du et al. (2020) proposed an attention-based LSTM with

Domain Discriminator (ATDD-LSTM) with DE as input features

to solve the subject-dependent and subject-independent emotion

recognition tasks in three public emotional datasets. Moon et al.

(2020) employed the convolutional neural networks (CNNs) to

extract the spatial domain information from PLV and PCC and

transform entropy (TE). Song et al. (2018) developed a novel

dynamical graph convolutional neural networks (DGCNNs) to

model the multichannel EEG features and perform the emotion

recognition task and achieved average accuracies of 90.4% and

79.95% for subject dependent and subject independent cross-

validation on the SEED, respectively. Liu et al. (2023) combined

the attention mechanism and pre-trianed convolutional capsule

network to extract the spatial information from the original

emotional EEG signals. Zali-Vargahan et al. (2023) introduced

CNN to extract the deep time-frequency features and employed

several machine classifiers such as decision tree to classify different

emotional states, where the average accuracy of 94.58% had been

achieved in SEED. Ma et al. (2023) developed the transfer learning

methods to reduce the distribution differences of emotional EEG

signals between different subjects, thereby enabling more robust

cross-subject emotion recognition.

In recent years, Riemannian manifolds (RMs) have received a

lot of attention in the field of brain–computer interfaces due to the

simplicity, accuracy, robustness, and transfer learning capabilities

(Congedo et al., 2017). Barachant et al. (2013) developed the

Riemannian-based kernel support vector machine (RK-SVM) to

solve the motor image task in a public brain–computer interface

(BCI) competition dataset. However, since the conventional deep

learning model mainly utilize the non-linear function to map the

features located in the Euclidean space, the features located in

RM usually cannot be fed into the deep model, for the non-linear

function will change the SPD of the features and the mapped

features will then locate in Euclidean space. Therefore, Huang

and Van Gool (2017) designed a RM network architecture by the

combination of bilinear and non-linear learning, and achieved

the state-of-the-art accuracies in three datasets. Yair et al. (2019)

utilized the parallel transport to achieve the domain adaptation

for symmetric positive definite (SPD) matrices in RM, and achieve

accuracy of 78% for four-class motor imagery task by the leave-

one-session-out cross-validation. In addition, it can also map

Riemannian features to Euclidean space by establishing a mapping

between Riemannian manifold and Euclidean space, and then use

deep learningmethods (Wu et al., 2022). Particularly, in the domain

of affective BCIs, Riemannian manifolds approaches have been

instrumental in feature extraction and classification tasks related

to emotion recognition. The utilization of covariance matrices

and manifold-based representations allows for a more nuanced

understanding of the underlying neural patterns associated with

different emotional states (Abdel-Ghaffar and Daoudi, 2020; Wang
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TABLE 1 The parameter details of the proposed model.

Variable Meaning Variable Meaning

R Real number field X EEG signals

M Riemannian

manifold

Sym+ SPD matrices set

TSM Tangent Space of S Si SPD matrix

Ti Point in TSM ǫ Threshold value

U Eigenvector matrix V Diagonal matrix of

eigenvalue

I Identity matrix W Transformation

matrix in SPDnet

A Undirected

adjacency matrix

C Number of EEG

channels

D Degree matrix L Laplace matrix

et al., 2021). However, the limitation of the Riemannian manifold

is that its features must be symmetric and positive definite, which

greatly limits the application of the Riemannian methods.

In the present study, we adopted four functional connection

features, i.e., PLV, PCC, COH, and MI, to perform the emotion

recognition task in the SEED database. The main contributions

of this study can be summarized as follows: (1) We introduced

the the Laplace matrix with a max operation to transform the

four functional connection features into SPD; (2) Four functional

connection features almost achieved similar performances in

recognizing emotions, especially PLV, PCC, and COH, which may

indicate the stability of brain functional connection when subjects

are evoked emotions; (3) The decision fusion strategy is employed

to fuse the four features to achieve higher accuracy and robustness,

and a detailed comparison about the combination for different

features in emotion recognition has been made.

The layout of this study is organized into following sections:

In Section 2, the detailed descriptions about the four functional

connection features, the SPDnet, the Laplace matrix, and the

overview about the proposed model are presented. The detailed

experimental results, analysis, and discussion for the SEED dataset

are presented in Section 3. Finally, Section 4 presents the conclusion

about this study, as well as the discussion about future works.

2 Materials and methods

2.1 Feature extraction

In this study, four functional connection features are adopted

to measure the effectiveness of the proposed method and recognize

emotional states. Specially, denote the Xi ∈ R
T , i = 1, ...,C as the

i-th channel EEG signals where C and T represent the number of

EEG channel and the time length, respectively. Table 1 displays all

of main variables and the corresponding meaning.

2.1.1 Phase locking value
The PLV is a phase-based method, which measures the phase

difference between the two channel signals (Gysels and Celka,

2004). The calculation formula of PLV is defined as Equation (1),

PLVm,n =
∣

∣

1

T

T
∑

t=1

ej(φm,t−φn,t)
∣

∣ (1)

Where φm,t and φn,t represent the phase angles of signals Xm

and Xn, respectively, at time point t.

2.1.2 Pearson correlation coe�cient
The PCC measures the linear correlation degree between two

channel signals in time domain (Guevara and Corsi-Cabrera, 1996).

The value range of PCC is [–1,1]; hence, PCC can measure whether

two signals are positively or negatively correlated. The calculation

formula of PCC is defined as Equation (2),

PCCm,n =

∑T
t=1(Xm,t − Xm)(Xn,t − Xn)

√

∑T
t=1(Xm,t − Xm)2

√

∑T
t=1(Xn,t − Xn)2

(2)

Where Xm and Xn are expectations of Xm and Xn, respectively.

2.1.3 Spectral coherence
Contrary to PCC, the COH measures the linear correlation

degree between two channel signals in frequency domain (Guevara

and Corsi-Cabrera, 1996). The calculation formula is defined as

Equation (3),

Cohm,n =
|Pm,n(f )|

2

Pm,m(f )Pn,n(f )
(3)

Where Pm,n(f ) means the cross-spectral density of EEG signal

Xm andXn in the frequency f , while Pm,m and Pn,n means the power

spectral density of Xm and Xn, respectively.

2.1.4 Mutual information
MI is a information theory based method where advantage of

MI is that it can detect the linear and non-linear correlation of

two signals at the same time (Jeong et al., 2001). However, the

accuracy ofMI calculation is easily affected by the noise in the signal

and the length of the signal. The calculation formula is defined as

Equation (4),

MIm,n =
∑

Xm ,Xn

PXm ,Xn (xm, xn) log2
PXm ,Xn (xm, xn)

PXm (xm)PXn (xn)
(4)

Where PXm ,Xn means the joint probability distribution of Xm

and Xn, and PXm and PXn mean the probability distributions of Xm

and Xn, respectively.

2.2 SPD metrix network

2.2.1 Riemainnian manifold
The SPD set is defined as Equation (5) as following

Sym+ = S ∈ R
C×C, x⊤Sx > 0, S = S⊤, ∀x ∈ R

C (5)

and lie on the Riemannian manifold (RM) M rather than the

Euclid space. However, There are two operators that can realize
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FIGURE 1

The two operations between the RM and corresponding tangent

space in S. Particularly, δR represents the geodesic distance between

S and Si where the calculation method can be found in Barachant

et al. (2013).

the mutual mapping between Riemannian manifold and Euclidean

space. Concretely, suppose there is a point S ∈ Sym+, then the

tangent space of S, denoted as TSM, could be defined and belongs

to the Euclid space. The logarithmicmap operator as following is

defined to project the point Si ∈ Sym+ to the TSM shown in

Equation (6),

Ti = LogS(Si) = S1/2logm(S−1/2SiS
−1/2)S1/2 (6)

where logm denotes the logarithm of a matrix calculated as

Equation (7),

logm(S) = Ulog(V)U−1 (7)

where U = [uij]C×C and V = diag{v1, v2, ..., vC} are

the eigenvector and eigenvalue of the matrix S. Moreover, a

corresponding inverse operation, i.e., exponentialmap, is also

defined to project the points in the TSM to the M shown in

Equation (8),

Si = ExpS(Ti) = S1/2expm(S−1/2TiS
−1/2)S1/2 (8)

where expm denotes the exponential of a matrix calculated as

Equation (9),

expm(S) = Uexp(V)U−1 (9)

Figure 1 shows the two operations between the RM and

corresponding tangent space in S.

2.2.2 SPDnet
The SPD matrix network (SPDnet), as introduced by Huang

and Van Gool (2017), operates analogously to the commonly

employed convolutional network (ConvNet). It effectively

preserves the inherent geometric information of the SPD matrix,

akin to the way ConvNets capture spatial features in other types

of data. The SPD net mainly consists of three kinds of layers, i.e.,

the bilinear mapping (BiMap) layer, the eigenvalue rectification

(ReEig) layer, and the log eigenvalue (LogEig) layer, where the

BiMap layer is designed to transform the SPD set into a new SPD

set by a bilinear mapping, the ReEig layer is designed to rectify the

new SPD matrices by a non-linear function to ensure the positive

definite of the new SPD matrices, the LogEig layer is designed to

perform corresponding RM computing on the output new SPD

matrices. Particularly, let Sk−1 be the input SPD matrix and the Sk
be the output, then the calculation of the three layer can be defined

as Equations (10)–(12),

Sk = f kb (Sk−1;Wk) = WkSk−1W
⊤
k (10)

Sk = f kr (Sk−1) = Uk−1 max(ǫI,Vk−1)U
⊤
k−1 (11)

Sk = f kl (Sk−1) = log(Sk−1) = Uk−1 log(Vk−1)U
⊤
k−1 (12)

where f k
b
, f kr , and f ks are the k-th BiMap layer, the k-th ReEig

layer, and the k-th LogEig layer, respectively. In addition, Wk ∈

R
dk×dk−1 is the transformation matrix, the Uk−1 and the Vk−1

are calculated by eigenvalue decomposition (EIG), the ǫ is a

rectification threshold, and the I is an identity matrix. Figure 2

shows a sample architecture of the SPDnet.

2.3 Laplace matrix

Laplace matrix has been widely employed to build the brain

functional connection network in the brain–computer interface

field, and achieved good performance. Generally, the Laplace

matrix is a fundamental concept in graph theory and linear algebra

and provides valuable insights into the connectivity and structural

properties of a graph’s adjacency matrix. Let A be an undirected

adjacency matrix with C nodes, and D be the corresponding

degree matrix, then the i-th element of D can be calculated as

Equation (13),

di =

C
∑

j=1

Aij (13)

Then, the laplacian matrix L is defined as Equation (14),

L = D− A (14)

Typically, the Laplace matrix has an important property,

i.e., the Laplace matrix is symmetric, positive, and semi-definite.

However, since the Laplacematrix is only positive semi-definite and

does not fully satisfy the conditions of the Riemannian manifold,

inspired by the ReEig layer in the SPD net, we also introduced the

max operator to transform the Laplace matrix into positive definite

shown in Equation (15) i.e.,

L = Umax(ǫI,6)U⊤ (15)

Therefore, after themax operator, the Laplace matrix lies on the

RM, and the matrix can be fed into the SPDnet.

2.4 Framework design

The overview of our model is displayed in Figure 3. As shown

in the figure, the model mainly consists of three modules: the

function connection feature, the deep SPD feature extractor, and

the average decision fusion module. More concretely, in the

function connection feature module, four types of feature (i.e.,

PLV, PCC, MI, and COH) are first extracted from the preprocessed

EEG signals, and a threshold value is used to transform the

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1345770
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wu et al. 10.3389/fnins.2023.1345770

FIGURE 2

A sample architecture of the SPDnet.

FIGURE 3

The flowchart of the proposed model. The model mainly consists of three modules: the function connection feature, the deep SPD feature extractor,

and the average decision fusion module.

functional connection features into undirected graphs, then the

Laplace matrices with the max operator are calculated; in the SPD

feature extractor module, four BiMap layers, four ReEig layers, and

a LogEig layer are combined to further extract the deep features

from the Laplace matrices, and the output features are flattened as a

vector; in the average decision fusion, considering the difference in

information carried by different functional connection features, we

used average decision-making layer fusion to synthesize different

feature information. The implementation details of the parameters

of the proposed model are presented in Table 2.

3 Experimental results and discussion

3.1 Dataset

In this study, the SEED dataset is employed to evaluate

the effectiveness of the our method. The SEED dataset is a

publicly available emotional dataset and widely used in emotion

recognition. A total of 15 healthy subjects (7 male and 8 female

participants, mean: 23.27, std: 2.37), who were university or

graduate students, were invited to watch 15 film clips with

different emotional labels, i.e., positive, negative, and neutral

emotional states. That is to say, each experiment contains 15

trials. Particularly, each subject participated in the experiment three

times, with at least 1 week between two adjacent experiments. Sixty-

two channels EEG signals with the sampling frequency of 1,000 Hz

were recorded. In addition, to save computing resources, the EEG

signals were downsampled to 200 Hz. The artifact was also been

removed. To evaluate the proposed model, the 15 trials EEG signals

are divided into training data and testing data, where the training

data contains first nine trials while the testing test contains the rest

six trials from the same experiment. The EEG signals were filtered

between 1 and 47 Hz by the fourth Butterworth bandpass filter, and

a 1-s window with non-overlap was applied. To keep the number of

samples in different categories consistent, we only selected the EEG

signals of the last 2 min of each trial. The classification performance

of the model is evaluated by accuracy as Equation (16),

Acc =
TP + TN

TP + FN + FP + TN
(16)

where TP (True Positives) indicates the number of samples that the

model correctly predicts as positive categories, TN (TrueNegatives)

represents the number of samples that the model correctly predicts

as negative categories, FP (False Positives) indicates the number of

samples in which the model incorrectly predicts negative categories

as positive categories, and FN (False Negatives) represents the

number of samples in which the model incorrectly predicts positive

categories as negative categories.

The experimental environment was built on a Windows 10 PC

with Core (TM) i7-10700 CPU, NVIDIA GeForce RTX 3080Ti, and

the computing environment was pytorch 1.10.1.
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3.2 Experimental results

To test the effectiveness of the four function connection

features and the proposedmethod, we divide the input of the model

into four modes:

• Only one type of feature: PLV, PCC, MI, and COH;

• The combination of two types of features: PLV+PCC,

PLV+MI, PLV+COH, PCC+MI, PCC+COH, and MI+COH;

• The combination of three types of features: PLV+PCC+MI,

PLV+PCC+COH, PLV+MI+COH, and PCC+MI+COH;

• The combination of all four types of features:

PLV+PCC+MI+COH.

The experimental results are displayed in Table 3. As is shown

in the table, the results for each featuremode is acceptable where the

accuracies were higher than 83%. Besides, according to the Table 3,

it can be also concluded that: (1) For the mode with only one

feature, the PCC achieved highest performance (83.45%/7.20%)

among the four functional connection features, while the PCC

achieved highest performance (87.37%/5.5%), that is to say, MI is

worse in accuracy and robustness in identifying the emotions of

different subjects, while PCC is better than the other three features

in these two aspects; (2) For the mode with the combination of

two features, the PCC-COH achieved best accuracy, followed by

the PLV-COH, PLV-PCC, PCC-MI, and PLV-MMI, and MI-COH

achieved worst accuracy. An interesting phenomenon can be drawn

that the average emotion recognition performances achieved by

feature modes involving MI were always the worst; (3) For the

TABLE 2 The parameter details of the proposed model.

Parameters Values

Number of BiMap layer 4

Number of ReEig layer 4

Number of LogEig layer 1

Dimension of each BiMap layer [31, 20, 16, 12]

Proportion of dropout 0.2

Learning rate 0.001

Batch size 64

Max epochs 200

Weight decay 0.0001

mode with the combination of three features, the PLV-PCC-COH

achieved the best mean accuracy, followed by the PCC-MI-COH,

the PLV-MI-COH, and the PLV-PCC-MI. However, similar to

the mode with two features, the feature modes involving MI still

achieve poor performance; (4) For the mode with combination of

all four features, the mean accuracy and standard deviation (std)

for 15 subjects were 90.16% and 5.24%, respectively, where the

accuracy was the second highest among all feature modes while the

std was the lowest. It indicated that the four feature fusion modes

can achievemore robust performance in emotion recognition tasks.

The detailed accuracy information for all the 15 subjects with all

feature modes was shown in Figure 4. As is displayed in Figure 4A,

the MI almost always achieved relatively low accuracies except

for subject #1, while although the PCC did not always achieve

the best accuracy, its value always kept stable and remained in

the top two among the four features. Moreover, as is displayed

in Figures 4B, C, for all 15 subjects, compared with a single

feature mode, a combination of different number of features

can effectively improve the performance of emotion recognition.

In addition, for each subject, it can be found that compared

with the difference in recognition performance between single

feature modes, after the decision-making layer fusion of features,

the performance difference of emotion classification models after

different combinations of features is smaller. However, the PLV-

PCC-COH almost always achieved best accuracies among all

15 subjects. In summary, combining Table 3 and Figure 4, the

ability of PCC to measure brain functional connectivity (i.e.,

the interactive information between EEG electrodes) may be

better than the other three functional connectivity features. In

addition, for the fusion between features, PLV-PCC-COH is

optimal in overall recognition performance, but the performance

achieved when the four features are combined together is the

most stable.

3.3 Influence of threshold

In this part, we investigate the influence of the threshold to

transform the function connection features into the undirected

graph of EEG channels. Particularly, since the value range of

PLV and COH is between [0, 1], and the value range of

PCC is between [–1, 1], we chose the threshold value for the

three features from the set {0.3,0.4,0.5,0.6,0.7,0.8,0.9}. Since the

maximum value of MI is around 0.65, we chose the threshold

value from the set {0.3,0.35,0.4,0.45,0.5,0.55,0.6}. The average and

detailed results among 15 subjects are shown in Table 4 and

TABLE 3 The mean (standard deviation) accuracy of the proposed model with the four di�erent feature modes (%).

Feature Accuracy Feature Accuracy Feature Accuracy

PLV 86.27 (6.50) PLV-MI 88.30 (5.81) PLV-PCC-MI 89.46 (5.65)

PCC 87.37 (5.55) PLV-COH 89.79 (6.01) PLV-PCC-COH 91.05 (5.54)

MI 83.45 (7.20) PCC-MI 88.52 (5.53) PLV-MI-COH 89.50 (5.92)

COH 86.91 (6.64) PCC-COH 89.86 (5.76) PCC-MI-COH 89.97 (5.63)

PLV-PCC 89.59 (5.63) MI-COH 88.02 (5.97) PLV-PCC-MI-COH 90.16 (5.24)

The bold value represent the highest classification accuracy among all feature modes.
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FIGURE 4

The mean accuracies for the 15 subjects with the di�erent feature modes. (A) The mean accuracies for the 15 subjects with the mode of only one

type of feature. (B) The mean accuracies for the 15 subjects with the mode of combination with two types of features. (C) The mean accuracies for

the 15 subjects with the mode of combination with more than three types of features.

Figure 5, respectively. As is shown in the table, we can conclude that

for each functional connection feature, as the threshold increased,

the feature’s emotion recognition performance would increase.

However, when it increased to a certain threshold, the feature’s

performance would begin to decline. More concretely, when the

thresholds are 0.6, 0.7, 0.35, and 0.4 respectively, the classification

accuracy of PLV, PCC, MI, and COH reaches the peak, respectively.

It may be indicated that the optimal threshold values of the four

features are in the range [0.5, 0.7], [0.6, 0.8], [0.3, 0.4], and [0.3,

0.5].

In addition, according to Figure 5, it is obvious that for each

subject, the optimal threshold is different, but the differences

in the impact of different thresholds on emotion recognition

performance were relatively stable. In other words, for PLV, the
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TABLE 4 The mean (standard deviation) accuracy of the proposed model for the four function connected features with di�erent threshold values (%).

Threshold PLV PCC MI COH

0.30/0.30 77.74 (7.15) 80.75 (7.11) 77.71 (5.69) 80.63 (8.10)

0.40/0.35 81.53 (9.25) 82.51 (6.43) 82.27 (7.41) 83.80 (7.76)

0.50/0.40 83.86 (7.10) 82.54 (7.21) 78.32 (7.49) 83.05 (7.03)

0.60/0.45 84.00 (6.98) 82.31 (8.03) 70.48 (7.16) 81.58 (6.00)

0.70/0.50 81.90 (6.95) 84.48 (7.43) 58.12 (10.58) 79.94 (7.70)

0.80/0.55 76.22 (6.68) 81.50 (6.89) 47.63 (9.28) 75.29 (7.45)

0.90/0.60 61.63 (7.99) 76.00 (6.97) 46.35 (7.42) 61.31 (8.51)

The bold values in a single column represent the highest classification accuracy among all threshold values in each function connected feature.

FIGURE 5

The accuracies of the 15 subjects for the four functional connected features with di�erent threshold values. (A) PLV. (B) PCC. (C) COH. (D) MI.

emotion recognition accuracies achieved when the thresholds are

0.5, 0.6, and 0.7, which were almost always at the forefront

(shown in Figure 5A); for PCC, the emotion recognition accuracies

achieved when the thresholds are 0.6, 0.7, and 0.8, which were

almost always at the forefront (shown in Figure 5B); for COH, the

emotion recognition accuracies achieved when the thresholds are

0.3, 0.4, and 0.5, which were almost always at the forefront (shown

in Figure 5C); and for MI, the emotion recognition accuracies

achieved when the thresholds are 0.3, 0.35, and 0.4, which were

almost always at the forefront (shown in Figure 5D).

3.4 Comparison

Table 5 displayed the classification accuracies of parts of

the state-of-the-art methods with the same training-test set

partitioning strategy, i.e., 9 trials as training set and 6 trials

as testing set for one experiment. As shown in the table,

although the proposed model did not achieve the state-of-the-art

performance, the method still outperforms most methods, which

to some extent demonstrated the effectiveness of the proposed

method. In addition, it can be obviously found that the DE

feature is widely utilized in most methods to recognize emotions,

while the functional connection features are employed relatively

rarely. Therefore, the proposed method also demonstrates the

effectiveness of functional connectivity features in identifying

different emotions.

4 Conclusion and future works

In this study, we proposed a novel method which consists

of the functional connection features, the Laplace matrix, and

the SPDnet to perform the EEG-based emotion recognition,

where the Laplace matrix was utilized to transform the functional

connection features and the SPDnet was utilized to extract the
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TABLE 5 The comparative results of the proposed model with other

works (%).

Method Feature Accuracy

DBN (Zheng and Lu,

2015)

DE 86.06 (8.34)

GELM (Zheng et al.,

2017)

DE 91.07 (7.54)

DGCNNN Song et al.

(2018)

DE 90.40 (8.49)

STRNN (Zhang et al.,

2018)

DE 89.50 (7.63)

GELM (Li et al., 2019) DE, PLV-based ENPs 88.00 (7.00)

LSTM-ATDD (Du et al.,

2020)

DE 91.08 (6.43)

RGNN (Zhong et al.,

2020)

DE, GCN deep features 94.24 (5.95)

GNN (Lin et al., 2023) DE, PLI 90.22 (3.67)

Ours model PLV, PCC, COH, MI 91.05 (5.54)

The bold values in a single column represent the highest classification accuracy among all

methods.

deep spatial information from the transformed features. The

proposed method achieved desirable performance on the SEED

dataset for subject dependent cross-validation with the highest

average accuracy of 91.05%/5.54% subject to the fusion of PLV,

PCC, and COH. In addition, the experimental results showed that

PCC has higher discriminability in identifying different emotions,

while MI had the lowest discriminability. Although there are

differences among the four functional connection features, the

recognition performance were almost similar, especially for PLV,

PCC, and COH, which may indicate that, when emotions are

induced in subjects, the brain functional connections measured

by different functions show a certain degree of stability. However,

experimental results using different thresholds applied for the

four functional connection features can also draw a similar

conclusion. Furthermore, the experiment for different thresholds

also indicated that for each subject, the optimal thresholds for the

four functional connection features always kept relatively stable

within a fixed interval.

However, the current study has certain limitations. We only

tested the proposed model in the SEED dataset, which results in an

inability to fully demonstrate the generalization performance of the

model. Therefore, in future, we will test the model in more public

datasets. In addition, this study briefly discusses the effectiveness of

the proposed method. Of course, there is more information that

can be mined, such as building a brain network and combining

the proposed method with complex networks. Finally, we only

considered the subject dependent cross-validation strategy, since

there are differences between subjects that lead to inconsistent

distribution of EEG data. Therefore, we will further combine the

transfer learning to test the performance of the proposed model

with the subject independent cross-validation strategy.
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