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Introduction: Simulation of biological neural networks is a computationally

intensive task due to the number of neurons, various communication pathways,

and non-linear terms in the di�erential equations of the neuron.

Method: This study proposes an original modification to optimize performance

and power consumption in systems, simulating or implementing spiking neural

networks. First, the proposed modified models were simulated for validation.

Furthermore, digital hardware was designed, and both the original and proposed

models were implemented on a Field-Programmable Gate Array (FPGA).

Results and discussion: Moreover, the impact of the proposed modification on

performance metrics was studied. The implementation results confirmed that

the proposed models are considerably faster and require less energy to generate

a spike compared with unmodified neurons.
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1 Introduction

Inspired by the brain, Spiking Neural Networks (SNNs) represent the third generation

of neural networks where neurons communicate through sparse sequences of spikes. In

comparison to classic Artificial Neural Networks (ANNs), SNNs have a higher learning

and processing speed by considering the timing of events as another variable (Pfeiffer and

Pfeil, 2018). Furthermore, SNNs are orders of magnitude more energy-efficient due to a

low spiking rate and activity. Such networks are also useful for studying biological neural

networks and brain diseases (Pastur-Romay et al., 2016). New learning algorithms for

spiking neural network are also evolving (Yang and Chen, 2023a,b; Yang et al., 2023b). Yang

et al. (2024) proposes a neuromorphic architecture designed for online learning through

dendrites to improve the efficiency of spike-driven learning and enhance the performance

of processing spatiotemporal patterns. A novel fault-tolerant address event representation

approach is proposed the study by Yang et al. (2023a) for the spike information routing to

improve the efficiency and reliability of smart traffic navigation.

Several computational models have been proposed to mimic biological neurons

(Hodgkin and Huxley, 1990; Gerstner and Kistler, 2002; Izhikevich, 2003; Brette, 2005). In

these models, there is often a trade-off between being concise and computationally efficient

or being biologically plausible and complex.

Simulation of SNNs is computationally complex due to the number of neurons, various

communication pathways, and non-linear terms in the differential equations describing
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these models. As implementation platforms, researchers have used

PCs (NeMo, 2024; The Brian Simulator, 2024), supercomputers

(EPFL, 2024), analog (Schemmel et al., 2010; Covi et al., 2015),

digital (Merolla et al., 2011; Akopyan et al., 2015; Barchi

et al., 2019), mixed analog/digital VLSI neuromorphic hardware

(Benjamin et al., 2014; Wang et al., 2014; Neckar et al., 2019), and

FPGAs (Neil and Liu, 2014; Liu et al., 2018; Heidarpur et al., 2019),

to simulate and realize SNNs. Each platform comes with its own set

of strengths and weaknesses. Nevertheless, in all aforementioned

platforms, enhancing speed and minimizing energy consumption

are very important.

An important contributing factor to the computational

complexity of neuron models is calculating non-linear terms

in their differential equations. In view of this, researchers have

proposed a variety of approaches to speed up systems simulating

or implementing spiking neurons where, in general, accuracy

is exchanged for performance. Such methods include Piece-

Wise Linear (PWL) approximation (Yamashita and Torikai, 2014;

Heidarpur et al., 2017), Coordinate Rotation Digital Computer

(CORDIC) (Heidarpour et al., 2016; Elnabawy et al., 2018), an

asynchronous cellular automaton used in Matsubara and Torikai

(2013), a nonlinear function evaluation technique (Jokar et al.,

2019), bit-serial reduced-rangemultipliers (Karim et al., 2017; Kueh

and Kazmierski, 2017), and a novel rotate-and-fire neuron (Hishiki

and Torikai, 2011), among others.

Power dissipation and density are another important concern

and one of the major challenges that need to be resolved for

the massive large-scale implementation of neuromorphic systems.

Total power dissipation is the sum of two components: static

and dynamic power dissipation. Dynamic power is associated

with activity and switching events in the core or I/O of the

device (Rabaey et al., 2003). Power optimization could be at the

circuit, logic, architectural, or system levels (Devadas and Malik,

1995). Various methods, mostly at the circuit and logic levels, are

suggested to reduce power consumption of spiking neural networks

(Lee et al., 2004; Indiveri et al., 2006; Tao and Rusu, 2015; Kohno

and Aihara, 2016). Analysis of static power, which is independent

of circuit activity and primarily from transistor leakage, is out of

the scope of this study.

For computer simulation and digital hardware implementation,

the differential equations describing spiking neurons are discretized

and numerically solved by evaluating them at every time step, even

when a neuron is silent. In this study, through the observation

of both the input current and the derivative of the membrane

potential, we discovered that the amount of computation could be

reduced when a neuron is silent or spikes at a slow rate. Based

on this insight, we proposed a modification to avoid computing

certain terms of the differential equations in the spiking neuron

model. During a fast spiking state, the neuron can switch back

to the full calculation of Ordinary Differential Equations (ODEs).

The proposed technique has the potential to save energy and

time, making it particularly valuable when implementing large

networks. In the case of software implementation, the proposed

improvement over spiking neuron can reduce the total number

of times that ODEs are evaluated and therefore reduce the

total number of computation required for simulating neuron.

In this study, software simulations were performed to measure

the improved efficiency resulted from applying proposed method.

Additionally, in the case of hardware implementation, the proposed

method reduces the total number of computation required and also

saves the energy consumption, which is the most useful if devices

are operated on battery. The main focus of the paper remains the

advantages of proposed method for hardware implementation.

As a case study, the Izhikevich neuron model (Izhikevich,

2003) was modified using the proposed technique and further

simulated for validation. Additionally, a network consisting of both

the original and modified models was developed, trained, and

implemented on hardware to study the effects of the proposed

modification on both accuracy and performance.

The rest of the study is organized as follows: Section 2

reviews the Izhikevich neuron and presents the proposed method

to save computations in neuronal differential equations. Section

3 investigates the validity of the proposed models through

error analysis and studies their impacts on computer simulation

performance. Section 4 discusses the FPGA implementation

procedure and how the proposed modification optimizes energy

consumption and speed of hardware. Finally, Section 5 concludes

the study.

2 Proposed duplex neuron

This section presents a modification to optimize performance

and power consumption in systems simulating or implementing

spiking neural networks.

2.1 Background

Researchers have presented various models to simulate and

study the behavior of biological neurons. These models are

formulated as coupled differential equations that need continuous

evaluation over time, which typically involves numerical methods

since spiking neuron models do not have analytical solutions.

Furthermore, bifurcation analysis helps to study qualitative changes

in the dynamics of neuron as a function of certain parameters, such

as synaptic strengths, time constants, or external inputs (Izhikevich,

2007). One of the bifurcation parameters, determining the states

of a neuron, transitioning from silent to firing, and influencing its

rate, is the input current. In Figure 1, the simulation of two well-

known spiking neuron models, Hodgkin–Huxley (HH) (Hodgkin

and Huxley, 1990) and Izhikevich (Izhikevich, 2003), is depicted

for a constant input current. The Hodgkin–Huxley (HH) neuron

model is a mathematical model that describes the generation and

propagation of action potentials, or spikes, in biological neurons,

whereas the Izhikevich neuron model is a simplified model that

aims to capture essential features of neuronal dynamics while

minimizing computational complexity

In Figure 1A, the membrane potential (V) of a Hodgkin–

Huxley neuron is demonstrated when the input current (or its

integral over time) is sufficiently high in transition of the neuron

from silence to firing. The derivative of the membrane potential

over the dotted line in Figure 1A is shown in Figure 1B. In this

state, which we further refer to as the quasi-static (QS) state,
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A B C

D E F

FIGURE 1

Computer simulation of Hodgkin-Huxley and Izhikevich neuron model for a constant input current. (A, D) Action potential of neurons. (B, E)

Derivative of action potential during Quasi-Static (QS) state. (C, F) Derivative of action potential during firing state (FS).

A B

FIGURE 2

One thousand Izhikevich neurons were randomly coupled and simulated for 1,000 ms following the method in the study by Izhikevich (2003). (A)

Spike raster diagram where each dot represents a specific neuron spiking at a specific time. (B) Distribution of number of spikes for neurons in the

network.

the derivative tends to remain almost constant with very small

changes. The derivative of the membrane potential over the dashed

line in Figure 1A is depicted in Figure 1C. The value of the

derivative for this state [hereafter referred to as the Firing State

(FS)] is considerably larger compared with that over the dotted

line. The same scenario also applies to the Izhikevich neuron, with

the corresponding simulations shown in Figures 1D–F. What is

interesting is that for the Hodgkin–Huxley neuron, the quasi-static

state makes up ∼75% of the spiking period, which is a significant

portion. This percentage for the Izhikevich neuron is even higher,

roughly∼95%. The Izhikevich neuron is in the firing state for only

∼5% of a spike period.

The previous paragraph studied neuron behaviors while spiking

consistently. To further investigate the behaviors of spiking

neuron models, 1,000 Izhikevich neurons were randomly coupled

and simulated according to the method utilized in reference
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(Izhikevich, 2003). Figure 2A shows the spike raster diagram for

this network. Raster diagram provides a visual representation of the

timing of action potentials or spikes across multiple neurons over

time. Each vertical line in this diagram represents the occurrence

of a spike, and the horizontal axis corresponds to time. Raster

diagrams provide an intuitive and informative way to visualize

the precise timing of spikes from individual neurons and can

be used to study the patterns of spike synchrony or specific

temporal relationships. Coherent activity could be observed as

vertical columns of dots, which is similar to the temporal synchrony

(alpha and gamma band rhythms) of neurons observed in biology

(Vaidya and Johnston, 2013).

Distribution of number of the spikes for the neurons in this

network is presented in Figure 2B. As this figure indicates, most of

the neurons (almost 90 %) spike between 6 and 24 times during 1

s of simulation and are silent rest of the time. This indicates the

potential of the proposed modification to save computation in a

spiking neural network.

In the following sections, Izhikevich neuron was considered

as case study, where the proposed method was applied to

a single neuron and also an spiking neural network to

evaluate performance.

2.2 The duplex neuron

Izhikevich neuron is a two-dimensional model consists of two

coupled ODEs as follows:

dv

dt
= 0.04v2 + 5v+ 140− u+ I (1)

du

dt
= a(bv− u) (2)

along with an after-spike reset equation as follows:

if v > 30mv then

{

v→ vr
u→ wr = u+ d.

(3)

where v represents membrane potential, u is recovery variable, and

I stands for injected current to the neuron. Other dimensionless

parameters are as follows:

a : Time scale of the recovery variable

b : Sensitivity of the u to v

c : After-spike reset value of v

d : After-spike reset value of u

By regulating these parameters, the Izhikevich model can

mimic different neuronal behaviors observed in biological neurons.

To simulate this model, Equations 1, 2 were discretized as follows:

v[n+ 1] = (0.04 v[n]2 + 5v[n]+ 140− u[n]+ I[n])dt + v[n]

u[n+ 1] = a(bv[n]− u[n])dt + u[u]

(4)

and numerically solved using the Euler method.

Figure 3A shows simulation of a tonic spiking Izhikevich

neuron stimulated with a constant input current. The neuron

parameters for this simulation are: a = 0.02, b = 0.2, I = 4 mA,

and dt = 1/32 ms. Figure 3B plots the derivative of the membrane

potential (v[n+ 1]− v[n]). As shown in this figure, the derivative is

approximately constant and close to zero (quasi-static state), except

when the neuron membrane goes up for a spike (firing state). The

small value of the derivative for the quasi-static state implies a small

change in action potential when the neuron is in the quasi-static

state or when it is silent. To benefit from this property, Equation 4

was modified as follows:

1: if |v[n+ 1]− v[n]| > δ then

2: α ← 0.04 v[n]2 + 140− u[n]

3: β ← a(bv[n]− u[u])

4: else

5: do nothing

6: end if

7: v[n+ 1] = (α + 5v[n]+ I[n]) dt + v[n]

8: u[n+ 1] = (β) dt + u[u]

Algorithm 1. Proposed duplex neuron.

When the neuron is silent or in the quasi-static state, α and β

do not change significantly, and the last values of these parameters

can be used to evaluate neuron ODEs instead of calculating them

every time. The modified model is hereafter referred to as the

Duplex (DX) neuron. The term 5v[n] was excluded from α since the

coefficient is relatively larger than other parameters, considering

that it constant affects neuron behaviors. The parameter δ is the

threshold value that determines whether it is necessary to update

α and β or if the last updated value is still valid. A larger value of

delta results in greater computational savings but induces higher

error and vice versa. Therefore, determining the proper δ is a

compromise between accuracy and performance. In the following,

we investigate this trade-off.

3 Computer simulation

This section investigates the impacts of proposed modification

on error and performance of a single and a network of

Izhikevich neurons.

3.1 Error analysis

The objective of this section is to investigate whether the

neurons with the proposed modification still have a valid behavior,

which is similar to unmodified neuron.

3.1.1 Qualitative comparison
First, for qualitative comparison, proposed duplex Izhikevich

neurons were simulated for different values of the δ, as shown in

Figure 4. As shown in this figure, even for greater values of delta

such as δ = 0.2 mv, besides small oscillations, the membrane
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A B

FIGURE 3

Simulation of a tonic spiking Izhikevich neuron which is stimulated with a constant current (Equation 4). (A) Membrane potential v[n] and (B)

membrane potential derivative v[n+ 1]− v[n].

A B C

D E F

G H I

J K L

FIGURE 4

(A–L) Computer simulation of a tonic spiking/bursting Izhikevich and proposed duplex Izhikevich neuron for di�erent values of δ. As it is evident in

this figure, even for large values of δ such as 0.2 mv, besides small oscillations, waveform of the membrane potentials (v) are close to those of the

unmodified model.

potential waveform of the proposed duplex neuron is close to

that of the model which constantly evaluates the entire differential

equation. Nevertheless, proposed modification evidently results in

some discrepancies in timing of spikes.

3.1.2 Quantitative comparison
In the following, the deviations in the previous section were

quantified by calculating the following errors:

Normalized root mean square deviation (NRMSD): This error

was calculated to measure the deviation induced by different values

of δ to the shape of the membrane potential waveform. Higher

resemblance between the form of the spikes results in a lower value

for this error. This error is calculated as follows:

NRMSD =

√

(
n
∑

i=1
(vUn(n)− vDX(n))2)/(n)

vUnmax − vUnmin
× 100 (5)

where VDX and VUn are waveforms of the duplex and unmodified

Izhikevich neurons. vUnmax and vUnmin are the minimum and

maximum of membrane potential (v) between v[1] and v[n], where

n is the total number of points that this error is evaluated.

Timing error (TE): This error measures the difference in the time
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TABLE 1 Errors, computer saving percentage, and speed up percentage

for computer simulation of proposed duplex neuron on the basis of δ (mv).

δ
(mv)

TE%
(Eq. 6)

NRMSD%
(Eq. 5)

CSP%
(Eq. 7)

Speed up
% (Eq. 8)

0.001 0.04 0.11 00.3 2.52

0.005 1.87 0.12 58.2 10.47

0.010 6.67 0.31 85.3 16.78

0.050 18.25 1.12 91.8 18.19

0.100 20.74 1.51 92.3 18.31

0.200 23.22 1.79 93.7 18.53

The neuron was stimulated with a constant input current of 4 mA.

FIGURE 5

To study behavior of the modified model, a three-layer network of

the Izhikevich neurons was developed and trained according to the

method presented in references Christophe et al. (2015) and Farsa

et al. (2019).

interval between two consecutive spikes and is calculated as follows:

TE =

∣

∣

∣

∣

1tsUn −1tsDX

1tsUn

∣

∣

∣

∣

× 100 (6)

where 1tsUn and 1tsDX are spike periods of the unmodified and

proposed duplex Izhikevich neuron.

These errors were calculated for a tonic spiking Izhikevich

neuron which was simulated with an input current of 4 mA and

a time step of 1/32 ms and are presented in Table 1. As data in

this table indicate, these errors are higher for larger values of δ.

However, the increase rate almost levels out for δ > 0.01 mv.

3.1.3 Network behavior
To study the behavior of the proposed duplex model in an

application, a basic three-layer network of Izhikevich neurons

was constructed, as shown in Figure 5. The network comprises

42 neurons in the first layer, seven neurons in the second layer,

and, finally, one neuron in the output layer. This network was

trained using the Spike Time Dependent Plasticity (STDP) rule to

recognize two patterns of E and H, following the method used in

references Christophe et al. (2015) and Farsa et al. (2019). First,

weights were initialized randomly. Furthermore, the network was

stimulated with the pattern E during the training phase. In the next

phase, both patterns of E andH were applied randomly to the input

of the network to test its validity. For more details, please refer to

references Christophe et al. (2015) and Farsa et al. (2019).

To evaluate the behavior of the proposed models, the network

was trained with both duplex and original Izhikevich neurons.

Figures 6A, C show the membrane potential of the output neuron

for the original and the modified model with δ = 0.05 mV. The

corresponding raster diagram for the networks during the training

and testing phases is shown in Figures 6B, D. In the previous

section, the input current of the neuron was presumed to be

constant. On the other hand, in a practical application or biology,

the input current is not steady and may abruptly change. The

results of this test confirm that the behavior of the proposed duplex

neuron remains close to the original model even with interrupted

input currents.

3.2 Performance analysis

This section investigates the impacts of proposed modification

on computer simulation performance.

3.2.1 Single neuron
In the proposed duplex neuron, there is no need to compute α

and β terms (Algorithm 1) constantly. The percentage of iterations

that these terms are computed in the duplex neuron to the total

number of iterations determines the performance improvement.

Therefore, Computation Saving Percentage (CSP) was defined and

formulated as follows:

CSP =
Number of iterationsα andβ are not computed

Total number of iterations
× 100 (7)

CSP for different values of δ is presented in Table 1. According

to the results in this table, for δ > 0.01, more than 90% of the

time, there is no need to constantly calculate the square function

in Izhikevich neuron ODEs. To study performance improvement,

original and duplex neurons with different values of δ were

simulated for 20 s in MATLAB software, and total execution

times were measured to calculate the Speed Up Percentage (SUP)

as follows:

Speed up =
TDX − TUn

TUn
× 100 (8)

where TDX and TUn are execution time of proposed duplex and

unmodified Izhikevichmodel, respectively. Speed up percentage for

various values of δ is presented in Table 1. As data suggest, speed up

is higher for larger values of δ. Nevertheless, following the pattern

of errors, speed up also levels out after δ > 0.01 mv.

3.2.2 Neurons in a network
The neuron in the previous section was stimulated with a

constant current to spike continuously. However, as discussed

before, this is not the case in a network of spiking neurons.

Therefore, it is expected that the proposed duplex neuron features

even better performance improvement in a network. To investigate
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A B

C D

FIGURE 6

The network in Figure 6 was trained using the method described in Christophe et al. (2015) and Farsa et al. (2019). (A, B) Shows the output neuron

membrane potential and network raster diagram during testing phase for unmodified model. (C, D) Shows the same diagrams for the proposed

duplex Izhikevich neuron. The objective of this figure is to demonstrate that the network behavior of the modified model is similar to that of the

original model.

FIGURE 7

Distribution of computation saving percentage for the neurons in network of Figure 5 based on layer. Computation saving percentages were

measured during a testing phase. (A) Neurons with δ = 0.005 mv, (B) Neurons with δ = 0.05 mv, and (C) Neurons with δ = 0.1 mv. This figure

indicates that computation-saving percentage of the proposed modified model is even higher in a network, where the neuron is not active all the

time in comparison with a single neuron that is stimulated with a constant input current (results in Table 1).

this, the computation saving percentage for each neuron in the

network, as shown in Figure 5, was calculated during the testing

phase. The results for neurons in each layer are presented in

Figure 7 on the basis of δ.

Figure 7 column (A) shows the computation saving percentage

for duplex neurons with δ = 0.005 mV. Such CSPs are much

higher than those calculated for the neurons with a constant input

current (Table 1). Indeed, even for the neurons with relatively small

δ, which have very low error, the computation saving percentage is

considerable in a practical application.

3.2.3 Input current
Higher spike rate results in shorter QS period during a spike.

This, in turn, leads to lower computation saving percentage and, as

a consequence, lower performance improvement.

Figure 8 shows the computation saving percentage as a function

of the input current. As it is evident in this figure, computation

saving percentage is lower for larger input currents.

In contrary, the quasi-static state makes up the majority of the

time for the neurons that rarely fire. Therefore, for silent neurons,

the proposed modification saves more computation. In addition to

improving execution time, proposed modification also saves energy

by decreasing switching activity during simulation.

4 Hardware implementation

This section discusses hardware design and implementation of

the proposed duplex neuron models on FPGA and interpretation

of results.
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FIGURE 8

Computation saving percentage as a function of the input current.

The higher value of the input current results in higher activity,

smaller QS state period, and, consequently, declining computation

saving percentage.

4.1 Hardware design

The Data Flow Graph (DFG) for digital implementation of the

discretized Izhikevich equations (Equation 4) and reset equation

(Equation 3) is shown in Figure 9.

In this illustration, addition, subtraction, and multiplication

operations are represented as circles. A comparator andmultiplexer

determine whether the neuron is in the quasi-static state or the

firing state by comparing the updated value of the action potential

(v[n + 1]v[n + 1]) with its previous value (v[n]v[n]). As shown in

this figure, if the neuron is in the quasi-static state, the critical path

is shorter, and there is no need to compute the square term, which

is the slowest and most complex operation.

Values of α and β are stored in two registers (shown as

rectangles). The operation units are scheduled in a way that no

more than two adders are needed at any time. Arithmetic shift

operations are denoted by “≪” symbol, where “≪2” indicates

that data shifted twice to the left. Multiplication with constants is

performed using add and shift operations. For instance, 0.04× v[n]

was calculated as follows:

0.04× v[n] ≈ (0.0396)v[n] = (2−11 + 2−7 + 2−5)v[n]

= (v[n] << 11)+ (v[n] << 7)+ (v[n] << 5)
(9)

Such approximation causes a small error; however, it

considerably improves the performance of the design. A CORDIC

algorithm, as presented in the study by Heidarpur et al. (2019),

was used to perform the square function in neuron ODEs.

Fixed-point arithmetic was utilized since fixed-point units are

considerably cheaper and faster compared with floating-point

units. Furthermore, the word length of the design was determined

considering the number of integer bits to represent variables

in their domain and the number of fraction bits for the

minimum required precision. Additional bits were also added

to avoid overflow or underflow. Taking these requirements into

consideration, a 30-bit word length was specified, comprised of a

14-bit fraction and a 16-bit integer part.

FIGURE 9

Data flow graph for digital implementation of proposed duplex

Izhikevich neuron. A comparator and multiplexer determine

whether a neuron is in the quasi-static state (QS bracket) or the

firing state (FS bracket) by comparing the updated value of action

potential (v[n+ 1]) with its previous value (v[n]). As shown in this

figure, if neuron is in quasi-static sate, critical path is shorter, and

there is no need to compute square term which is slowest and most

complex operation.

4.2 Hardware implementation

To implement the design on FPGA, the

architecture, as shown in Figure 9, was modeled

in Very High-speed integrated circuit Hardware

Description Language (VHDL). The design was

verified by simulating and testing using ModelSim

software. Subsequently, the HDL description was

synthesized and configured for FPGA implementation

using Xilinx Integrated Synthesis Environment (ISE)

software tool.

4.2.1 A single neuron
Figure 10 shows membrane potential of a tonic

spiking/bursting Izhikivech and a duplex proposed neuron

for different values of δ on Spartan 6 XC6LX75 FPGA. The

data were converted to analog using a 12 bit Digital to Analog

Converter (DAC).
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FIGURE 10

(A–L) Oscilloscope photos of FPGA implementation of a tonic spiking/bursting Izhikivech and duplex proposed neurons with di�erent values of δ.

The input current for all of these case is 16 mA. The oscilloscope time scale and volt scale for all of figures are 1 ms and 100 mv, respectively. This

figure demonstrates that the proposed hardware for the modified Izhikevch neuron has the same behavior as the hardware of the original neuron.

FIGURE 11

The on-FPGA data were transferred to PC through UART port, recovered and plotted for the Izhikevich neuron (red lines) and proposed duplex

neuron with di�erent values of δ (black lines). Duplex neurons with relatively large δ, such as 1/8 mv, still follow the unmodified model except for

small changes in the shapes of spikes.

As this figure demonstrates, even for large values of δ, such

as 0.128 mv, the duplex model still follows the original model.

However, by increasing δ, one can observe some differences in the

shapes of spikes. The input current for all neurons is the same,

but spike rate for neurons with larger δ are higher since they have

higher throughput.
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FIGURE 12

(A–F) Oscilloscope photos of FPGA implementation of the network of Izhikevich neurons in Figure 5 for a very basic pattern recognition application.

The pulses with higher amplitude indicate where the letter “E” is applied to the network, and pulses with lower amplitudes stand for the letter “H.” The

output neuron spikes when “E” is applied and is silent otherwise. The oscilloscope time scale for all figures is 10 ms. The oscilloscope volt scale for

figures showing the membrane potential of the output neuron is 200 mV and for figures showing patterns is 2V. The objective of this figure is to

demonstrate that the hardware designed for the modified model has the same behavior in a network as unmodified Izhikevich neurons, despite the

fact that the network of the modified models is computationally cheaper and consumes less energy because of lower switching activity.

To transfer data from FPGA to PC for further analysis, a

Universal Asynchronous Receiver-Transmitter (UART) module

was developed and implemented on FPGA as described in the

reference Heidarpur et al. (2019). Transferred data are presented

in Figure 11. As it is evident in this figure, the proposed and

unmodified model has a similar membrane potential waveform

apart from some deviations in the shape of spikes. These

implementation results are in agreement with computer simulation

results in Computer Simulation Section, as presented in Figure 4

and Table 1.

4.2.2 A network of neurons
The network, as shown in Figure 5, was described in VHDL

and implemented on Spartan 6 XC6LX75 FPGA. Figure 12 shows

oscilloscope photos of membrane potential of output neuron of the

network while tests are applied to the network. Figure 12A shows

the result for the network of the unmodified Izhikevich neurons

where the output neuron spikes for “E” and is silent for “H.”

Thereafter, the same network with proposed duplex neurons was

implemented on FPGA.While implementingmodifiedmodels with

different values of δ, we faced two unexpected challenges.

First, in the unmodified Izhikevich neuron, all neurons generate

new output after a certain number of the clock cycles and have the

same throughput. However, for the duplex neuron, this number

could be different for each neuron depending on its input weights.

Transferring data from one layer to the next layer requires that all

neurons action potentials of that layer to be updated. Therefore,

the slowest neuron determines the critical path, and faster neurons

must wait in idle state for others to finish.

Second, the proposed modification results in discrepancy in

timing of the spikes since the duplex neurons are faster than

unmodified neurons. On the other hand, SNNs are primarily based

on timing. Because of that, the network, initially, did not function

properly with the weights calculated based on the original neuron

and was not able to recognize all instances of input patterns.

For larger values of δ, where the speed up was more dramatic,

overall network failure rate was higher. To resolve this issue, the

weights were recalculated by applying STDP rule to network of

duplex neurons. Figure 12 shows oscilloscope photos of FPGA

implementation of the trained network, where two test patterns are

applied to network. It could be observed in this figure that the on-

FPGA network of duplex neurons, even for large values of δ, has the

same behavior as the network of original Izhikevich neurons.

4.3 Results and discussion

The objective of the proposed modification is to reduce the

number of the clock cycles required to generate an output. This

contributes to increasing speed and reducing power consumption

of the circuit. Table 2 compares resource utilization and operation

frequency for FPGA implementation of the original and duplex

modified Izhikevich neuron. The proposed modification does

not result in a notable increase in resources that are needed to

implement the neuron hardware on FPGA. Furthermore, resources

and frequency are comparable to similar studies. Some studies

reported low resources but they use extensive approximations and

are not very accurate replicators of Izhikevich neuron. Table 3

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1333238
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Heidarpur et al. 10.3389/fnins.2023.1333238

TABLE 2 Comparison between resource utilization and frequency of the proposed method and previously published studies.

References Slice registers Slice LUT’s Frequency DSPs Device

Soleimani et al. (2012) 493 617 241.9 0 Virtex-II Pro XC2VP30

Haghiri et al. (2018) 490 459 240 0 Virtex-II Pro

Yang et al. (2020) 130 119 291.8 - ZCU102

Jokar et al. (2019) 195 198 285 0 Virtex-6

Grassia et al. (2014) 646 1,048 105 22 Virtex-5 XC5VLX50

Heidarpour et al. (2016) 829 1,221 134.3 0 Spartan-6 XC6SLX9

Shimada and Torikai (2015) 357 1,776 – – Zync-7000 XC7Z020

Original Izhikevich 270 469 212.8 0 Spartan-6 XC6SLX75

Duplex Izhikevich 297 532 171.9 0 Spartan-6 XC6SLX75

Objective of this study is not to reduce resource utilization or increase the frequency of design but rather to skip unnecessary computations to save power and reduce latency of the neuron.

TABLE 3 On FPGA dynamic power, total number of clock cycles and total time required for unmodified and proposed DX Izhikevich neurons with

di�erent values of δ (mv) to generate a spike.

Unmodified δ =1/1,024 δ =1/256 δ =1/128 δ =1/16 δ =1/8

Dynamic power (mW) 11 6 6 6 6 6

Number of clocks 122,400 120,788 114,704 73,780 37,312 32,200

Total time (ms) 2.45 2.42 2.30 1.47 0.74 0.65

FIGURE 13

Speed up percentage for on-FPGA duplex models with di�erent

values of δ (mv) (Algorithm 1). Speed up percentage is considerably

higher for larger values of δ while the neuron behavior does not

change notably as demonstrated before.

shows on-FPGA dynamic power consumption reported by Xilinx

Power Estimator (XPE), and the number of the clock cycles and

time is required to generate a spike.

4.3.1 Speed
As data in Table 3 indicate, proposed modification, especially

for larger values of delta, considerably decreases total computation

time per spike. Furthermore, speed up percentage was calculated

according to Equation 8 and compared as follows

Speed up =
TUn − TDX

TUn
× 100 (10)

where TUn and TDX are total computation time per spike for

unmodified and duplex Izhikevich neuron. This percentage was

calculated and compared for different values of delta, as shown in

Figure 13. As this figure indicates, models with δ = 1/8 mv and

1/16 mv require almost 70% less computation time to generate

a spike.

4.3.2 Power dissipation
Reported by XPE, original Izhikevich model dynamic power

on FPGA is almost double of those of the modified models. These

powers were calculated for operation frequency of 50MHz, which is

the frequency of on-board oscillator. The total energy consumption

per spike (Eps) could be calculated as follows:

Eps = PdTs (11)

where Pd is dynamic power and Ts is total time to generate an spike.

Eps for unmodified and proposed duplex Izhikevich

models with different values of δ is presented in Figure 14.

As results indicate, proposed models considerably reduce energy

consumption per spike. This is because proposed modification not

only decreases switching activity of the circuit but it also reduces

total computing time. This applies to the trained network as well.

As shown in Figure 12, the network with δ = 1/8 mv can process

patterns almost 2.5 times faster, which also results in less switching

and energy consumption as well.

4.3.3 Impact of input current
To calculate the total number of clocks required to generate a

spike and energy consumption measurements, it was assumed that

input current of the neuron is 16 mA. Changing the input current

will affect the results that presented in the previous section. As

discussed in the previous sections, increasing input current results
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FIGURE 14

Energy consumption per spike for on-FPGA unmodified and

proposed duplex Izhikevich neuron on the basis of δ. The proposed

modified neuron consumes considerably lower amount of energy

due to its lower switching activity.

FIGURE 15

Speed up percentage for on-FPGA proposed duplex Izhikevich

neuron with δ = 1/128 mv as a function of input current. The

hardware for the modified model is faster for smaller values of the

input current. By increasing the input current, the rate of which the

speed up percentage declines becomes slower. This demonstrate

that the proposed modification is most useful when neuronal

activity is low.

in a higher spike rate and decreasing ratio of quasi-static state

period to the total period of a spike. This, in turn, leads to a lower

speed up percentage.

Figure 15 shows on-FPGA speed up percentage (Equation 10)

for the duplex neurons as a function of the input current. As

this figure demonstrates, SUP is considerably higher for smaller

input currents. This denotes that the proposedmodification is most

useful when neuronal activity is low.

5 Conclusion

In this study, a novel modification to neuron differential

equations was presented to avoid unnecessary computation while

simulating neurons on computers or implementing them on

hardware. The proposed method is inspired by biology and benefits

from the fact that most biological neurons are either silent or fire

with a very slow rate. First, the proposed models were simulated

for validation both as a single neuron and as a part of a network of

neurons trained using STDP. Second, the impact of the proposed

modification was studied on computer simulation performance

in terms of the total time required to simulate neurons. The

results show that the proposed modification can avoid unnecessary

computations from 20 to 90 % and speed up simulation time from

2 to 18 % depending on the value of δ, input current, and time

step. Furthermore, hardware was designed, described in VHDL,

and simulated and implemented on FPGA. Implementation results

indicated that the proposed modification accelerates the speed of

hardware up to 70 %. The results for energy consumption also

revealed that the proposed models can reduce energy consumption

per spike from 50 % to 1/7th of its value for an unmodified neuron.
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