
Frontiers in Neuroscience 01 frontiersin.org

Realizing asynchronous 
finite-time robust tracking control 
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In this study, a novel nonfragile deep reinforcement learning (DRL) method was 
proposed to realize the finite-time control of switched unmanned flight vehicles. 
Control accuracy, robustness, and intelligence were enhanced in the proposed 
control scheme by combining conventional robust control and DRL characteristics. 
In the proposed control strategy, the tracking controller consists of a dynamics-
based controller and a learning-based controller. The conventional robust control 
approach for the nominal system was used for realizing a dynamics-based baseline 
tracking controller. The learning-based controller based on DRL was developed 
to compensate model uncertainties and enhance transient control accuracy. The 
multiple Lyapunov function approach and mode-dependent average dwell time 
approach were combined to analyze the finite-time stability of flight vehicles with 
asynchronous switching. The linear matrix inequalities technique was used to 
determine the solutions of dynamics-based controllers. Online optimization was 
formulated as a Markov decision process. The adaptive deep deterministic policy 
gradient algorithm was adopted to improve efficiency and convergence. In this 
algorithm, the actor–critic structure was used and adaptive hyperparameters were 
introduced. Unlike the conventional DRL algorithm, nonfragile control theory 
and adaptive reward function were used in the proposed algorithm to achieve 
excellent stability and training efficiency. We demonstrated the effectiveness of 
the presented algorithm through comparative simulations.
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1 Introduction

Aerospace technology has developed rapidly since the 20th century (Wang et al., 2021; 
Giacomin and Hemerly, 2022; Wang and Xu, 2022). To satisfy the requirements of scientific 
exploration, military attack, transportation, industrial assistance, and other domains (Bao et al., 
2021), flight vehicle systems are becoming increasingly complex (Wu et al., 2021; Lee and Kim, 
2022). As an effective tool for the analysis of complex nonlinear systems, switched systems 
exhibit considerable potential for use in fast time-variation (Hu et al., 2019), full envelope, 
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structural model mutation (Grigorie et al., 2022), re-modeling (Yue 
et al., 2019), among others (Chen et al., 2022; Yang et al., 2022).

Switched systems are a critical component of a series of discrete/
continuous subsystems, and a switching signal controls the switching 
logic between these subsystems (Zhang et al., 2019). The switched 
system exhibits considerable potential for use in theoretical research 
and engineering applications (Sun and Lei, 2021), such as modeling 
(Huang et al., 2020), stability analysis (Yang et al., 2020; Zhang and 
Zhu, 2020), and control problems (Gong et al., 2020; Xiao et al., 2020). 
The stability analysis of the switched systems is typically used for 
controller design (Liu et al., 2020). The common Lyapunov function 
(CLF) method is widely used for stability analysis of arbitrary 
switching (Jiang et al., 2020). However, ensuring that a CLF is shared 
by all the subsystems remains challenging. This method is conservative 
to some degree, which leads to the research is required on the MLF 
and average dwell time (ADT) methods. Zhao et  al. (2012) first 
studied the stability of the switched systems with ADT switching. In 
another study, the linear copositive function was extended to the MLF, 
and the multiple linear copositive Lyapunov function method was 
used to obtain a sufficient stability criterion for switched systems 
(Cheng et al., 2017). To obtain tight bounds on the dwell time, the 
mode-dependent average dwell time (MDADT) method was proposed 
to overcome the sharing problem of common parameters, and the 
worst cases were considered in the ADT method. The results were 
extended to a general case, and the properties of subsystems were 
considered. Generally, unstable modes may exist during the switching 
intervals. Therefore, a piecewise multi-Lyapunov function method was 
proposed in Zhao et al. (2017) for the stability analysis of unstable 
modes. To avoid dwelling for a long time in subsystems with poor 
performance and considering the MDADT methods, the slow 
switching is typically applied to stable modes, and fast switching is 
applied to unstable modes. Xu et al. (2019) proposed a time-dependent 
quadratic Lyapunov function method to solve the stability problem 
with all subsystems unstable. The bounded maximum ADT method 
is used to obtain the stability conditions of the linear switched system. 
However, these studies have only focused on infinite-time stability, 
whereas in finite time, the performance of the systems cannot 
be guaranteed. Unlike conventional Lyapunov stability, the FTS can 
achieve superior transient performance in finite time. Wei et al. (2020) 
proposed a novel MDADT switching signal. The dynamic 
decomposition technique was used to generate the switching signals, 
and sufficient conditions for FTS were detailed. For nonlinear 
switched systems with time delay, the Lyapunov-Razumikhin 
approach and Lyapunov-Krasovskii function method were used to 
investigate FTS problems (Wang et  al., 2020). Furthermore, the 
tracking control is widely applied in flight vehicles (Liu et al., 2021). 
The finite-time tracking control problems in Wang et  al. (2017) 
furthers research on finite-time robust tracking control of switched 
flight vehicles.

The tracking control problem for uncertain systems is investigated 
as follows (Liu et al., 2019; Chen et al., 2020; Lu et al., 2022): (1) 
constant parameter control, such as robust control, proportional 
integral derivative control, and optimal control, in which the worst 
case is considered for the bounded uncertainties and disturbances; (2) 
variable parameter control, such as adaptive and observer-based 
controls, in which the uncertainties and disturbances are compensated 
in real time; (3) learning-based control policy, such as reinforcement 
learning, which compensates uncertainties without prior knowledge 

and learns a control law through trial and error. In constant parameter 
control, the model uncertainties and external disturbances are 
assumed to be  bounded with known boundaries, which result in 
performance degradation and conservative control laws. The variable 
parameter control method can be used to mitigate the problem of 
time-varying uncertainties with unknown boundaries. However, the 
model uncertainties are assumed to be linearly parameterized with 
predefined structure and unknown time-varying parameters. The 
learning-based control method can be used for addressing system 
uncertainties with unknown boundaries and unknown structures 
(Yuan et al., 2017). However, this method cannot ensure stability, and 
computational complexities increase. A novel model-reference 
adaptive law and a switching logic were developed for uncertain 
switched systems. Ban et al. (2018) designed an H∞ controller for 
polytopic uncertain switched systems. Introducing scalar parameters 
reduced the conservatism of the linear matrix inequality (LMI) 
conditions and simultaneously ensured robust H∞ performance of the 
system. The problems of nonfragile control for nonlinear switched 
systems considering actuator failures and parametric uncertainties 
were studied in Sakthivel et  al. (2018). The Lyapunov-Krasovskii 
function method and ADT approach were used to design a nonfragile 
reliable sampled-data controller. These studies have focused on control 
in the ideal environment. However, in practice, because of the 
limitation of network bandwidth, a network delay and packet loss 
always exist, which cause inevitable asynchronous switching. Thus, the 
control switching lags behind state switching. This phenomenon 
results in performance degradation and instability. Li and Deng (2018) 
investigated the pth moment exponential input-to-state stability (ISS) 
of the switched systems with asynchronous switching. The indefinite 
differentiable Lyapunov function was combined with ADT to establish 
the ISS conditions of the switched systems with Lévy noise. The 
conclusion of these results (Zhang and Zhu, 2019) were generalized in 
Li and Deng (2018), and the ISS problems, stochastic-ISS, and 
integral-ISS for asynchronously switched systems with asynchronous 
switching were investigated. Fast ADT switching was introduced to 
mitigate the increase in the Lyapunov-Krasovskii function when active 
subsystems matches the controller. However, in most existing results 
on controller design for flight vehicles, although stability and 
robustness can be attained, achieving optimal control performance in 
real-time challenging.

With improvement in the calculating ability of computing devices, 
machine learning has been widely applied in many fields, including 
the control field (Cheng and Zhang, 2018; Guo et  al., 2019; 
Gheisarnejad and Khooban, 2021). Xu et al. (2019) proposed a model-
driven DDPG algorithm for robotic multi-peg-in-hole assembly to 
avoid the analysis of the contact model. A feedback strategy and a 
fuzzy reward function were proposed to improve data efficiency and 
learning efficiency. In Tailor and Izzo (2019), optimal trajectory for a 
quadcopter model in two dimensions was investigated. A near-
optimal policy was proposed to construct trajectories that satisfy 
Pontryagin’s principle of optimality through supervised learning. With 
improved aircraft performance, the guidance and control system 
require rapidity, stability, and robustness. Therefore, deep learning and 
the exploration of reinforcement learning are an effective solution to 
this problem, which cannot be solved using conventional control. 
Cheng et al. (2019) and Gaudet et al. (2020) studied the fuel-optimal 
landing problems based on DRL. The optional control algorithms 
were designed considering the uncertainties of environment and 
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system parameters by using deep neural networks and policy gradient 
methods to ensure the real-time performance and optimality of the 
landing mission. The design of the reward function is a critical factor 
for controller/filter design with DRL. In this method, the final 
performance of the training networks was determined but not treated 
satisfactorily. This study is motivated to solve this problem.

However, the methods proposed in Tailor and Izzo (2019) and 
Gaudet et al. (2020) could not ensure the robustness and stability of 
the given system. Considering the advantages and limitations of the 
model-based and model-free methods, we proposed a novel nonfragile 
DRL for achieving asynchronously finite-time robust tracking control 
of switched flight vehicles. In this method, the best compromise was 
realized between system stability, robustness, and rapidity. The 
intelligent controller based on nonfragile H∞ control and DRL was 
proposed to compensate model uncertainties and realize superior 
control performance. The FTS and finite-time robustness were 
realized by nonfragile H∞ control, and the transient performance was 
optimized by using the adaptive deep deterministic policy gradient 
(ADDPG) algorithm. Because of the significance of reward function 
design in the training process, adaptive hyperparameters were 
introduced to construct a generalized reward function to improve the 
performance and achieve robustness. Therefore, the contributions of 
the paper can be summarized as follows:

 (1) A novel control structure consisting of dynamics-based and 
learning-based controllers was proposed for the finite-time 
tracking control of switched flight vehicles. The robust control 
is focused on the worst case of uncertainties. However, 
transient performance is not ensured. The learning-based 
method, such as DRL, can address uncertainties with unknown 
boundaries and structures. However, stability is not guaranteed. 
Compared with the conventional method, in such a design 
structure, the advantages of both conventional robust control 
method and pure DRL are combined. The DRL is used to 
enhance control performance without exploiting their 
structures or boundaries, and the robustness is guaranteed by 
using model-based robust control. Thus, an optimal 
compromise between robustness and dynamic performance 
was achieved.

 (2) The stability and robustness of closed-loop system were 
guaranteed by using non-fragile control theory. The restricted 
DRL algorithm was proposed, in which the boundaries of 
scheduling intervals were predefined. The scheduling of 
parameters can be viewed as the perturbation of parameters 
within a given interval. Compared with pure DRL, the 
proposed method improved training efficiency and ensured 
stability of the closed-loop system.

 (3) The adaptive reward functions were proposed to realize rapid 
training convergence. The reward functions were crucial for the 
DRL algorithm. The conventional method of reward functions 
typically depends on the designing experience of the 
researchers, which degrade training efficiency and result in 
trial and error. Therefore, in the proposed method, adaptive 
factors for reward functions were used to improve 
training efficiency.

The rest of the paper is organized as follows. In Section 2, the 
structure of intelligent switched controllers is presented. In Section 3, 
the finite-time robust tracking control algorithm using DRL and H∞ 

control was proposed. A numerical example is provided in Section 4. 
Finally, Section 5 presents the summary and directions for future studies.

2 Problem statement

The HiMAT vehicle was studied, which is an unmanned flight 
vehicle. Its nonlinear model can be described in Eq. (1).
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where mf and v denote the mass and velocity of the flight vehicle, 
respectively. Here, α , θ , ϕ, and q are the attack angle, flight path angle, 
pitch angle, and pitch rate, respectively. Furthermore, Myy and Iy are 
the pitch moment and the moment of inertia about the pitch axis, 
respectively. Furthermore, g denotes the gravitational constant. The 
notations of T , D, and L represent the thrust, drag force, and lift force, 
which can be expressed as follows:
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. ρ , in which ρ  and δc  are the air 
density and throttle setting.

Based on Jacobian linearization, the nonlinear model of HiMAT 
vehicle can be  converted into the linear model to bridge the 
connection between complex nonlinear and linear models. Therefore, 
the longitudinal short-period model of the HiMAT vehicle can 
be modeled as switched systems as follows:
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where x k q T x( ) = [ ] ∈α R  is the state vector, ω ωk R( )∈  
represents the external disturbance that belongs to L2 0,∞[ ) , 
u k T u( ) = [ ] ∈δ δ δe v c R  with δe , δv, and δc  representing the 
elevator, elevon, and canard deflection, and y k y( )∈R  denoting the 
control and output signals. Here, σ k i n( ) = → ={ }Ω 1 2, , ,  is the 
switching function, which is a piecewise continuous constant function. 
Furthermore, n >1 is the number of subsystems. The characteristic of 
subsystems is assumed to depend on the switching signal, which are 
known previously. Here, Ai, Bi, Ci, and Di  are system matrices with 
appropriate dimensions.

In the network environment, because of the limit source of 
network bandwidth, the packet dropouts should be considered. The 
packet dropouts are considered in the channel of sensors–controllers 
to satisfy the Bernoulli distribution (Cheng et al., 2018). Therefore, the 
measured output is described as follows:
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where y k( )  is the measured output, θ k( ) represents a stochastic 
variable satisfying the Bernoulli distribution and takes value of 0 1,{ }, 
and ρ ∈[ ]0 1,  is the probability of packet dropouts.

The control structure of switched flight vehicles to ensure 
stability and improve transient performance is displayed in Figure 1.

The controller diagram reveals that the controller is composed of 
two parts:
 u u uk k k( ) = ( ) + ( )n c  (5)

where un k( ) is the dynamics-based controller, and uc is the 
learning-based controller, which are developed based on finite-time 
H°  control and DRL. The FTS and prescribed attenuation index are 
ensured by un k( ), whose parameters can be obtained by the LMI 
technique. The transient performance is improved by uc k( ), whose 
parameters are scheduled by the ADDPG algorithm.

The tracking error of the output is defined as e r yk k k( ) = ( ) − ( )c ,  
and the objective of tracking control is as follows:
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where rc k( ) denotes the command signal.
We set the integral of tracking error as follows:
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The feedback controller is proposed as follows:

 
u k K x k K x k K g kn n i n i n i( ) = ( ) = ( ) + ( ), , , 1 2  (8)

where x k x k g kT T T
( ) = ( ) ( )





, Kn,1i  and Kn,2i are the gain 
matrices to be determined.

Nominal controller parameters Kn,1i and Kn,2i can be designed 
by the H°  control, the variation internal of learning-based 
controller uc k( ) in subsystem i can be perceived as the additional 
bounded uncertainties of the dynamics-based controller. Thus, the 
parameters vary in the interval K K K Kn i c i n i c i, , , ,,− + ∆ ∆  and the 
stability of learning-based controller can be  analyzed by using 
nonfragile control theory. Here, ∅Kc i,  is defined as the additional 
compensation to obtain the actual gain matrices as follows:

 K K Ki n i c i= +, ,∆  (9)

where ∅Kc i,  and ∅Kc i,  denote the lower and upper bounds of 
∅Kc i, ; set ∆K M F Nc i i i i, = , Mi and Ni are known parameters with 
appropriate dimensions, and Fi  are uncertain matrices satisfying the 
following equation:

 F F Ii
T
i ″  (10)

Remark 1: The model of flight vehicle can be given based on switched 
systems. The variation of states in the envelope can be viewed as the 
switching between subsystems. The tracking controller is composed of 
two parts, namely dynamics-based controller un k( ), which is developed 
based on finite-time H°  control to ensure stability and prescribed 
attenuation index; the learning-based controller uc k( ), which is based on 

FIGURE 1

Structure of the controller.
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ADDPG algorithm to achieve superior performance in real time. The 
output of uc k( ) varies in the neighbor interval of un k( ) with given 
bounds. Therefore, the nonfragile control can be  used to ensure the 
stability of uc k( ). As mentioned, ensuring stability, robustness, and 
optimal performance simultaneously remains difficult. To improve 
training efficiency, adaptive factors for reward functions were applied in 
DDPG algorithm. With inspiration from the achievements in the DDPG 
algorithm and robust control, the advantages of model-based method 
(H°  control) and model-free method (DRL) were considered 
the problem.

Remark 2: The compensation of learning-based controller is 
considered as an additional gain value on the controller 
parameters with known bounds, which can be predefined and 
can presented by Mi  and Ni . The optimal control policy can 
be  realized in the scheduling interval by using the 
ADDPG algorithm.

The switching of controller always lags the switching of system mode 
because of packet dropouts. The ith subsystem is assumed to be activated 
at ki, and the controller of ith subsystem is activated at ki i+ ∆ , where ∅i 
denotes the length of unmatched periods. The condition in which 
unmatched and matched periods exist simultaneously is called 
asynchronous switching. The Lyapunov-like function decreases in 
matched periods and increases in unmatched periods with bounded rates, 
where ai  are introduced to represent the decreasing rate in matched 
periods, and bi represent the increasing rate in unmatched periods. The 
increasing coefficients of the Lyapunov-like function at switching instants 
are set to be ∝i.

For proof, the following assumptions are introduced.
Assumption 1 (Cheng et al., 2017): For given positive constant Nf ,  

the time-varying exogenous disturbance ω k( )  satisfies the 
following equation:

 k

N
T

f

k k
=
∑ ( ) ( ) ≤

0
ω ω ω

 
(11)

where ω is the upper bound of external disturbance.
Assumption 2 (Cheng et  al., 2017): The maximum number of 

consecutive data missing is set to be N1, and the maximum probability 
of data missing is set to be ρ .

According to the aforementioned statement, the closed-loop 
switched systems can be described as follows:
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C Ci i= −[ ]ρ 0 ,  C Ci i1 0= −[ ],  D Ii = [ ]0 ,  θ θ ρk k( ) = ( ) − .
Furthermore, the definitions of finite-time stable, finite-time 

boundedness, and finite-time H∞ performance for switched systems 
are expressed as follows:

Definition 1 (Wei et al., 2020): For given appropriate constant 
positive matrix Rs, positive constants c1 0> , c2 0> , and Nf  with 

c c1 2< , respectively. The switched systems in Eq. (12) with u k( ) ≡ 0 
and ω k( ) ≡ 0  are finite-time stable with respect to c c N Rf s1 2, , ,( )  
if Eq. (13) holds.
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Definition 2 (Wei et al., 2020): For given appropriate constant 
positive matrix Rs, constants c1 0> , c2 0> , ω, and Nf  with c c1 2< , 
respectively. The switched system in Eq. (12) is finite-time bounded 
(FTB) with respect to c c N Rf s1 2, , , ,ω( )  such that the following 
expression holds:
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where the external disturbance satisfies Assumption 1.
Definition 3 (Wei et al., 2020): For a given appropriate constant 

positive matrix Rs, constants c1 0> , c2 0>  for ω and Nf  with c c1 2< . 
The system in Eq. (12) exhibits finite-time H°  performance γd if the 
system is FTB and satisfies the following expression:

 s
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Thus, the main purposes of controller design is to ensure that the 
switched system is FTS with prescribed H°  performance γd with 
respect to c c N Rf s1 2, , , ,ω( ) , which is equivalent to design the robust 
controller, such that the following condition is satisfied:

 1. The switched systems in Eq. (12) is FTB.
 2. For given constant γd > 0, the system in Eq. (12) satisfies Eq. 

(15) under zero-initial situation for all external disturbance 
satisfies Eq. (11).

Based on the structure of control diagram, the design process is 
categorized into two steps:

Step  1: The scheduling interval of control parameters can 
be assumed to be the uncertain compensation of dynamics-based 
controller. Considering the controller uncertainties and 
asynchronous switching caused by packet dropouts, the finite-time 
H°  controllers are derived as dynamics-based controller according 
to nonfragile control theory and finite-time robust control theory 
in terms of LMI.

Step 2: The variations of controller parameters are assumed to 
be the action, and the dynamic model of flight vehicles is assumed to 
be the environment. The DRL algorithm was introduced to derive the 
learning-based controller to realize optimal control policy, in which 
the ADDPG algorithm was proposed as the model-free method in the 
actor–critic framework.

3 Main results

A dynamics-based controller was proposed to ensure stability and 
a prescribed performance index. The ADDPG algorithm was 
developed to realize performance and ensure controllers can 
adaptively schedule parameters.
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3.1 Dynamics-based controller design

Definition 4 (Zhao et al., 2017): Given switching signal σ k( ) and 
any 0 1 2″ ″k k , let N k kiσ 1 2,( ) be  the activated number of ith 
subsystem over the time interval k k1 2,( ). Here, T k ki 1 2,( ) denotes the 
total running time of ith subsystem during the time interval k k1 2,( ), 
i∈©. If positive numbers N i0  and τai, exist such that

 
N k k N

T k k
i i

i

i
σ τ1 2 0

1 2
,

,

a

( ) ≤ +
( )

 
(16)

then τai is called the MDADT and N i0  is called the mode-
dependent chatter bounds.

Lemma 1 (Cheng et al., 2017): For given symmetric matric Y , 
matrices F , M , and N , if a scalar ε > 0 exists such that

 Y M M N NT T+ + <−ε ε1
0     (17)

then we can obtain the following:

 Y M FN N F MT T T+ + <    0  (18)

where F  satisfies F F IT < .
Lemma 2 (Aristidou et al., 2014): For given matrix Q, which satisfies

 
Q

Q Q
Q Q

=










11 12

21 22  
(19)

where Q Q12 21
= T , and Q11 and Q22 are invertible matrices. Then 

we can conclude that the following three conditions are equivalent, 
which is called Schur Complement.
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Q
Q Q Q Q Q

Q Q Q Q

T T
;
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,
111 12

0
T TQ < .

Theorem 1: Given system Eq. (12) and constant scalars 0 1< <ai , 
bi > 0, µi ≥1, γ > 0, if matrices Si > 0, S j > 0 , Sij > 0, and Wi, 
∀ ∈ ≠i j i j, ,Ω , then the following expression is obtained:

 S Sj i i≤ µ  (20)
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(22)

then the switched system in Eq. (12) is FTB with respect 
to  c c N Rf s1 2, , , ,ω( )  if the MDADT satisfies the 
following equations:

 

τ τ
µ

η η
γ η ω

ai ai
f i f i i

N

N N
c c b Nf

≥ =
+

− +








 −

∗ ln ln

ln ln max

∆ �

�2

1

1

2

2
3 ff ialn �

 

(23)

 

c b a cN
i
Nf f1

2

2
3

2

1η
γ η ω

η
+









 ≤

max

 
(24)

where η λ λ1 = ( ) ( )( )
∈

max , ,max max
i

i ijS S
Ω

 

η λ λ2 = ( ) ( )( )
∈

min , ,min min
i

i ijS S
Ω

 η λ3 = ( )max ,Wi  ρ ρ ρ= −( )1 ,  

S R S Ri s i s= 1 2 1 2/ /
,  S R S Rj s j s= 1 2 1 2/ /

,  a ai i= −1 ,  b bi i= +1 ,  � � �i i ib a= / ,    

 b bimax max= { } .
Proof: For positive constant k , we  define k0 0=   

and k k k k ki i n1 2 1, , , , ,… …+  as the switching instants over the 
interval  0,k[ ], suppose the following Lyapunov functions  
exist:

 
V k k P kx xi

T
i( ) = ( ) ( ) 

 (25)

Class κ∞ functions exist as follows:
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(26)

 
∆

∆
∆

V k
aV k k k k k k
bV k k k ki
i i i i i

i i i i i
( ) ≤

− ( ) ∀ ∈[ ]∪ +[ ]
( ) ∀ ∈ +

+, , ,

, ,

0 1 1

[[ ]




  
(27)

 
V k V ki i j( ) ≤ ( )µ

 (28)

where Pi > 0 are Lyapunov matrices.

Define ξ ωk k kxT T T
( ) = ( ) ( )



  ,  and combining with Eqs. 

(12) and (27), we can obtain the following expression:
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Setting S Pi i= −1 and performing a congruence transformation to 
Eqs. (29), (30) by matrices diag i i iS S S I, , ,{ } and diag ij ij jS S S I, , ,{ }, 
we can obtain the following expression:
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The inequality S S S S Sij j
T

ij ij j−( ) −( ) ≥ 0  implies the  
following:

 S S S S S Sij j j j ij j− − ≥ − −T T 1

 (33)

We can conclude that Eq. (31) is equivalent to Eq. (21) and Eq. 
(32) is equivalent to Eq. (22), such that the following expression 
holds true:
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Combining Eqs. (25), (26), (28), (34), we can obtain the following 
equations by iteration operation:

With the definitions of η1 and η2, we  have the following  
expression:
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Moreover, using  x k R x k cT
s0 0 1( ) ( ) ≤ , we  can obtain the 

following expression:
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Based on Definition 2, we have  x xk R k cT
s( ) ( ) ≤ 2 , which can 

be expressed as follows:
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If Eqs. (23), (24) hold, then we can conclude that the following 
expression is true:
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(38)

which is equivalent to  x xk R k cT
s( ) ( ) ≤ 2 . Thus, the switched 

system in Eq. (12) is FTB, which completes the proof.
The sufficient guarantees of FTS are given in Theorem 1, and 

the prescribed attenuation performance are discussed in 
Theorem 2.

Theorem 2: Given system Eq. (12) and constant scalars 0 1< <ai , 
bi > 0, µi ≥1, γ > 0, if matrices Si > 0, S j > 0 , Sij > 0, and Wi, 
∀ ∈ ≠i j i j, ,Ω , such that the following expression holds:

 S Sj i i≤ µ  (39)
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(41)

then the system with MDADT satisfying the following expression 
is FTS with H°  performance γ d  with respect to 0 2, , , , ,f s dc Nω γR( ).
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where η λ λ1 = ( ) ( )( )
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Proof: The Lyapunov functions are determined in Eq. (25). We can 
obtain the following equations under the zero-initial condition.
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The system in Eq. (12) is stable with predefined performance 
such that

 Zii < 0  (46)

 
Zij < 0

 (47)

Setting S = Pi i
−1 and performing congruence transformation 

to the aforementioned inequalities through diag i i iS S I I S I, , , , ,{ } 
and diag ij ij jS S I I S I, , , , ,{ } , we  can obtain the following  
expression:
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Similar to the transformation in Eq. (33), we  can obtain the 
following expression:

 S S S S S Sij j j j ij j− − ≥ − −T T 1

 (50)

With Eqs.(40), (41), we have Zii < 0  and Zij < 0 , which implies 
that the following expression:
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The following equation can be  obtained by setting 
γ ω ω2
 

T
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  . 
Moreover, the system in Eq. (12) is FTB with respect to 0 2, , , ,c N Rf sω( )  
by setting W Ii =  and c1 0= .
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According to V kkσ ( ) ( ) ≥ 0 and zero-initial condition, we have the 
following expression:
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Multiplying both sides of Eq. (53) by 
i
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i i
N k k
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, 
we obtain the following equation:
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Based on the definition of MDADT and Eq. (42), we  have 
the following:
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Combining with Eqs. (43), (45), we infer the following:
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Thus, we have the following equation:
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Next, we have the following expression:
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Setting k N f− =1 , we can obtain the following:
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Therefore, the system Eq. (12) is FTB with given attenuation index 

γ γd
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/2

, which completes the proof.

Based on Theorems 1 and 2, the parameters of finite-time tracking 
controller of switched systems is derived in Theorem 3.

Theorem 3: Given system Eq. (12) and constant scalars 0 1< <ai , 
bi > 0, µi ≥1, γ > 0, if positive matrices Si, S j and Sij, ∀ ∈ ≠i j i j, ,Ω ,  
exist such that the following holds true:

 S Sj i i≤ µ  (59)
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System Eq. (12) with MDADT satisfying Eqs. (42), (43) is finite-
time stable with predefined attenuation index γd with respect to 
0 2, , , , ,f s dc Nω γR( ) , and the parameters of robust controller can 

be expressed as follows:
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 (62)
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ε2 0j > .

Proof: According to Schur Complement (Aristidou et al., 2014) and 
Lemma 1, we can calculate the following equation:
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Let U = K S1 1 1i i in, , U K S2 2 2i i i= n, , U = K S1 1 1j j jn, , 
U K S2 2 2j j j= n, , Eq. (60) is equivalent to Eq. (40), and Eq. (61) is 
equivalent to Eq. (41). Therefore, the parameters of controller can 
be  given according to Eqs. (59)–(61) by solving linear matrix 
inequalities Eqs. (62), (63).

3.2 Online scheduling based on the ADDPG 
algorithm

Based on the finite-time H∞ control, the sufficient conditions to 
ensure the FTS and prescribed performance are presented. The 
process of online scheduling can be formulated as the Markov decision 
process (MDP). Because the control process is a series of continuous 
decision process, the ADDPG algorithm was proposed based on the 
actor–critic framework to realize superior control performance of 
switched flight vehicles.

The DRL is composed of an agent and the interacting environment. 
At each time, the agent obtains a state sk, selects an action ak, and can 
receive reward rk and sk+1 by interacting with the environment, in 
which rk is used to evaluate the performance of state-action pair at the 
time instant. In this study, the switched tracking controller can 
be viewed as the agent, whose purpose is maximizing the sum of the 
expected discounted reward function over a series of future steps:
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where γd ,∈[ ]0 1  denotes the discount factor. Here, Kf  denotes the 
terminal step of reinforcement learning. The value of reward depends 
on the action undertaken and the current state. The action and state 
are defined as follows:
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The ADDPG algorithm is provided based on the DDPG 
algorithm, in which the advantages of both deep Q learning and 
actor–critic framework are used to realize the optimal action, which 
is updated in continuous action spaces based on policy gradient 
theory. The ADDPG algorithm is realized in the following two 
sections: the action-value in each step is approximated by the critic 
network Q s ak k

Q, ς( ) with weights ςQ, the current control policy is 
obtained by the actor network ϖ ςϖsk( )  with weights ςϖ . The 
weights of the critic network are updated by minimizing the loss 
function, which can be described as follows:
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where

 
y r s a Q s sk k k k k k
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The weights of actor network are updated according to the policy 
gradient in the following equations:

 ς ςϖ ϖ
ςϖk k L J+( ) = ( ) + ∇1 an  (70)

 

∇ = ∇ ( )( )











= ∇

= = ( )
ς π ς

π ϖ

π ς

π ς
π

ϖ ϖ

ϖ

ϖ

π ς ςJ Q s s

Q s

k k
Q

s s a s

k

k k

E ,

E

,

,,π ς π ςςϖs sk
Q

k
Q( )( )∇ ( )



 

(71)

where Lan is the learning rate of ϖ ςϖsk( ).
To overcome the divergence of Q learning, two separated 

networks were adopted: the actor target network ′( )ϖ ςϖsk '  and the 
critic target network ′( )Q s ak k

Q
, ς ' , the mentioned two networks can 

update their weights as follows:

 ς ς ςϖ ϖ ϖ' 'k L k L k+( ) = ( ) + −( ) ( )1 1atn atn  (72)

 ς ς ςQ Q Qk L k L k' '+( ) = +( ) + −( ) +( )1 1 1 1ctn ctn  (73)

where Latn and Lctn are the learning rates.
Moreover, an exploration noise Na is added to the actor to realize 

exploration and actual control policy, which is generated by actor and 
can be rewritten as follows:

 
a s Nk k= ( ) +π ςϖ a 

(74)

Unlike the conventional DDPG algorithm, the adaptive 
parameters were introduced to achieve superior convergence and 
robustness, respectively. By introducing robustness as a 
continuous parameter, the reward function enables the 
convenient exploration to realize adaptive training. The  
control policy is used to reduce the tracking error with lower 
control input and unsaturated actuator, therefore, the reward 
function depends on the tracking error, amplitude of control 
signal, and the saturation of actuator, which can be expressed 
as follows:

 r g r k g r k g r kk = ( ) + ( ) + ( )1 1 2 2 3 3e e e  (75)
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where r ke1 ( )  represents the reward of tracking error, r ke2 ( ) 
denotes the reward of control input, and r ke3 ( )  is the reward of 
saturation, respectively. Here, g1, g2, and g3 denote the weights 
of r ke1 ( ), r ke2 ( ), and r ke3 ( ) in the reward function. Furthermore, 
υ1, υ2 are the adaptive shape parameters, which determine the 
robustness of the reward function. l1 0>  and l2 0>  are the 
parameters that controls the size of the quadratic bowl near the 
origin, respectively. Here, δp is predefined constant and u k( ) 
denotes the upper bound of the actuator. Next, the final reward 
function r ke1 ( )  and r ke2 ( )  with adaptive parameters can 
be rewritten as follows:
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The adaptive updating law of hyper parameters are defined as 
follows to improve transient performance and robustness of 
the algorithm:
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where v1max and v1min denote the maximum and minimum values 
of v1max. Similarly, we can obtain the definitions of v2max, v2min, l1min ,  
and l2min . The length of each segment is determined by 
training episodes.

Based on the statement, the pseudocode for the ADDPG 
algorithm proposed in this paper is presented in Algorithm 1.

Algorithm 1. Parameter optimization based on ADDPG

 1. Set the variation range of controller parameters.

 2. Design the switched tracking controllers for flight vehicles based on Theorem 

3.

 3. Randomly initialize the weights of networks Q s ak k Q, ς( )  and ϖ ςϖsk( )  
with ςϖ  and ςQ.

 4. Initialize the weights of ′( )ϖ ςϖsk '  and ′( )Q s ak k Q
, ς '  with weights 

ς ςϖ ϖ' ← , ς ςQ Q' ← .

 5. Initialize the replay buffer, episode = 0

 6. for episode = 1 to M do

 7. Randomly initialize exploration noise Na .

 8. Randomly initialize the state vector of the agent with s1, then the initial 

observation can be obtained.

 9. for t = 1 to K do

 10. Apply action a s Nk k= ( ) +π ςϖ a to the environment based on the state sk  

and uncertain noise.

 11. Receive the adaptive reward rk  and the state of next time instant sk+1.

 12. Store the variable transition pair in the replay buffer, which consists of  

sk , ak, rk , and sk+1.

 13. Randomly sample a mini-batch of N transition pairs from the replay buffer  

R .

 14. Set y r s a Q s sk k k k p k k Q= ( ) + ( )





+, ,γ ϖ ς ςϖ

1

 15. Update the weights of network Q s ak k Q, ς( )  as follows:

L E Q s a yQ
s a k k Q kς ς( ) = ( ) −


 














( ), ,

2

 16. Update the weights of network ϖ ςϖsk( )  as follows:

∇ = ∇ ( )





∇ ( )





ς π ς
π

ςϖ ϖ ϖπ ς π ςJ Q s s sk k Q k Q
E ,

 17. Update the weights of target networks:

ς ς ςϖ ϖ ϖ' '← + −( )L Latn atn1 , ς ς ςQ ctn Q ctn QL L' '← + −( )1

 18. end for

 19. end for
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Remark 3: Although the conventional DDPG algorithm can 
realize parameter optimization (Xu et  al., 2019; Gaudet et  al., 
2020; Gheisarnejad and Khooban, 2021), guaranteeing data 
efficiency and system stability because it attempts to  
explore the optimal control policy for all possible action in the 
action space is difficult. Moreover, the proposed adaptive  
hyper parameters can increase robustness and achieve generalized 
case because the reward function determines training  
performance.

4 Numerical examples

In this study, the HiMAT vehicle is given to validate the 
proposed method. The three-view drawing and trim condition 
for operation points can be  obtained from the study  
performed by Wang et al. (2015). The flight condition and the 
model of longitudinal motion dynamics are given as Wang 
et al. (2015).

Based on the trim condition within the flight envelope, the 
longitudinal motion dynamics can be described by switched systems. 
We set the sampling time Ts = 0 02.  and obtain the system matrices Ai 
and Bi, which can be described as follows:
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The switching of subsystems in the flight envelope is supposed to 
be 19-18-12-9-8-4-2-1, which is described in Figure 2.

The harmonics wind gust is considered in the paper, which is 
described in Eq. (83).
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where p k( ) represents the state of external disturbance with 
initial value of 0 01 0. ;[ ].Furthermore, a command filter was provided 
to improve the performance of the intelligent tracking controller, 
which can be generated as follows:
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where J k( ) denotes the state vector; z k( ) represents the output 
of the filter; ζ n and ωn  are the damping ratio and band width; Sa and 
Sv denote the transfer functions of the amplitude limiting and the rate 
limiting filters.

The parameters of the switched systems are given as c1 0= , c2 1 5= .

, Nf = 25, ω = 5 , and R I= . Compared with the conventional ADT 
method, tighter bounds on FTS analysis can be obtained. The ADT 
method can be considered to be a special case of the MDADT method, 
and we can obtain that τ τa ai

∗ ∗≤ , which is illustrated in Table 1. Therefore, 
the proposed method can realize limited conservative results than the 
ADT method. We set the probability of data missing as ρ = 0 95. , the 
maximum number of consecutive data missing N1 is set to be  5. 
Moreover, the matrices U1i, U2i, S1i, and S2i  can be solved by Eqs. (62), 
(63) in Theorem 3. The dynamics-based controller was constructed, and 
its parameter matrices and structure are given as follows:
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FIGURE 2

Switching logic of HiMAT in the flight envelope.
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TABLE 2 Parameters setting of the ADDPG.

Parameter Value

Discount factor 0.9

Learning rate of the critic network 0.0005

Learning rate of the actor network 0.0005

Mini-batch size 32

Replay buffer size 1,000

Length of each segment 100

Activation function ReLu

[v1min, v1max] [−3, 3]

[v2min, v2max] [−10, 2]

l1min 10−6

l2min 10−6

Moreover, to overcome the problem of operation points with static 
instability, an angular rate compensator was introduced as follows:

 
T s

k s t
sf

q q( ) =
+( )1 /

 
(86)

where T sf ( ) denotes the transfer function of angular rate 
compensator, tq and kq are the parameters of compensator.

Next, we presented two examples to validate the proposed method.

Example 1: The tighter bounds on the dwell time can be obtained 
by the proposed method according to the data in Table 1. Moreover, 
because the characteristic of each subsystem is considered, the 
transient performance can be achieved by using the MDADT method. 
The switching of subsystems is displayed in Figure 2. Notably, the 
parameters of flight vehicles switch at the switching instants. First, to 
compare the difference between the two switching logic mechanisms, 
the simulation results under ADT switching logic and MDADT 
switching logic are displayed in Figures 3, 4, in which the labels are 
defined as ADT and MDADT, respectively. Figures 3, 4 reveal that the 
curves of the attack angle highlight the tracking performance in the 
flight envelope of switched controllers under ADT switching logic and 
MDADT switching logic. Thus, the tracking error can converge within 
the given time interval, and the transient performance of MDADT 
method is superior. Moreover, in Figures 3, 4, we provide the detailed 
enlargement of simulation curves near the switching time and steady 
process. Switched controllers with MDADT logic can achieve better 
transient performance than the those of controllers with ADT logic. 
Furthermore, the MDADT method corresponds to smoother 
response. The switched controllers with MDADT logic can obtain 
excellent transient performance with tighter bounds on the dwell time, 
which is less conservative than the ADT logic.

Example 2. In this section, the feasibility of the ADDPG algorithm 
for flight aircraft is validated. The weights of actor network and critic 
network are updated such that the learning-based controller adaptively 
compensates the model uncertainties and external disturbance in the 
environment. The action of supplementary control is added to the 
dynamics-based controller, which constitutes the real-time finite-time 
adaptive tracking control for the flight vehicles. The design parameters 
of the ADDPG algorithm are defined in Table 2.

FIGURE 3

Response of the attack angle.

FIGURE 4

Tracking error.

TABLE 1 Dwell time of various switching logics.

Switching logic Parameter Result

MDADT a1 0 22= . , a2 0 24= . , a4 0 23= . , a8 0 19= . ,a9 0 31= . , a12 0 26= . , a18 0 27= . , a19 0 28= . , b1 0 03= . , 

b2 0 04= . , b4 0 02= . , b8 0 05= . , b9 0 03= . , b12 0 04= . , b18 0 03= . , b19 0 03= . , ∆1 2= , ∆2 1= , ∆4 3= , ∆8 3=

, ∆9 2= , ∆12 1= , ∆18 3= , ∆19 1= , µ1 1 15= . , µ2 1 21= . , µ4 1 30= . , µ8 1 11= . , µ9 1 12= . , µ12 1 22= . , 

µ18 1 13= . , µ19 1 25= . .

τ τa a1 27 7101 4 3390
∗ ∗= =. , .

τ τa a4 810 7211 16 8154
∗ ∗= =. , .

τ τa a9 124 2968 3 7734
∗ ∗= =. , .

τ τa a18 197 3806 3 4131
∗ ∗= =. , .

ADT a = 0 19. , b = 0 05. , ∆ = 3, µ =1 11. τa
∗ =16 8154.
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The input is divided into two paths for critic networks, 
corresponding to the observation and action. The number of neurons 
in the input layer of the observation path is the dimension of the 
observed states, which is represented by obs. The number of neurons 
in the input layer of the action path corresponding to the controller 
parameters. The critic networks are updated based on the adaptive 
moment estimation (Adam) algorithm. The regularization factor is set 
to be 2 10

4× − .
We define the input of actor network is the observed states and the 

output is the compensated controller parameters. The activation 
function of fully connected layers is set to be ReLu and the activation 
function of output layer is tanh. The weights of actor network are 
updated based on the Adam algorithm. The variance of noise is set to 
be 0.1 and the variance decay rate is 1 10

5× − . Because the stability and 
robustness of the closed-loop system are guaranteed by the switched 
control theory and robust control theory, we consider wind gust in the 
training environment, the perturbations of aerodynamic parameters 
and wind gust are introduced in the testing environment. Then the 
algorithms can be implemented on a desktop with Intel Core i7-10700K 
@3.80GHz RAM 16.00 GB and operation system of Windows 10.

The DDPG algorithm was simulated to verify the advantages of the 
proposed method in terms of control performance and convergence for 
algorithms. The robust controller proposed by the MDADT method 
was designed as the dynamics-based controller. Both the ADDPG and 
DDPG algorithms are given in the simulation as the learning-based 
controller to compensate the unexpected uncertainties in the flight 
environment. The simulation results are displayed in Figures 5–9, in 
which the MDADT method, MDADT with DDPG method, and 
MDADT with ADDPG method are labeled as MDADT, DDPG, and 
ADDPG, respectively. As displayed in Figures  5, 6, the ADDPG 
algorithm outperformed the episodes reward convergence of DDPG 
algorithm, which required fewer episodes to converge in the neighbor 
of the origin. Therefore, the ADDPG algorithm outperformed the 
conventional DDPG algorithm in terms of the control performance and 
steady error. The responses of attack angle are displayed in Figure 7. 
Both DDPG and ADDPG algorithms could achieve convergence and 
efficient performance. However, the transient convergence of the 
ADDPG algorithm was superior to that of the DDPG algorithm. The 
tracking errors are displayed in Figure 8. The controller compensated 
with the DDPG and ADDPG algorithms can exhibit improved 

FIGURE 5

Episodes reward of the ADDPG.

FIGURE 6

Episodes reward of the DDPG.

FIGURE 7

Response of the attack angle.

FIGURE 8

Tracking error.
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TABLE 3 Average tracking errors.

Methods Value (deg)

ADT 0.2053

MDADT 0.1196

DDPG with MDADT 0.0711

ADDPG with MDADT 0.0326

FIGURE 10

Response of the attack angle.

performance of steady-state response. However, the steady-state error 
of the ADDPG algorithm was less than that of the DDPG algorithm. 
The reward function of an episode is displayed in Figure 9. The ADDPG 
algorithm can achieve superior final performance.

The average tracking errors of methods are presented in Table 3. 
The online scheduling through DDPG and ADDPG can efficiently 
reduce the average tracking error; the adaptive reward function can 
improve the tracking performance. The proposed method can 
overcome the undesirable response caused by asynchronous switching 
and uncertainties in the flight environment.

Moreover, to show the effectiveness to deal with system 
uncertainties and disturbance, we  give the simulation results of 
HiMAT vehicle with disturbances and uncertainties of aerodynamic 
parameters, which can also illustrate the potential application 
prospects for practical environment. The results are described in 
Figures 10, 11, in which we consider the cases where the aerodynamic 
parameter perturbations are 10, 15, and 20%. The responses of attack 
angle are given in Figure  10 and the tracking errors are given in 
Figure 11. The average tracking errors in the presence of aerodynamic 
perturbations are also provided in Table 4. We can see that the stability 
and tracking performance can be guaranteed with uncertainties and 
disturbances by using the proposed method, which illustrates that the 
proposed method can ensure the control accuracy, stability, and 
robustness simultaneously.

Remark 4: We draw inspiration from the traditional method 
of dealing with the sim-to-real transfer issue. Firstly, the 
nonlinear model is converted to a linear model by employing 
Jacobian linearization. Then we can design the nominal controller 
on the reference points. In most engineering applications, the 
stability margin is introduced and analyzed to ensure the 
robustness. Similarly, in this paper, we  developed finite-time 
robust control theory to ensure the stability and attenuation 
performance. The uncertainties and disturbances in practical 
environment can be overcome. However, we noticed that it is 
difficult to realize optimal compromise between robustness and 
transient performance. The ADDPG algorithm is given to 
improve the control accuracy. Moreover, the non-fragile control 
theory is introduced, which ensures the stability and prescribed 
attenuation performance on the scheduling intervals.

FIGURE 9

Response of reward function.

FIGURE 11

Tracking error.

TABLE 4 Average tracking errors in the presence of aerodynamic 
perturbations.

Methods Value (deg)

10% perturbation 0.0442

15% perturbation 0.0576

20% perturbation 0.0898
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Remark 5: The problem of finite-time tracking control for 
switched flight vehicles was investigated. According to the numerical 
examples, the advantages of the suggested control method to address 
the flight vehicle considering disturbances and uncertainties over the 
existing control methods are demonstrated, which can be described 
as follows: (1) Unlike the conventional model-based control methods, 
the proposed method was developed by using DRL, which can 
improve control performance and overcome the undesirable response 
caused by uncertainties. (2) In the proposed method, the advantages 
of model-based and model-free method are combined. The 
dynamics-based controller was developed to ensure stability and 
robustness, and the learning-based controller was proposed to 
compensate the uncertainties in the flight environment. (3) The 
established adaptive generalized reward function can improve 
convergence and robustness.

5 Conclusion

The finite-time control of switched flight vehicles with asynchronous 
switching was realized using a novel nonfragile DRL method. The flight 
vehicles were modeled as the switched system, and the asynchronous 
switching caused by packet dropouts was considered. The MDADT and 
MLF methods were used to ensure FTS and weighted prescribed 
attenuation index. LMIs were used to determine the solutions of the 
finite-time tracking controller. To compensate the external disturbance 
and improve tracking performance, the ADDPG algorithm based on the 
actor–critic framework was provided to optimize the parameters of 
tracking controllers. To improve optimization efficiency and decrease 
computational complexity, parameter optimization was assumed to 
be limited in the given range. The compensation of control policy in a 
given range is considered as the uncertainties of the controller 
parameters, and the FTS is ensured by nonfragile control theory. 
Compared with the conventional DDPG algorithm, the adaptive hyper 
parameters of reward function were introduced to achieve superior 
control performance and realize a general case. The FTS, robustness, and 
transient performance were ensured simultaneously by the proposed 
method. In the future, the following four points should be studied: (1) 
The event-triggered control structure should be considered to reduce the 
load and improve the robustness of information transformation. (2) The 
parallel optimization methods should be presented to improve training 
efficiency. (3) The fitting ability and generalization ability of neural 
networks should be studied to improve the robustness in the complex 
environment. (4) The semi physical simulations and flight tests of mini 
drones should be developed to further demonstrate the engineering 
feasibility of the proposed method.
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