
Frontiers in Neuroscience 01 frontiersin.org

An interpretable machine learning 
model for stroke recurrence in 
patients with symptomatic 
intracranial atherosclerotic 
arterial stenosis
Yu Gao 1, Zi-ang Li 1, Xiao-yang Zhai 1, Lin Han 1, Ping Zhang 2, 
Si-jia Cheng 1, Jun-yan Yue 1 and Hong-kai Cui 3*
1 Department of Radiology Center, The First Affiliated Hospital of Xinxiang Medical University, 
Xin Xiang, China, 2 Department of Neurology, The First Affiliated Hospital of Xinxiang Medical 
University, Xin Xiang, China, 3 Department of Neurointerventional Center, The First Affiliated Hospital 
of Xinxiang Medical University, Xin Xiang, China

Background and objective: Symptomatic intracranial atherosclerotic stenosis 
(SICAS) is the most common etiology of ischemic stroke and one of the main 
causes of high stroke recurrence. The recurrence of stroke is closely related to 
the prognosis of ischemic stroke. This study aims to develop a machine learning 
model based on high-resolution vessel wall imaging (HR-VWI) to predict the risk 
of stroke recurrence in SICAS.

Methods: This study retrospectively collected data from 180 SICAS stroke 
patients treated at the hospital between 2020.01 and 2022.01. Relevant imaging 
and clinical data were collected, and follow-up was conducted. The dataset 
was divided into a training set and a validation set in a ratio of 7:3. We employed 
the least absolute shrinkage and selection operator (LASSO) regression to 
perform a selection on the baseline data, laboratory tests, and neuroimaging 
data generated by HR-VWI scans collected from the training set. Finally, five 
machine learning techniques, including logistic regression model (LR), support 
vector machine (SVM), Gaussian naive Bayes (GNB), Complement naive Bayes 
(CNB), and k-nearest neighbors algorithm (kNN), were employed to develop a 
predictive model for stroke recurrence. Shapley Additive Explanation (SHAP) was 
used to provide visualization and interpretation for each patient. The model’s 
effectiveness was evaluated using average accuracy, sensitivity, specificity, 
precision, f1 score, PR curve, calibration curve, and decision curve analysis.

Results: LASSO analysis revealed that “history of hypertension,” “homocysteine 
level,” “NWI value,” “stenosis rate,” “intracranial hemorrhage,” “positive 
remodeling,” and “enhancement grade” were independent risk factors for stroke 
recurrence in SICAS patients. In 10-fold cross-validation, the area under the 
curve (AUC) ranged from 0.813 to 0.912 in ROC curve analysis. The area under the 
precision-recall curve (AUPRC) ranged from 0.655 to 0.833, with the Gaussian 
Naive Bayes (GNB) model exhibiting the best ability to predict stroke recurrence 
in SICAS. SHAP analysis provided interpretability for the machine learning model 
and revealed essential factors related to the risk of stroke recurrence in SICAS.

Conclusion: A precise machine learning-based prediction model for stroke 
recurrence in SICAS has been established to assist clinical practitioners in 
making clinical decisions and implementing personalized treatment measures.
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Introduction

Acute ischemic stroke is a common cerebrovascular disease with 
high incidence, disability, and mortality rates (Zhu et al., 2016). Acute 
ischemic stroke is a common cerebrovascular disease with a high 
incidence, disability, and mortality rate. Stroke is the second leading 
cause of death worldwide and the primary cause of death in Chinese 
populations in recent years. In Western countries, the proportion of 
ischemic stroke caused by intracranial atherosclerotic narrowing is 
about 10–15%, while in Asia, this proportion reaches up to 46.6% 
(Zheng et al., 2022). However, patients with intracranial atherosclerotic 
narrowing have a high risk of stroke recurrence. With the progress of 
medical technology, people have gained some understanding of the 
risk factors for stroke recurrence. Understanding the risk and 
developing individualized treatment for stroke patients will be the key 
to future medical research.

In recent years, HR-VWI has played a crucial role in the precise 
prevention and treatment of acute ischemic stroke. Various imaging 
techniques, such as CTA, MRA, and DSA, are commonly used for 
assessing cerebral vessels in stroke patients. While these techniques 
effectively depict intraluminal blood flow, they cannot 
comprehensively evaluate plaque location, characteristics, and the 
degree of luminal stenosis in atherosclerotic stenosis-related strokes. 
In contrast, HR-VWI addresses these limitations in conventional 
imaging and has become a common adjunctive examination for 
symptomatic intracranial atherosclerotic stenosis (SICAS) (Vranic 
et al., 2021; Tang et al., 2022). Previous studies have demonstrated a 
significant association between plaque information derived from 
HR-VWI, such as intra-plaque hemorrhage, plaque enhancement 
grade, positive remodeling, and the normalized wall index (NWI), 
with stroke recurrence (Roquer et  al., 2011; Ran et  al., 2020). 
Moreover, HR-VWI exhibits superior sensitivity and specificity 
compared to other risk factors.

Since the twenty-first century, artificial intelligence (AI) has 
undergone continuous development, and machine learning, as an AI 
methodology, has increasingly been integrated into medical research. 
Machine learning has successfully been employed in diagnosing and 
predicting various diseases by extracting relevant information and 
uncovering hidden correlations among parameters from vast datasets 
(Singal et al., 2013; Wu et al., 2020). Therefore, this study aims to 
develop and validate a machine-learning model that analyzes and 
predicts the risk of stroke recurrence in SICAS.

Materials and methods

Population

This study included 180 SICAS stroke patients randomly collected 
from the hospital database between 2020.01 and 2022.01. The relevant 
imaging and clinical data were extracted. The inclusion criteria were 
as follows: (1) intracranial atherosclerotic stenosis ranging from 30 to 

99%; (2) presence of symptoms of ischemic stroke or transient 
ischemic attack (TIA); (3) acute infarction located in the same-side 
area of intracranial atherosclerotic stenosis as demonstrated by 
diffusion-weighted imaging (DWI); (4) all patients underwent 
HR-VWI examination.

Exclusion criteria are: (1) narrowing of the carotid artery >50% on 
ipsilateral ultrasound or magnetic resonance angiography (MRA) or 
computed tomography angiography (CTA); (2) non-atherosclerotic 
vascular diseases such as dissection, vasculitis, or stroke; (3) evidence 
of cardiac embolism: intracardiac thrombus detected by 
transesophageal echocardiography; (4) poor imaging quality that 
affects plaque evaluation or the presence of contraindications to MRI; 
and (5) patients undergoing percutaneous transluminal angioplasty 
and stent placement.

Baseline data information includes gender, age, BMI, smoking 
history, alcohol consumption history, hypertension, diabetes, 
myocardial infarction, atrial fibrillation, previous history of 
cerebrovascular disease, and NIHSS score at admission. Laboratory 
examination information includes total cholesterol, triglycerides, LDL, 
HDL, apolipoprotein A, apolipoprotein B, fibrinogen, blood glucose, 
and homocysteine. Follow-up: Using the forms of phone or face-to-
face consultations, the median follow-up time was 18 months 
(12–30 months), and the patient’s condition was registered. The 
determination of stroke recurrence requires the evaluation of two or 
more senior clinicians (≥10 years of experience), and the diagnostic 
criteria are as follows (Coull and Rothwell, 2004): (1) A sudden onset 
of new focal neurological dysfunction lasting for more than 24 h. (2) 
Focal neurological dysfunction that lasts for less than 24 h but is 
confirmed by imaging as acute cerebral infarction, and there is no 
bleeding lesion on head CT or MRI. (3) Sudden deterioration of 
neurological function with a increase in the NIHSS (National Institute 
of Health Stroke Scale) score of 4 points. (4) exclusion of cerebral 
hemorrhage, tumors, and other causes.

MRI protocol

All patients underwent examinations using a 16-channel head and 
neck combined coils together with Philips 3.0 T magnetic resonance 
imaging (MRI) equipment. Each patient first received routine 
magnetic resonance (MR) head and skull scans, including diffusion-
weighted imaging (DWI), three-dimensional time-of-flight MR 
angiography (3D-TOF MRA), T1-weighted imaging (T1WI), and 
T2-weighted imaging (T2WI). Subsequently, a 3D high-resolution 
MRI (HR-MRI) scan was performed. Initially, a three-dimensional 
volume T1-weighted isotropic turbo spin echo acquisition (3D 
T1W-VISTA) was conducted based on the MRA images. Following 
the completion of the imaging, gadobutrol (Gadavist, Bayer, 0.1 mmol/
kg) was injected, followed by a second 3D T1W-VISTA scan. The 
scanning parameters for each sequence were as follows: (1) DWI 
sequence: TR 2,194 ms, TE 86 ms, FOV 230 mm × 230 mm × 109 mm, 
slice thickness 5 mm, voxel size 1.5 mm × 1.89 mm × 5 mm, matrix size 
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152 × 122 × 17, interslice spacing 1.5 mm, and scan time 33 s; (2) 
3D-TOF MRA sequence: TR 19 ms, TE 3.5 ms, FOV 
200 mm × 158 mm × 89 mm, slice thickness 1.2 mm, voxel size 
0.65 mm × 0.94 mm × 1.2 mm, matrix size 308 × 168 × 148, interslice 
spacing −0.6 mm, and scan time 2 min 52 s; (3) T1WI sequence: TR 
2373 ms, TE 20 ms, FOV 230 mm × 189 mm × 109 mm, slice thickness 
5 mm, voxel size 0.8 mm × 1.05 mm × 5 mm, matrix size 288 × 178 × 17, 
interslice spacing 1.5 mm, and scan time 1 min 30 s; (4) T2WI 
sequence: TR 2756 ms, TE 105 ms, FOV 230 mm × 230 mm × 109 mm, 
slice thickness 5 mm, voxel size 0.95 mm × 0.95 mm × 5 mm, matrix 
size 244 × 244 × 17, interslice spacing 1.5 mm, and scan time 44 s; (5) 
3D T1W-VISTA sequence: TR 600 ms, TE 31 ms, FOV 
250 mm × 161 mm × 60 mm, slice thickness 0.6 mm, voxel size 
0.8 mm × 0.8 mm × 0.8 mm, matrix size 312 × 201 × 150, interslice 
spacing −0.4 mm, and scan time 3 min 36 s.

Image plaque analysis

The culprit plaque is defined as the lesion on the same side of the 
fresh stroke in the DWI image. The narrowest lesion is selected for 
analysis if multiple plaques exist in the same vascular distribution area. 
The acquired 3D HR-VWI images were reconstructed vertically along 
the long axis of the vessel where the culprit lesion was located, following 
the guidelines of the American Society of Neuroradiology Vessel Wall 
Imaging (Saba et al., 2018). This reconstruction eliminates deviations 
between different devices and better displays the plaque and vessel wall 
status in the coronal, sagittal, and axial planes. Two experienced 
neuroradiologists (Yue and Zhai) performed the analysis without access 
to the patient’s clinical data. The analysis primarily focuses on plaque 
identification and enhancement. The software TS-Vessel·Explore 
(TSimaging; Healthcare China, Beijing) is used for post-processing and 
data analysis. The HR-VWI images are imported into the post-
processing software and reconstructed along a cross-section 
perpendicular to the long axis of the vessel, with a magnification of 
400%. A manual tracing model is employed to outline the vessel wall’s 
outer contour and the lumen’s inner contour, with the software 
automatically measuring the corresponding vessel area (VA) and lumen 
area (LA). The plaque with the narrowest stenosis at the lumen was 
chosen as the culprit plaque for measurement.

The plaque responsible for the narrowest part of the lumen is 
selected for measurement. For the reference level, the VA and LA are 
prioritized from the corresponding lumen section without obvious 
plaques near it, followed by the related lumen section far away.

The degree of vascular stenosis is calculated using the following 
formulas: stenosis rate = (1 − LAmin/LAreference) × 100%; wall area 
(WA) = VA − LA; plaque area (PA) = WAmin − WAreference; 
remodeling index (RI) = VAmin/VAreference, with RI ≥ 1.05 
indicating positive remodeling and RI ≤ 0.95 indicating negative 
remodeling (Teng et al., 2016).

The normalized wall index (NWI) is calculated as WA/VA. In the 
enhanced T1W VISTA image, the signal intensity of the pituitary 
gland is used as the reference, with no change in plaque signal 
considered grade 0; enhancement lower than the pituitary gland is 
grade 1; and similar enhancement to the normal pituitary gland is 
grade 2 (Qiao et al., 2014). Intraplaque hemorrhage (IPH) is defined 
as T1WI signal intensity higher than 150% of the adjacent muscle 
tissue signal.

Statistical analysis

Software including R (version 3.6.8) and Python (version 3.7), A 
result with p < 0.05 indicates statistical significance.

Development, evaluation, and 
interpretation of machine learning models

In the collected dataset, 130 cases (72.2%) of patients did not 
experience a recurrent stroke, while 50 cases (37.8%) did. The dataset 
was divided into training and validation sets in a ratio of 7:3. The 
LASSO regression algorithm, which involves shrinking and selecting 
features (non-zero coefficients), was employed to choose the most 
effective features from data collected from the training set. The 
regularization parameter lambda was adjusted to control the strength 
of regularization, and 10-fold cross-validation was used to select 
features. This study utilized five machine learning algorithms, namely 
logistic regression (LR), support vector machine (SVM), Gaussian 
naive Bayes (GaussianNB), Complement naive Bayes 
(ComplementNB), and k-nearest neighbors algorithm (kNN), to 
predict recurrent strokes in SICAS. For the training set, k-fold cross-
validation (k = 10) was employed as a resampling technique, and grid 
search was used to fine-tune hyperparameters. The training set was 
utilized for parameter adjustment, and the validation set was used to 
evaluate the system’s performance. The clinical value of the predictive 
model was assessed through three measures: discriminative ability, 
calibration, and clinical effectiveness. Firstly, a quantitative analysis 
of model discriminative ability was conducted using ROC and PR 
curves. Subsequently, the calibration of the model and the extent of 
prediction bias toward actual events were assessed using calibration 
curves. Furthermore, clinical net benefit was evaluated through 
decision curve analysis (DCA). In addition, the study assessed the 
accuracy, sensitivity, specificity, F1 score and kappa using confusion 
matrix indicators for the five models.

The model explanation primarily relies on the use of the SHAP 
method. Initially applied in cooperative game theory to address the 
problem of allocation equilibrium, this method offers the possibility of 
replacing machine learning models with limited interpretability by 
incorporating concepts such as Shap values for explanatory purposes. 
The Shap value, an allocation algorithm, ensures a fair assignment of the 
outcome (prediction result) to various features, compensating for the 
lack of interpretability in machine learning. In explaining machine 
learning models, the Shap value indicates the individual input feature’s 
significance in contributing to the model’s predicted value. A higher 
Shap value reflects a more significant influence of the input feature on 
the prediction result. The flowchart for building and validating a 
machine learning model is shown in Figure 1.

Results

Patient characteristics

This study enrolled a total of 180 patients who met the inclusion 
criteria. The dataset included 130 cases (72.2%) of patients without 
recurrent stroke and 50 cases (37.8%) of patients with recurrent 
stroke. The average age of the participants was 60 years. There were 
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122 male (67.8%) participants and 58 female participants (32.2%). The 
study observed that the HYC levels in the laboratory tests were higher 
in the recurrent stroke group compared to the non-recurrent stroke 
group (20.2 vs. 13.5, p < 0.001). Additionally, in the imaging data, the 
recurrent stroke group exhibited higher NWI values (0.9 vs. 0.7, 
p  < 0.001), a greater degree of vascular stenosis (70% vs. 40%, 
p < 0.001), increased plaque enhancement levels (Grade 0: 10.0% vs. 
49.2%; Grade 1: 44.0% vs. 36.2%; Grade 2: 46.0% vs. 14.6%, p < 0.001), 
a higher incidence of intraplaque hemorrhage (62.0% vs. 11.5%, 
p < 0.001), and a higher proportion of positive remodeling (46.0% vs. 
28.5%, p  < 0.001) compared to the non-recurrent stroke group 
(Table 1).

Feature selection for machine learning 
models

This study analyzed 27 variables using the LASSO regression of 
the training set data. To select the optimization parameter (λ) for the 
Lasso model, 10-fold cross-validation was performed based on the 
criterion of minimizing the standard deviation. The optimal λ value 
for LASSO, indicated by the vertical dashed line in 
Supplementary Figure S1, was found to be λ = 0.046. This λ-value 
corresponded to 7 features in the model, specifically the “history of 
hypertension” in baseline data, “homocysteine value” in laboratory 
tests, and “plaque features” obtained from high-resolution vessel wall 
magnetic resonance imaging, which included the “NWI value,” 
“stenosis rate,” “intraplaque hemorrhage,” “positive remodeling,” and 
“enhancement grade.”

Machine learning model

The average accuracy values of the five machine learning models 
in the training set exceeded 0.64 (Table 2 and Supplementary Table S1), 
indicating their strong predictive ability. The GNB algorithm 
demonstrated promising performance in both the training set (AUC: 
0.964, 95% CI: 0.933–0.994) and the test set (AUC: 0.912, 95% CI: 
0.773–1.000), as depicted in Figure 2 and presented in Table 2. Our 
dataset showed an imbalance with a 5:13 ratio between the recurrent 
and non-recurrent stroke groups. As a result, we  evaluated the 
precision-recall (PR) curve, which showed that the ROC curve is not 
an effective measure for assessing model efficacy when dealing with 
imbalanced data. The PR curve (Figures 2C,D) also demonstrated 
commendable performance for the GNB algorithm in both the 
training set (AUPRC: 0.896, 95% CI: 0.896–0.926) and the validation 
set (AUC: 0.833, 95% CI: 0.764–0.903). Subsequently, calibration 
curves and decision curve analysis (DCA) were employed to evaluate 
the predictive model (Figures  2E,F). The calibration plot of the 
validation set indicated minimal deviation between the predicted 
probabilities of recurrent stroke risk and the actual occurrence of 
events in the GNB model. DCA analysis revealed that the GNB model 
outperformed the other four models regarding clinical net benefit.

The construction and evaluation of the 
optimal GNB model

The training set of the GNB model underwent 10-fold cross-
validation. The results showed that the average AUC of the training 

FIGURE 1

Workflow of machine learning model construction. CV, cross validation; MSE, mean square error; GNB, Gaussian naive Bayes; DCA, decision curve 
analysis.
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set was 0.959 (0.927–0.991), the average AUC of the validation set was 
0.934, and the average AUC of the test set was 0.936 (0.870–1.000) 
(Figures  3A–C), indicating a good predictive performance of the 

model. Considering that the performance of the validation set, as 
measured by the AUC metric, did not exceed or the ratio was lower 
than 10% from that of the test set, we deem that the model to have 

TABLE 1 Baseline characteristics in non-recurrence group and recurrence group.

Variables All (n =  180) Non-recurrence 
group (n =  130)

Recurrence group 
(n =  50)

t/Z/χ2 p

Age 60.0(51.0, 67.0) 60.0(51.0, 67.0) 58.0(50.0, 66.0) 0.430 0.668

Male, n(%) 122(67.8) 87(66.9) 35(70.0) 0.157 0.692

BMI (IQR) 24.5(22.6, 27.2) 24.1(22.4, 27.6) 24.7(22.7, 27.0) 0.533 0.595

History of TIA or AIS, n(%) 48(26.7) 35(26.9) 13(26.0) 0.016 0.900

Other heart disease, n(%) 14(7.8) 8(6.1) 6(12.0) 1.721 0.190

History of myocardial infarction, n(%) 11(6.1) 7(5.4) 4(8.0) 0.431 0.512

History of diabetes, n(%) 37(20.6) 25(19.2) 12(24.0) 0.503 0.478

History of hypertension, n(%) 94(52.2) 71(54.6) 23(46.0) 1.074 0.300

Drink history, n(%) 48(26.7) 31(23.8) 17(34.0) 1.904 0.168

Smoke history, n(%) 70(38.9) 45(34.6) 25(50.0) 3.596 0.058

Posterior circulation ischemic, n(%) 85(47.2) 58(44.6) 27(54.0) 1.276 0.259

NIHSS (IQR) 1.0(0.0, 4.0) 1.0(0.0, 4.0) 2.0(0.0, 5.0) 1.011 0.288

TC (IQR) 3.8(3.2, 4.6) 3.6(3.1, 4.6) 4.0(3.4, 4.6) 1.576 0.115

TG (IQR) 1.2(0.9, 1.6) 1.2(0.9, 1.6) 1.3(0.9, 2.2) 1.183 0.237

LDL (IQR) 2.2(1.8, 2.9) 2.2(1.7, 2.9) 2.4(2.0, 2.8) 1.332 0.183

HDL (IQR) 1.0(0.8, 1.2) 1.0(0.8, 1.2) 1.0(0.8, 1.2) 0.500 0.618

ApoA1 (IQR) 1.1(1.0, 1.3) 1.1(1.0, 1.3) 1.1(1.0, 1.3) 0.760 0.448

ApoB (IQR) 0.8(0.7, 1.0) 0.8(0.7, 1.0) 0.9(0.7, 1.0) 1.624 0.105

FIB (IQR) 288.0(256.0, 334.0) 283.0(254.0, 331.0) 295.0(257.0, 345.0) 1.151 0.250

Ddimer (IQR) 0.6(0.5, 0.8) 0.6(0.5, 0.8) 0.7(0.5, 1.0) 0.704 0.477

HCY (IQR) 15.7(12.1, 20.3) 13.5(11.4, 18.2) 20.2(18.0, 22.8) 6.558 <0.001

GLU (IQR) 5.3(4.7, 6.3) 5.2(4.7, 6.3) 5.3(4.8, 6.2) 0.655 0.514

Stenosis (IQR) 0.5(0.4, 0.7) 0.4(0.4, 0.5) 0.7(0.6, 0.8) 6.825 <0.001

NWI (IQR) 0.8(0.6, 0.9) 0.7(0.6, 0.9) 0.9(0.8, 0.9) 4.350 <0.001

Positive remodeling, n(%) 60(33.3) 37(28.5) 23(46.0) 4.998 0.025

IPH, n(%) 46(25.6) 15(11.5) 31(62.0) 48.333 <0.001

Degree of enhancement, n(%) 30.322 <0.001

0 69(38.3) 64(49.2) 5(10.0)

1 69(38.3) 47(36.2) 22(44.0)

2 42(23.4) 19(14.6) 23(46.0)

BMI, Body Mass Index; NIHSS, National Institute of Health Stroke Scale; TC, Total Cholesterol; TG, Triglyceride; LDL, Low-Density Lipoprotein; HDL, High-Density Lipoprotein; HCY, 
Homocysteine; GLU, Glucose; NWI, Normal Wall Index I; IPH, Intraplaque Hemorrhage.

TABLE 2 Summarize the specific performance of the five machine learning algorithm models in the validation set.

Model AUC Accuracy Sensitivity Specificity F1 score Kappa

Logistic 0.878(0.733–0.986) 0.788(0.742–0.835) 0.975(0.926–1.000) 0.794(0.727–0.861) 0.598(0.414–0.782) 0.418(0.244–0.593)

GNB 0.912(0.773–1.000) 0.854(0.811–0.897) 0.923(0.870–0.977) 0.899(0.841–0.957) 0.763(0.685–0.841) 0.670(0.571–0.769)

CNB 0.813(0.611–0.987) 0.815(0.777–0.854) 0.793(0.678–0.909) 0.852(0.792–0.913) 0.653(0.585–0.722) 0.509(0.422–0.595)

SVM 0.852(0.694–0.991) 0.742(0.682–0.803) 0.935(0.882–0.988) 0.761(0.679–0.842) 0.617(0.529–0.704) 0.412(0.318–0.505)

KNN 0.831(0.672–0.985) 0.754(0.716–0.791) 0.955(0.919–0.991) 0.632(0.571–0.694) 0.704(0.575–0.832) 0.320(0.236–0.403)
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been successfully fitted (Figure 3D). Therefore, the GNB model can 
be applied to modeling tasks in relation to this dataset. In conclusion, 
the predictive model based on the GNB model algorithm exhibited 
the best performance in terms of prediction.

Model interpretation

In order to better explain how variables in the GNB model predict 
the occurrence of stroke recurrence, this study employed the SHAP 
method. Figure 4B illustrates the explanation of seven characteristics 
in the model. In each feature’s importance line, the attribution of all 
patients to the outcome is represented by dots of different colors, with 
red dots indicating high risk values and blue dots indicating low risk 
values. From the figure, it can be observed that an increase in plaque 
stenosis rate, plaque intraplaque hemorrhage, higher plaque 
enhancement level, elevated HCY levels, increased NWI values, the 
presence of positive plaque remodel, and a history of hypertension all 
contribute to an increased risk of stroke recurrence. Figure  4A 
presents a ranked bar graph of the contribution of the seven features 
to the model using mean absolute SHAP values. Finally, two typical 
cases are provided to demonstrate the interpretability of the model: 
Figure 4C shows a stroke recurrence patient, while Figure 4D shows 
a stroke no-recurrence patient.

Discussion

With the advancements in modern medicine, the mortality and 
recurrence rate of acute ischemic stroke have significantly decreased 
compared to the past (Postma, 2019). However, stroke recurrence 
often leads to a poor prognosis, resulting in a reduced quality of life 
for patients and an increased economic burden. Research indicates 
that stroke recurrence is closely associated with a significant decrease 
in life expectancy (Peng et al., 2022). Hence, it is crucial to identify the 
risk factors for stroke recurrence to prevent, detect, and assess 
the prognosis.

This study developed a machine-learning model based on the 
GNB algorithm. The model incorporates simple baseline data on the 
history of hypertension, laboratory test results for homocysteine 
levels, and information about plaque from HR-VWI. The GNB model 
demonstrated superior performance to all other models in the training 
and validation sets. To enhance the interpretability of our machine 
learning model, we utilized SHAP summary plots to distinguish the 
importance of each feature.

Based on the SHAP plots, the model indicates that certain factors, 
namely the plaque stenosis rate, intraplaque hemorrhage, 
enhancement grade, and normalized wall index (NWI), are strong 
predictors of recurrent stroke in SICAS, consistent with previous 
studies. Ren et  al. (2022) demonstrated the significant impact of 

FIGURE 2

Evaluation of machine learning models. (A) ROC curve of machine models in the training set. (B) ROC curve of machine models in the validation set. 
(C) PR curve of machine models in the training set. (D) PR curve of machine models in the validation set. (E) Calibration curve of machine learning 
models in the validation set: The x-axis represents the average predicted probability, while the y-axis represents the actual probability of the event. The 
dashed diagonal line serves as the reference line, while the solid lines represent the fitting lines of different models. The closer the fitting line is to the 
reference line, the smaller the value inside the parentheses and the more accurate the model’s predictions. (F) DCA (Decision Curve Analysis) of 
machine learning models in the validation set: The black dashed line represents the hypothesis that all patients will experience stroke recurrence, while 
the red dashed line represents the hypothesis that no patients will experience stroke recurrence. The remaining solid lines represent different models.
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plaque stenosis rate on stroke recurrence. From a hemodynamic 
perspective, plaque stenosis correlates negatively with perfusion in 
distant brain tissue and blood flow velocity. The stenosis of the vessel 
lumen, blood stasis, and increased pressure on the plaque significantly 
increase the risk of plaque rupture, thereby elevating the risk of stroke 
recurrence (Kim and Kim, 2014; Kwak et al., 2014). In our machine 
learning model, the plaque stenosis rate emerges as the most 
significant feature, reaffirming the findings of this study.

Additionally, intraplaque hemorrhage (IPH) and enhancement 
grade are identified as risk factors for stroke recurrence. Hosseini et al. 
(2013) and Kelly et al. (2020) demonstrate that IPH can be a new 
imaging biomarker for predicting stroke recurrence. These findings 
align with Ren et al. (2022), who report that patients with T1 high 
signal in responsible plaques are 2.878 times more likely to experience 
recurrence than non-T1 high signal patients. T1 high signal is often 
associated with plaque hemorrhage and lipid core. A meta-analysis 
comprising 13 studies (Schindler et al., 2020) indicates that IPH is the 
strongest predictor of stroke recurrence in symptomatic or 
asymptomatic carotid artery stenosis based on clinical features. IPH 
is associated with an increased risk of stroke at any degree of stenosis, 
even in patients with less than 50% stenosis. Furthermore, the 

enhancement grade of plaques, a common feature in HR-VWI, can 
help predict stroke recurrence. Typically, plaque enhancement is 
attributed to inflammation, neovascularization, and endothelial 
dysfunction, resulting in contrast agent leakage (Song et al., 2021). 
Kim et  al. (2016) reveal that the 1-year stroke recurrence rate in 
plaques with enhancement is approximately five times higher than in 
non-enhancing plaques (30.3% vs. 6.8%). Song et al. (2021) report 
similar findings in a small study, where all 25 patients with acute 
ischemic stroke and carotid plaques with neovascularization 
experienced stroke recurrence, strongly supporting our viewpoint. 
The NWI value of plaques is also an important predictive factor. NWI 
is an index that measures plaque burden and significantly predicts 
plaque rupture and intraplaque hemorrhage. Ran et  al. (2020) 
conclude that responsible plaques in the middle cerebral artery region 
increase the probability of stroke recurrence with a more significant 
plaque burden. By combining plaque burden with age and gender, 
their model predicts stroke recurrence with an AUC of 0.832, 
sensitivity of 72%, and specificity of 89%. Subsequently, Sun et al. 
(2021) obtained similar results across multiple vascular sites, 
demonstrating that a larger plaque burden is independently associated 
with stroke recurrence. Furthermore, plaque morphology is closely 

FIGURE 3

Illustrates the training, validation, and testing of the GNB model. (A) Training sets ROC and AUC and (B) validation sets ROC and AUC. Training and 
cross-validation of 10% of patients. Solid lines of different colors represent 10 different results. (C) Test set ROC and AUC. Test results for 30% of 
patients. (D) Learning curve. The red dashed line represents the training set and the blue dashed line represents the validation set. The values are 
expressed in terms of average and 95% CI.
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linked to recurrent stroke in SICAS (Zhao et  al., 2017). Positive 
remodeling of plaques characterizes vulnerable plaques and can 
be explained pathologically as plaques containing larger lipid cores 
and more significant macrophage infiltration. Positively remodeled 
areas with larger external vessel wall areas often experience ruptured 
plaques, particularly in eccentric lipid plaques. Consequently, 
positively remodeled plaques bear a higher risk of stroke recurrence.

A history of hypertension is often a neglected element in routine 
medical history collection, even though it has been identified by Flach 
et al. (2020) and others as a risk factor for stroke recurrence, even after 
adjusting for relevant confounding factors. The measurement of 
homocysteine (Hcy) is a common laboratory test for stroke patients. 
Elevated Hcy levels can upregulate proinflammatory factors, leading 
to oxidative stress and ultimately causing vascular tissue remodeling. 
In a study conducted by Shi et al. (2018), it discovered that patients in 
the high Hcy group had a 1.76 times higher risk of recurrence than 
those in the low Hcy group. Subgroup analysis revealed a significant 
correlation between high Hcy levels and recurrence in patients with 
large artery atherosclerotic ischemia. Notably, the American Heart 
Association guidelines released in 2021 recommended using B 
vitamins as a preventive measure against stroke, reinforcing the 
reliability of our research.

In this study, the probability of stroke recurrence was 37.8%. 
Compared with other related studies, the higher recurrence rate 
suggests that it may be related to the fact that patients included in this 
study did not undergo relevant vascular interventional surgery. 
Although surgical treatment is not currently recommended as the 
primary option for SICAS patients in Chinese guidelines, recent 
research has shown that surgery combined with medication can 
effectively control the risk of stroke recurrence (Zheng et al., 2022; 
Zhong et  al., 2022). Additionally, during the follow-up period, a 
certain proportion of patients in the study cohort did not follow the 
doctor’s instructions and regularly take medication, which may also 
contribute to the high recurrence rate of stroke. This further 
emphasizes the importance of dual antiplatelet therapy for the 
prevention and treatment of stroke recurrence (Zheng et al., 2022).

However, our study has several limitations. Firstly, the data for our 
machine learning algorithm model was only obtained from a single 
hospital, which may restrict its extensive implementation in other 
hospitals and clinical settings nationwide. Secondly, the study was 
constrained by a limited sample size due to regional restrictions. 
Lastly, as a retrospective study, inherent biases in the data are present. 
In order to address these limitations, we aim to conduct larger-scale, 
multicenter, and prospective studies in the future.

FIGURE 4

Interpretation of the best machine learning model (GNB) using SHAP. (A) Feature importance ranking represented by SHAP. The matrix plot describes 
the importance of each variable in the development of the final prediction model. (B) Feature attributes in SHAP. Each row represents a feature, and the 
x-axis represents the SHAP value. Red dots indicate higher feature values, while blue dots indicate lower feature values. (C,D) Individual risk 
explanations. Red features indicate an increased risk of death, while blue features indicate a decreased risk of death. The length of the arrows helps 
visualize the extent to which the predictions are influenced. The longer the arrow, the greater the effect.
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Conclusion

In this study, we used a machine learning algorithm to develop five 
risk prediction models for predicting recurrent strokes in SICAS 
patients. We identified seven risk factors linked to recurrent strokes 
through clinical data, laboratory tests, and HR-VWI plaque 
characteristics screening. The GNB model showed the highest predictive 
accuracy, displaying high accuracy in both the training and validation 
sets and demonstrating outstanding clinical net benefits. This machine 
learning model aims to assist clinicians in personalized diagnosis and 
treatment, effectively preventing recurrent strokes in SICAS patients.
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