
TYPE Original Research

PUBLISHED 04 January 2024

DOI 10.3389/fnins.2023.1323121

OPEN ACCESS

EDITED BY

Malu Zhang,

National University of Singapore, Singapore

REVIEWED BY

Anguo Zhang,

University of Macau, China

Lei Deng,

Tsinghua University, China

*CORRESPONDENCE

Yannan Xing

yannan.xing@synsense.ai

RECEIVED 17 October 2023

ACCEPTED 23 November 2023

PUBLISHED 04 January 2024

CITATION

Liu Y, Liu T, Hu Y, Liao W, Xing Y, Sheik S and

Qiao N (2024) Chip-In-Loop SNN Proxy

Learning: a new method for e�cient training of

spiking neural networks.

Front. Neurosci. 17:1323121.

doi: 10.3389/fnins.2023.1323121

COPYRIGHT

© 2024 Liu, Liu, Hu, Liao, Xing, Sheik and Qiao.

This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Chip-In-Loop SNN Proxy
Learning: a new method for
e�cient training of spiking neural
networks

Yuhang Liu1, Tingyu Liu1, Yalun Hu1, Wei Liao1, Yannan Xing1*,

Sadique Sheik1,2 and Ning Qiao1,2

1SynSense Co. Ltd., Chengdu, China, 2SynSense AG., Zurich, Switzerland

The primary approaches used to train spiking neural networks (SNNs) involve

either training artificial neural networks (ANNs) first and then transforming

them into SNNs, or directly training SNNs using surrogate gradient techniques.

Nevertheless, both of these methods encounter a shared challenge: they

rely on frame-based methodologies, where asynchronous events are gathered

into synchronous frames for computation. This strays from the authentic

asynchronous, event-driven nature of SNNs, resulting in notable performance

degradation when deploying the trained models on SNN simulators or hardware

chips for real-time asynchronous computation. To eliminate this performance

degradation, we propose a hardware-based SNN proxy learning method that

is called Chip-In-Loop SNN Proxy Learning (CIL-SPL). This approach e�ectively

eliminates the performance degradation caused by the mismatch between

synchronous and asynchronous computations. To demonstrate the e�ectiveness

of our method, we trained models using public datasets such as N-MNIST and

tested them on the SNN simulator or hardware chip, comparing our results to

those classical training methods.

KEYWORDS

SNN, asynchronous, neuromorphic chip, CIL-SPL, event-driven

1 Introduction

Spiking neural networks (SNNs) is a new generation neural network based approach

for neuromorphic computing owing to their low power consumption and high efficiency

(Merolla et al., 2014). SNNs, inspired by biological neurons, use discrete spikes to transmit

information, allowing them to process asynchronous, event-driven data efficiently (Maass,

1997; Ponulak and Kasinski, 2011). SNNs are also good at handling spatio-temporal

information, offering improved performance for dynamic tasks and time-sensitive problems

(Pfeiffer and Pfeil, 2018; Zhang et al., 2018).

Nevertheless, despite these advantages, SNNs have not gained widespread adoption

primarily due to the lack of efficient training methods, which contrasts with the relatively

straightforward training of traditional artificial neural networks (ANNs) (Neftci et al., 2019).

This challenge arises from the discontinuous and non-differentiable nature of spike signals,

which complicates the application of popular gradient-based optimization techniques such

as back propagation (Rumelhart et al., 1986; Bengio et al., 2015). Alternative training

methods, such as surrogate gradients or spike-timing-dependent plasticity (STDP) (Zhang

et al., 2021), frequently result in slower convergence and reduced accuracy when compared

to ANNs (Diehl and Cook, 2015; Neftci et al., 2019).

The most common methods for training SNNs involve either training ANNs and

then converting them to SNNs (Diehl and Cook, 2015) or directly training SNNs using

surrogate gradient methods (Neftci et al., 2019). Both of these methods suffer from

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1323121
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1323121&domain=pdf&date_stamp=2024-01-04
mailto:yannan.xing@synsense.ai
https://doi.org/10.3389/fnins.2023.1323121
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1323121/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1323121

a common problem: they rely on frame-based approaches that

accumulate asynchronous events into synchronous frames and

perform computations within frames. This deviation from the true

asynchronous, event-driven nature of SNNs leads to significant

performance degradation when the trained models are deployed on

SNN simulators or hardware chips (Benjamin et al., 2014; Davies

et al., 2018) for real-time asynchronous computation.

The necessity to adapt to asynchronous computation stems

from the fundamental differences between SNNs and ANNs.

Unlike ANNs, SNNs operate on an asynchronous basis, where

computations are triggered by individual neural events rather

than predetermined frames. This asynchronous processing is

key to the low-power consumption and reduced latency that

characterizes SNNs. The performance degradation, which is caused

by the differences of synchronous computation and asynchronous

computation, is difficult to effectively compensate for or eliminate

it, which poses a major obstacle for the practical application of

SNNs.

In this study, we propose a hardware-based SNN proxy

learning method to minimize the mismatch for SNNs running on

sync/async platforms. The primary concept behind this approach

involves using the time-step based backward propagation graph

as a substitute for asynchronous inference outputs. Gradients

are consequently computed from asynchronous system outputs,

presuming a linear correlation between ReLU activations and

spiking neuron firing rates.

The remainder of this study is organized as follows, Section 2

describes an overview of the existing methods for SNN training and

their limitations as well as a brief review of the recent advancements

in the field. Section 3 illustrates the proposed Chip-In-Loop SNN

Proxy Learning (CIL-SPL)method, including its main components,

algorithms, and implementation details. Section 4 introduces the

experiments conducted using public datasets such as N-MNIST

and the performance comparison between the proposed method

and the classical training methods on SNN simulator or the

hardware chip. Finally, Section 5 discusses the implications of our

findings, the strengths andweaknesses of the proposedmethod, and

potential future directions for research in this area.

2 Related studies

In this section, we will mainly introduce related studies about

SNN training methods as follows.

2.1 Conversion method

The method of training an artificial neural network (ANN) and

converting it to an SNN has been adopted widely (Diehl and Cook,

2015; Rueckauer et al., 2017; Rathi et al., 2020). The advantage of

this method lies in the fact that the training methods for ANNs

have been extensively optimized and researched over a long period,

offering greater usability. Moreover, the training process is more

straightforward, converges faster, and can achieve good results.

This conversion, however, has its limitations as the original ANNs

do not consider the spatio-temporal dynamics of SNNs, and this

can lead to performance degradation (Rueckauer et al., 2017).

This degradation is inherently challenging to eliminate due to the

fundamental differences between SNNs and ANNs, ensuring that

any optimizations applied to the ANN yield limited improvements.

2.2 Direct training method

Another alternative is using surrogate gradients (Neftci et al.,

2019; Fang et al., 2021). Surrogate gradient methods address

the non-differentiability of spike events in SNNs by using

approximated gradients. This allows for conventional optimization,

improved convergence, and broader applicability in SNN training.

but these methods still face the issue of slow convergence and

lower accuracy compared to ANNs. Moreover, some direct training

methods such as back propagation through time (BPTT) (Lee

et al., 2016; Bellec et al., 2018; Neftci et al., 2019) or real-time

recurrent learning (RTRL) (Williams and Zipser, 1989; Pedroni

et al., 2016), which incorporate time-wise gradient optimization

for more efficient gradient computation in SNNs, have been also

utilized for SNNs. The advantage of these methods is that they lead

less performance degradation during the conversion (Wei et al.,

2023). However, these methods are computationally expensive and

hard to scale.

2.3 Proxy learning and proxy learning in
SNNs

Proxy learning has proven effective in training deep neural

networks. It involves training an easier-to-optimize proxy model

and then transferring the learned weights to the target model

(Romero et al., 2014). This strategy has helped overcome problems

such as vanishing gradients in deep learning architectures. Some

recent studies have applied the concept of proxy learning to SNNs.

Kheradpisheh et al. (2022) proposed spike-based proxy training

for deep SNNs. They backpropagate the mismatch of the SNN in

the proxy ANN to update the shared weights, simply by replacing

the ANN final output with that of the SNN. Wu et al. (2021a,b)

proposed a learning method that is called tandem learning. This

method can be viewed as forms of proxy learning but with an

emphasis on collaboration and synchronization during the training

process.

2.4 Hardware-specific training of SNNs

Considering hardware dynamics during training has also been

an area of interest. Methods such as SLAYER (Shrestha and

Orchard, 2018; Xing et al., 2020) and Whetstone (Severa et al.,

2018) take into account the specific characteristics of neuromorphic

hardware during training. However, these methods also use

approximations to achieve this, leading to potential inaccuracies.

Inspired by these studies, we propose Chip-In-Loop SNN

Proxy Learning (CIL-SPL), a hardware-based SNN proxy

learning method that eliminates performance degradation by

maintaining the true asynchronous nature of SNNs during

training. Additionally, our method can be integrated with various

training methods. We demonstrate its effectiveness by training

models on public datasets and deploying them on both SNN

simulators and hardware chips.

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1323121
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1323121

3 Chip-In-Loop SNN Proxy Learning

In this study, we introduce the Chip-In-Loop SNN Proxy

Learning (CIL-SPL), a novel SNN training method that emphasizes

real-world, event-driven, asynchronous behavior by leveraging

hardware integration and possesses the unique flexibility to

fuse with various training approaches including ANN-to-SNN

conversion and the BPTT method. The CIL-SPL method follows

the logic of proxy learning and incorporates the hardware chip

(or simulator) as a proxy agent. The input events would be

forwarded by the hardware device or its simulator and the loss

gradients backward by the same synchronous SNN structure. The

computation graph is thus shared in the backward stage using

the traditional gradient decent method. This relies on the fact

that the ReLU activation is linear corresponding to the spiking

neuron firing rate within a limited time window. As is shown in

the Figure 1, the response of the integrate-and-fire neuron (IAF)

can be likened to a sampled ReLU activation function albeit in

a different scale. Leveraging this concept, the spike counts of

asynchronous neuron outputs within a timestep can serve as an

approximate activation value, essentially acting as a proxy within

the standard time-step based computational structure. Regarding

the temporal domain, given that the actual computation occurs

continuously and asynchronously, the loss is fragmented into small

time windows, accounting for accumulated spike count errors.

This can be addressed by employing backpropagation through time

(BPTT) for resolution.

3.1 Hardware introduction: Specktm chip
and its simulator

SpeckTM is a “sensor-compute integrated” neuromorphic

intelligent dynamic vision System on Chip(SoC), integrates a

dynamic vision processor (DYNAPtmCNN) and a dynamic vision

sensor (DVS) (Delbruck et al., 2008; Gallego et al., 2020; Liao et al.,

2022), also known as event camera. It features a large-scale spiking

convolutional neural network (SCNN) chip architecture based on

an asynchronous logic paradigm, configurable with up to 320K

spiking neurons. In the processing core, only the address event

representation (AER) protocol is used and all the neuron dynamics

are purely asynchronous event-driven without a local/global clock

reference signal.

Since our experiments primarily utilize the computational core

of Specktm chip, we will mainly introduce the key features of

the core rather than the DVS part. The computational core has

nine DYNAPtmCNN layers, each layer consists of asynchronous

convolution layers, spiking neurons, and pooling layers. It offers a

variety of stride, padding, and pooling options to cater to different

network structures and application needs. As for the specific

network size and the number of parameters, the parameter count

for the convolutional kernels and spiking neurons in each layer

varies, approximately in the tens of Ks. The precision for the

convolutional kernel precision is 8 bits, while the precision for the

spiking neuron states is 16 bits.

As for the simulator, it emulates based entirely on the chip’s

architecture. Due to the electrical variations of the actual chip,

there might be minor discrepancies. We conducted experiments

using both the hardware chip and the simulator, with consistent

experimental results.

By utilizing the speck development board and its accompanying

host computer software, data can be flexibly transmitted for

computation and reading of intermediate data or results. This

enables an equivalent convenient asynchronous neural network

simulation on both actual hardware and host machine.

3.2 Spiking neuron and network structure

As for the spiking neurons, we conducted experiments using

both integrate and fire (IF) neurons and the leaky integrate and

fire neurons (Abbott, 1999; Gerstner and Kistler, 2002; Izhikevich,

2003).

The principle of IF neuron could be described by

Vmem(t + 1) = Vmem(t)+
∑

z(t)

if Vmem(t) ≥ Vth, then Vmem → Vreset

(1)

where
∑

z(t) is the sum of input currents and Vmem(t) is

the membrane potential at time t. When the membrane potential

Vmem(t) reaches or exceeds the threshold Vth, the IF neuron will

output a spike and then reset the membrane potential to Vreset.

Based on IF neuron, the LIF neuron has an extra leaky mechanism

for membrane potential, which can be described as

Vmem(t + 1) = max
(

αVmem(t)+ (1− α)
∑

z(t),Vmin

)

if Vmem(t) ≥ Vth, then Vmem → Vreset

(2)

where α = e−
1

τmem is the leakage factor dominated by the

time constant factor τmem. It means that the membrane potential

at time t+1, i.e., Vmem(t+ 1) is a linear combination of the previous

membrane potentialVmem(t) and the sum of input currents
∑

z(t),

weighted by the coefficient α. As time pass by, Vmem(t + 1) will

decay with α as the coefficient. Therefore, the LIF neuron is more

complex than IF neuron, by incorporating a leakage mechanism.

As for the network structure, we conducted experiments on an

SCNN (Diehl et al., 2015) with six layers, including five spiking

convolutional layers and one full-connection layer. The network

could be represented as follows:

SCNN Structure:

Conv (Async) → Activation (Spiking) → Pooling
︸ ︷︷ ︸

Spiking Convolutional Layer (1)

Conv (Async) → Activation (Spiking) → Pooling
︸ ︷︷ ︸

Spiking Convolutional Layer (2)

...

Conv (Async) → Activation (Spiking) → Pooling
︸ ︷︷ ︸

Spiking Convolutional Layer (5)

↓

Fully Connected Layer

Notably, this SCNN does not incorporate any biases.

Mathematically, for each ith spiking convolutional layer, the

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1323121
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1323121

FIGURE 1

IAF response regards to the synaptic current vs. firing rate.

operation can be described as

Oi = P(S(Ii ∗ Ki))

where Ii is the input of ith layer, Ki is the convolution kernel,

S(·) is the spiking activation function, and P(·) is the pooling

operation.

The output from the fully connected layer, followed by the

spiking activation, can be represented as

F = S(W · O5)

whereW is the weight matrix andO5 is the output from the last

(5th) spiking convolutional layer.

3.3 CIL-SPL structure

CIL-SPL follows the base structure of proxy learning, and

the model will run on synchronous software framework and also

hardware chip (simulator) to be the proxy agent. In each iteration,

the input events will be fed into the chip and carry out the

asynchronous forward computation on the chip. Meanwhile, the

events would also be sent into a synchronous software framework

and then be converted into tensors by accumulating events over

a period of time for forward computation. For loss computation

and gradient backpropagation, we replace the outputs of the

standard network with the chip’s output. This means the loss

would be calculated by the output of the chip and proceed

with backpropagation in the original synchronous computation

graph. As is shown in Figure 2, the gradient computation still

occurs within the synchronous computational graph. However, for

the loss calculation, the output of the asynchronous framework

FIGURE 2

The structure of CIL-SPL. The event stream is computed by both

hardware chip and ANN/SNN model, which obtain the event output

by chip and computational graph by model. Then, the result from

the hardware would be transferred into the computational graph

and backward by ANN/SNN model. Finally, the weights would be

shared with the on-chip model after back propagation updating.

is used in place of the synchronous output. The asynchronous

framework is responsible only for forward computation and does

not independently compute the loss or update the gradients. After

the backward process, the updated weights would be transferred to

the chip and then start the next iteration.

The fundamental concept involves leveraging the asynchronous

computation outcomes from the hardware chip to substitute

the synchronous computation results within the original training

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1323121
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1323121

framework during the forward stage of each iteration. During

the backward stage, the gradient backpropagation process persists

within the original ANN/SNN computation graph to fine-tune the

weights. Subsequently, these refined weights are transmitted back

to the hardware chip in preparation for the subsequent iteration.

This approach’s advantage lies in integrating asynchronous

hardware chip computation during the forward stage, which

steers the network toward optimizing asynchronous computation

results. However, in the backward stage, due to the substantial

computational demands of asynchronous gradient computation

and the limitation in deriving effective errors from single-step

calculations, the original framework remains instrumental for

gradient backpropagation, ensuring a balance between efficiency

and reliability.

Moreover, given the lower precision of weights on the chip (8

bits or 16 bits), a feasible approach is to quantize the parameters

after each iteration when transferring them. A more advantageous

method would be to employ quantization-aware training (QAT)

within the original training framework, allowing the primarymodel

to adapt to the degradation introduced by quantization during the

training process.

In the following, we will illustrate how the CIL-SPL method

integrates with different training methods, taking ANN-to-SNN

and BPTT as primary examples.

3.3.1 CIL-SPL with ANN-to-SNN
For the ANN-to-SNN training method, the entire training

process is conducted on the ANN. Only after the training is

completed, the parameters can be transferred to the SNN. For the

CIL-SPL with the ANN-to-SNN method, within each proxy loop,

both the ANN and SNN receive identical inputs and independently

conduct forward computations. Next, the SNN’s output substitutes

the ANN’s output for computing the ANN’s loss. Subsequent to

this, backward propagation occurs within the ANN to modify the

weights. These adjusted weights are then transferred to the SNN,

and the process iterates for the next cycle. This algorithmic process

can be outlined as Algorithm 1.

Inputs: x (training input data), y (training

labels)

Parameters: W
(1)
ANN, W

(1)
SNN (Initialized weights of the

ANN and SNN)

Hyper-parameters: α(learning rate), T(number of

total iterations)

Functions: f(Forward computation function), L(Loss

function), 8(Weights transfer function)

Start training:

for t = 1 to T do

y
(t)
ANN = fANN (W

(t)
ANN , x)

y
(t)
SNN = fCHIP_SNN (W

(t)
SNN , x)

1W
(t)
ANN = α∇

W
(t)
ANN

L(y
(t)
SNN , y)

W
(t+1)
ANN = W

(t)
ANN + 1W

(t)
ANN

W
(t+1)
SNN = 8(W

(t+1)
ANN )

end for

Output: Trained weights W
(T+1)
ANN , W

(T+1)
SNN

Algorithm 1. CIL-SPL with ANN-to-SNN.

There are several noteworthy points within this process. First,

SNN’s forward computation occurs on the chip or hardware

simulator and is involved in each iteration of the loop. Second,

given that the SNN’s final output is the accumulated spike count

for each category, a softmax function is applied to align the output

format with that of the ANN in terms of probability. This alignment

facilitates the computation of the loss function. As for the weight

conversion from ANN to SNN, due to the lower weight precision

on the chip (or simulator), quantization is required. Hence, the

transfer method is a quantization function. If the QAT method was

already adopted during the training process of the ANN, then the

quantized weights can be directly used as the weights for the SNN.

3.3.2 CIL-SPL with BPTT
For the BPTT training method, during each iteration, several

time steps are divided. In the forward process, the state of each

time step is recorded. During the model optimization process,

the states from all previous time steps are used to optimize the

weights. In the CIL-SPL with BPTT method, we only need to

include the chip (or simulator) during the forward stage to perform

simultaneous forward computations. During the loss computation

and backpropagation stages, the final output ychip[t] andmembrane

potential Vchip[t] from the chip are used to replace those in the

original synchronous network. Every iteration process can be

represented by the following formulas:

• Forward propagation on synchronous framework:

V[t] = fstate(V[t − 1], x[t],W) (3)

y[t] = fout(V[t]) (4)

• Forward propagation on asynchronous chip:

Vchip[t] = fchip_state(Vchip[t − 1], x[t],Wchip) (5)

ychip[t] = fchip_out(Vchip[t]) (6)

• Loss calculation:

L[t] =

t
∑

τ=1

L(ychip[τ ], ytrue[τ ]) (7)

• Back propagation:

∂L

∂Vchip[τ ]
=

T
∑

t=τ

∂L[t]

∂ychip[t]
·

∂ychip[t]

∂Vchip[τ ]
(8)

∂L

∂W
=

T
∑

t=1

∂L[t]

∂ychip[t]
·

∂ychip[t]

∂Vchip[t]
·
∂Vchip[t]

∂W
(9)

W(t+1) = W(t) − α ·
∂L

∂W
(10)

where x represents the input, V represents the membrane

potential, y denotes to the output, W represents the weights, L is

the loss function, α is the learning rate, and f denotes the forward

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1323121
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1323121

computation function. Terms with the subscript “chip” refer to

corresponding entities in the chip or simulator. Thus, compared

to the traditional BPTT method, this approach requires additional

forward computations on the chip. During the loss calculation and

backpropagation, the membrane potential Vchip and output ychip
obtained from the forward pass on the chip are used in place of the

originalV and y. As for the parameter initialization and the transfer

of parameters after each iteration, it is similar to that in CIL-SPL

with ANN-to-SNN and will not be elaborated here again.

This approach is adopted because the typical BPTT method

divides the computations into several time steps. However, due

to computational resource constraints and gradient optimization

efficacy, we can not divide it into too many time steps. Each

time step accumulates events over a certain duration or quantity

for synchronous computation, which differs from the actual

asynchronous computation process on the chip. Therefore, during

the backward stage, we replace with the chip’s output results and

adjust the weights to optimize their influence on the chip’s output.

For the CIL-SPL with BPTT method, the chip not only

participates in the iterative loop but also joins in the time step loop

within each iteration, achieving a true sense of “chip-in-loop.”

Apart from the ANN-to-SNN and BPTT methods, the CIL-

SPL approach can also be combined with other training techniques,

and even potentially with future novel methods. The core principle

is to replace the forward output results in the training method

with outputs from the hardware chip (or simulator) during the

iteration process, subsequently optimizing the parameters. This

ensures that the network optimization is oriented toward the actual

asynchronous chip output process and results.

4 Experiments and results

4.1 Experiments set-up

We conducted experiments on the neuromorphic-MNIST (N-

MNIST) dataset (Orchard et al., 2015). The N-MNIST dataset is

essentially a spiking version of the conventional MNIST (LeCun

et al., 1998), where images are converted into spiking sequences.

It consists of the same 60,000 training and 10,000 testing samples

as the original MNIST dataset and is captured at the same

visual scale as the original MNIST dataset (28 × 28 pixels).

To demonstrate the effectiveness of our method, we conducted

comparative experiments with our approach against both the CNN

and BPTT methods. Moreover, tests were performed in both

synchronous software frameworks and asynchronous hardware

environments.

First, we conducted experiments using CNN to establish a solid

benchmark. During the experimentation, we converted the DVS

event stream from the N-MNIST dataset back into image frames

for training and testing the CNN. Subsequently, to investigate the

effects of quantization during training and testing, we conducted

similar experiments using a CNN with quantization-aware training

(QAT), setting the weight parameter resolution to 8 bits. Following

the training within a software framework using these CNN-

based approaches, we employed the ANN-to-SNN conversion

method to transition them into SNNs. These transformed networks

were then deployed onto hardware chips for testing purposes.

TABLE 1 Software and hardware results of four di�erent methods on

N-MNIST dataset (Accuracy: %).

Method Software test Hardware
ANN test

Hardware
SNN test

CNN only 97.39 96.89 91.75

CNN with QAT 95.98 93.33 92.15

BPTT(SNN) 97.56 / 95.24

CIL-SPL with BPTT 96.66 / 95.71

Furthermore, we extended the deployment to a synchronous

hardware accelerator, facilitating comparative experiments.

For direct SNN training, we conducted experiments using

the BPTT method as well as our CIL-SPL with BPTT approach.

Initially, we trained and tested on a software framework, and

subsequently, we deployed and tested on the hardware chip.

4.2 Experimental results and analysis

The experimental results are listed in Table 1. First,

it is evident that on the software-side with synchronous

computational architecture, both CNN and BPTT methods

achieved commendable results. However, when deployed on

asynchronous hardware chips, the CNN-to-SNN method suffered

a more substantial performance degradation. This is because the

multi-time step approach of BPTT is more aligned with the real

asynchronous process.

Furthermore, regarding computational precision discrepancies,

it is observed that after incorporating the QAT method, while

the accuracy of the CNN on the software side slightly decreased,

its performance on the hardware SNN chip was significantly

enhanced.

As for our CIL-SPL method, it can be observed that, although

it did not achieve the best results during training and testing

on the software side, its accuracy degradation was the smallest

when deployed to the hardware chip, and it achieved the best

performance on the chip. This conforms with our expectations.

Our proposed training method was not aimed at achieving higher

accuracy on general software platforms but rather at reducing

performance degradation when deployed on hardware chips due to

differences between synchronous and asynchronous computations

as well as variations in weight precision.

As for deploying the non-quantized CNN model to the

hardware ANN inference accelerator, it achieved higher accuracy

compared to when deployed on the hardware SNN chip. However,

its power consumption, computational requirements, and required

storage space were significantly higher than that of the SNN chip.

4.3 Distribution of weights

Additionally, we analyzed the model weights trained separately

using the BPTTmethod and the CIL-SPLmethod. Figure 3 displays

the weight distribution of these models.

It could be observed that the model trained using the BPTT

method has a denser weight distribution, while the model trained

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1323121
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1323121

FIGURE 3

Distribution of fully-connected layer weights comparing the CIL-SPL and SNN structures, the distribution of CIL-SPL is sparse which benefits the

quantization after deploying on the chip.

with the CIL-SPL method exhibits a more uniform weight

distribution. A denser distribution of weight values necessitates

higher precision to distinguish between them. During quantization,

if the precision is not sufficient, weights that are close in value

may be rounded to the same quantized number, leading to a

greater loss of information and potentially impairing the network’s

performance (Rastegari et al., 2016). This might offer an intuitive

explanation as to why models trained using the CIL-SPL method

experience smaller degradation when deployed to hardware chips.

5 Discussion

In this study, we propose a new method of SNN training

called CIL-SPL which aims to reduce the quantization precision

loss from high-resolution software to low-resolution hardware and

benchmark it on the N-MNIST data set.

In our exploration of the Chip-In-Loop SNN Proxy

Learning (CIL-SPL) approach, we primarily sought to reconcile

the discrepancies between synchronous training and true

asynchronous inference on hardware. Notably, CIL-SPL is

versatile, seamlessly integrating with various training strategies,

for example, the ANN-to-SNN conversion method and the BPTT

direct training method. Our method demonstrated remarkable

results, achieving 95.71% accuracy on the N-MNIST dataset, which

is conducted on SNN hardware chip. This impressive experimental

result was attained with minimized network parameters and

parameter precision on hardware, substantiating CIL-SPL’s efficacy

and efficiency in real-world deployments.

While proxy learning in SNN training is not entirely new,

our CIL-SPL method uniquely integrates with hardware, ensuring

models are not only theoretically adept but also practically

efficient on real-world platforms. Unlike other techniques, CIL-

SPL complements existing training methods, thereby bridging the

gap between simulation and real-world performance and offering a

versatile solution for optimal results.

While CIL-SPL brings forward significant advantages, it is

inherently dependent on specific hardware devices or platforms.

This means there is no one-size-fits-all solution as different

hardware or platforms would necessitate distinct implementations.

Additionally, its efficiency is closely tied to the forward inference

speed and parallelization capabilities of the chosen hardware or

platform. Due to time constraints, our study did not extend to tests

on a wider variety of datasets or more diverse hardware platforms.

In future endeavors, we aim to delve deeper into these areas and

warmly invite fellow researchers and scholars to explore and build

upon this foundation.

Data availability statement

The original contributions presented in the study are available

through the public dataset: https://www.garrickorchard.com/data

sets/n-mnist.

Author contributions

YX: Writing – review & editing. YL: Writing – original draft.

TL: Writing – original draft. YH: Writing – original draft. WL:

Writing – original draft. SS: Writing – review & editing. NQ:

Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

YL, Tl, YH, WL, YX, SS, and NQ were employed by SynSense

Co. Ltd. SS and NQ were employed by SynSense AG.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1323121
https://www.garrickorchard.com/datasets/n-mnist
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1323121

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abbott, L. F. (1999). Lapicque’s introduction of the integrate-and-fire model neuron
(1907). Brain Res. Bull. 50, 303–304. doi: 10.1016/S0361-9230(99)00161-6

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). “Long
short-termmemory and learning-to-learn in networks of spiking neurons,” inAdvances
in Neural Information Processing Systems 31.

Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., and Lin, Z. (2015). Towards
biologically plausible deep learning. arXiv preprint arXiv:1502.04156.

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran,
A. R., Bussat, J.-M., et al. (2014). Neurogrid: a mixed-analog-digital
multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716.
doi: 10.1109/JPROC.2014.2313565

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Delbruck, T., et al. (2008). “Frame-free dynamic digital vision,” in Proceedings of
International Symposium on Secure-Life Electronics, Advanced Electronics for Quality
Life and Society (Citeseer), 21–26.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99.
doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015).
“Fast-classifying, high-accuracy spiking deep networks through weight and threshold
balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN) (IEEE),
1–8. doi: 10.1109/IJCNN.2015.7280696

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2021).
“Incorporating learnable membrane time constant to enhance learning of spiking
neural networks,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision 2661–2671. doi: 10.1109/ICCV48922.2021.00266

Gallego, G., Delbrück, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., et al.
(2020). Event-based vision: a survey. IEEE Trans. Patt. Anal. Mach. Intell. 44, 154–180.
doi: 10.1109/TPAMI.2020.3008413

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single
Neurons, Populations, Plasticity. Cambridge: Cambridge University Press.
doi: 10.1017/CBO9780511815706

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Kheradpisheh, S. R., Mirsadeghi, M., and Masquelier, T. (2022).
Spiking neural networks trained via proxy. IEEE Access 10, 70769–70778.
doi: 10.1109/ACCESS.2022.3187033

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep
spiking neural networks using backpropagation. Front. Neurosci. 10, 508.
doi: 10.3389/fnins.2016.00508

Liao, W., Zhang, X., Yu, L., Lin, S., Yang, W., and Qiao, N. (2022).
“Synthetic aperture imaging with events and frames,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition 17735–17744.
doi: 10.1109/CVPR52688.2022.01721

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neur. Netw. 10, 1659–1671. doi: 10.1016/S0893-6080(97)00011-7

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada,
J., Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit
with a scalable communication network and interface. Science 345, 668–673.
doi: 10.1126/science.1254642

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to spiking

neural networks. IEEE Signal Proc. Magaz. 36, 51–63. doi: 10.1109/MSP.2019.293
1595

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting static
image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9,
437. doi: 10.3389/fnins.2015.00437

Pedroni, B. U., Sheik, S., Joshi, S., Detorakis, G., Paul, S., Augustine, C., et al. (2016).
“Forward table-based presynaptic event-triggered spike-timing-dependent plasticity,”
in 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS) (IEEE), 580–583.
doi: 10.1109/BioCAS.2016.7833861

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons:
opportunities and challenges. Front. Neurosci. 12, 774. doi: 10.3389/fnins.2018.0
0774

Ponulak, F., and Kasinski, A. (2011). Introduction to spiking neural networks:
information processing, learning and applications. Acta Neurobiol. Exper. 71, 409–433.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). “Xnor-net:
imagenet classification using binary convolutional neural networks,” in European
Conference on Computer Vision (Springer), 525–542. doi: 10.1007/978-3-319-4649
3-0_32

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). Enabling deep spiking
neural networks with hybrid conversion and spike timing dependent backpropagation.
arXiv preprint arXiv:2005.01807.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. (2014).
Fitnets: hints for thin deep nets. arXiv preprint arXiv:1412.6550.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion
of continuous-valued deep networks to efficient event-driven networks for image
classification. Front. Neurosci. 11, 682. doi: 10.3389/fnins.2017.00682

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
representations by back-propagating errors. Nature 323, 533–536. doi: 10.1038/3235
33a0

Severa, W., Vineyard, C. M., Dellana, R., Verzi, S. J., and Aimone, J. B.
(2018). Whetstone: a method for training deep artificial neural networks for binary
communication. arXiv preprint arXiv:1810.11521. doi: 10.1038/s42256-018-0015-y

Shrestha, S. B., and Orchard, G. (2018). “Slayer: spike layer error reassignment in
time,” in Advances in Neural Information Processing Systems 31.

Wei, W., Zhang, M., Qu, H., Belatreche, A., Zhang, J., and Chen, H. (2023).
“Temporal-coded spiking neural networks with dynamic firing threshold: Learning
with event-driven backpropagation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision 10552–10562.

Williams, R. J., and Zipser, D. (1989). Experimental analysis of the real-time
recurrent learning algorithm.Connect. Sci. 1, 87–111. doi: 10.1080/09540098908915631

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C. (2021a). A tandem learning
rule for effective training and rapid inference of deep spiking neural networks. IEEE
Trans. Neur. Netw. Learn. Syst. 34, 446–460. doi: 10.1109/TNNLS.2021.3095724

Wu, J., Xu, C., Han, X., Zhou, D., Zhang, M., Li, H., et al. (2021b). Progressive
tandem learning for pattern recognition with deep spiking neural networks. IEEE
Trans. Pattn. Anal. Mach. Intell. 44, 7824–7840. doi: 10.1109/TPAMI.2021.3114196

Xing, Y., Di Caterina, G., and Soraghan, J. (2020). A new spiking convolutional
recurrent neural network (SCRNN) with applications to event-based hand gesture
recognition. Front. Neurosci. 14, 590164. doi: 10.3389/fnins.2020.590164

Zhang, M., Qu, H., Belatreche, A., Chen, Y., and Yi, Z. (2018). A highly effective and
robust membrane potential-driven supervised learning method for spiking neurons.
IEEE Trans. Neur. Netw. Learn. Syst. 30, 123–137. doi: 10.1109/TNNLS.2018.2833077

Zhang, M., Wang, J., Wu, J., Belatreche, A., Amornpaisannon, B., Zhang, Z., et
al. (2021). Rectified linear postsynaptic potential function for backpropagation in
deep spiking neural networks. IEEE Trans. Neur. Netw. Learn. Syst. 33, 1947–1958.
doi: 10.1109/TNNLS.2021.3110991

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1323121
https://doi.org/10.1016/S0361-9230(99)00161-6
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/ACCESS.2022.3187033
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/CVPR52688.2022.01721
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/BioCAS.2016.7833861
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/s42256-018-0015-y
https://doi.org/10.1080/09540098908915631
https://doi.org/10.1109/TNNLS.2021.3095724
https://doi.org/10.1109/TPAMI.2021.3114196
https://doi.org/10.3389/fnins.2020.590164
https://doi.org/10.1109/TNNLS.2018.2833077
https://doi.org/10.1109/TNNLS.2021.3110991
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Chip-In-Loop SNN Proxy Learning: a new method for efficient training of spiking neural networks
	1 Introduction
	2 Related studies
	2.1 Conversion method
	2.2 Direct training method
	2.3 Proxy learning and proxy learning in SNNs
	2.4 Hardware-specific training of SNNs

	3 Chip-In-Loop SNN Proxy Learning
	3.1 Hardware introduction: Specktm chip and its simulator
	3.2 Spiking neuron and network structure
	3.3 CIL-SPL structure
	3.3.1 CIL-SPL with ANN-to-SNN
	3.3.2 CIL-SPL with BPTT


	4 Experiments and results
	4.1 Experiments set-up
	4.2 Experimental results and analysis
	4.3 Distribution of weights

	5 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


