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Acoustic stimuli such as music or ambient noise can significantly affect 
physiological and psychological health in humans. We here summarize positive 
effects of music therapy in premature infant distress regulation, performance 
enhancement, sleep quality control, and treatment of mental disorders. 
Specifically, music therapy exhibits promising effects on treatment of neurological 
disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). We also 
highlight regulatory mechanisms by which auditory intervention affects an 
organism, encompassing modulation of immune responses, gene expression, 
neurotransmitter regulation and neural circuitry. As a safe, cost-effective and 
non-invasive intervention, music therapy offers substantial potential in treating a 
variety of neurological conditions.
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1 Introduction

Acoustic stimulus, also known as sound stimulus, is defined as specific sounds or noises that 
elicit a response from an organism’s auditory system (Oxenham, 2012; Goldsworthy, 2022). For 
centuries, music or beneficial noise have been applied as a non-pharmaceutical therapeutic 
intervention to enhance physiological and psychological strength in humans (Chen et al., 2022; 
Lorek et al., 2023). Acoustic stimulus has been shown to improve one’s attention, memory and 
cognitive flexibility, to influence psychomotor functioning, and to synchronize motor behaviors 
through rhythm and beat (Braem and Egner, 2018; Terry et al., 2020; Uddin, 2021; Harlow et al., 
2023). Music therapies also can reduce arousal levels, and help people gain benefit in managing 
sleep disorders (Loewy, 2020; Petrovsky et al., 2020). On the other hand, adverse noise stimuli, 
i.e., acoustic overload or noise pollution, cause a variety of negative physiological and 
psychological responses (Tao et al., 2020; Fan et al., 2022), and even lead to diseases, for instance 
permanent hearing loss, fatigue, cognitive impairment, chronic stress responses, and high risk 
of cardiovascular disorders (Oxenham, 2013; Zhang et al., 2020; Frenis et al., 2021).

Classical music is often used as a therapeutic acoustic stimulus. For example, Mozart’s 
Sonata for Two Pianos in D Major and Rachmaninov’s Piano Concerto No. 3 in D Minor are 
commonly employed in therapeutic environments to mitigate negative sentiments (Blood and 
Zatorre, 2001; Lin et al., 2011; Ding et al., 2023). As a consequence, college students who listened 
to Mozart performed better on the Stanford Binet’s test than those attended to relaxed rock 
music or no sound (McLachlan, 1993; Blood and Zatorre, 2001; Pereira et al., 2011). Beside 
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music, nature sounds (Saadatmand et al., 2013; Franco et al., 2017; 
Thoma et al., 2018), rhythmic drumming (Pantelyat et al., 2016), and 
lullabies also are used as therapeutic means (Loewy et al., 2013).

We here discuss the impact of different types of sound stimuli, 
such as music therapy, on the development of the nervous system and 
the onset and progression of neurological diseases. We summarize 
strategies and potential mechanisms for harnessing sound stimuli to 
improve health and circumvent damaging effects of adverse 
noise exposure.

2 Effects of auditory stimulus on infant 
brain development and functions

Preterm birth, termed as infants born before 37 weeks of gestation, 
is one of the leading causes of neonatal morbidity and mortality 
worldwide (Colaizy et al., 2012). An estimated 10.6% of all global 
births are preterm, leading to approximately 3.1 million annual infant 
deaths as a direct consequence (Chawanpaiboon et al., 2019; UNICEF, 
2023). Beyond its substantial contribution to mortality, effects of 
preterm birth can persist throughout the life of some survivors, and 
lead to neurodevelopmental impairments and abnormal brain 
maturation such as periventricular leukomalacia, neuronal or axonal 
disorders, characterized by profound cognitive deficits and motor 
disabilities (Deng et  al., 2008; Ligam et  al., 2009; Volpe, 2009; 
Argyropoulou, 2010; Van'T et al., 2015; Cismaru et al., 2016; Gui 
et al., 2019).

Notably, preterm infants and children who participated music 
therapy demonstrated stabilized vital signs, marked reductions in 
heart and respiratory rates, and heightened oxygen saturation levels 
(Kobus et al., 2021, 2022). This effect was particularly pronounced 
among 20 preterm infants, born before 32 weeks of gestation, who 
engaged in biweekly music therapy such as impromptu personal 
lullaby performances and the use of a sansula, a wooden ring with an 
attached small kalimba, by the music therapist (Kobus et al., 2021). A 
clinical trial also showed that involving 21 out of 40 preterm infants 
who have received approximately eight-minute musical compositions 
twice daily via study-specific headphones demonstrate significant 
benefits (Sa et al., 2023). As revealed by multishell diffusion Magnetic 
Resonance Imaging studies, cortical paralimbic regions of these 
infants displayed a significantly higher longitudinal increase in fiber 
cross-section and orientation dispersion index upon music treatment 
such as calming backgrounds and melodies from bells, harps, and 
snake flutes (Sa et al., 2020, 2023). Moreover, amygdala volumes in 
preterm infants were significantly increased after musical interventions 
based on diffusion tensor imaging studies (Haslbeck et al., 2020; Sa 
et al., 2020).

Furthermore, mild differences were observed in fear and 
anger reactivity between the music-exposed preterm group and 
the full-term group at 12 and 24-month periods, suggesting a 
positive influence of music exposure on fear processing and 
potential long-term benefits (Lejeune et al., 2019; Ormston et al., 
2022). A study of 47 nine-month-old infants, who were exposed 
to metered music such as waltzes, also showed evoke neural 
responses to temporal irregularities in both music and speech 
after 12 sessions of 15 min each of corresponding activity over a 
4-week period in the laboratory, as confirmed through 
magnetoencephalography (Zhao and Kuhl, 2016). Moreover, 

musically trained children and adults displayed advanced abilities 
in processing musical pitch and meter compared to their untrained 
counterparts (Zhao and Kuhl, 2016; Nan et al., 2018; Putkinen 
et al., 2019). These findings suggest that music interventions can 
improve the ability of infants and adults to recognize and 
anticipate auditory patterns, skills crucial for understanding both 
music and speech (Moreno et  al., 2009; Zhao and Kuhl, 2016; 
Zhao et al., 2017; Nan et al., 2018; Putkinen et al., 2019; Bower 
et al., 2021; Lenc et al., 2023).

3 Acoustic stimulus in improving sleep 
quality and treating mood disorders

Sleep serves as a critical indicator of an individual’s physical, 
psychological and social health (Clement-Carbonell et  al., 2021). 
Adequate sleep can regulate emotions, consolidate memory, enhance 
learning ability, and promote overall well-being (Rasch and Born, 
2013; Papalambros et al., 2017; Ramar et al., 2021). Insufficient sleep 
not only increases the risk of obesity and cardiovascular diseases, but 
also triggers anxiety, depression and other mental disorders, leading 
to a decline in cognitive performance (Ward et al., 2014; Muto et al., 
2016; Di Muzio et al., 2020; Scott et al., 2021). The Sleep Ambient 
Music Intervention is an effective therapeutic measure for improving 
sleep quality and mental health (Loewy, 2020; Chen et  al., 2021) 
(Figure 1). After a four-week music intervention, university students 
showed improved subjective sleep quality, shortened sleep onset 
latency, and reduced symptoms of anxiety and depression (Loewy, 
2020; Hu et al., 2023). Listening to music during warm-up exercises 
can significantly enhance the reaction speed, cognitive performance, 
and average physical power of both individuals suffering from partial 
sleep deprivation and those with normal sleep patterns (Ballmann, 
2021; Khemila et al., 2021) (Figure 1). Their post-exercise cortisol 
levels and negative emotional states also were effectively reduced 
(Ballmann, 2021; Khemila et al., 2021; Bentouati et al., 2023).

Attention-Deficit/Hyperactivity Disorder (ADHD) is a prevalent 
neurodevelopmental disorder primarily affecting children and 
adolescents, with symptoms often persisting into adulthood (Sayal 
et  al., 2018; Ayano et  al., 2023; Park et  al., 2023). The primary 
symptoms of ADHD, including inattention, hyperactivity, and 
impulsivity, frequently impair individuals’ performance in academic, 
occupational, and social contexts (Thapar and Cooper, 2016; Cabral 
et al., 2020; Kautzky et al., 2020; Posner et al., 2020). Interestingly, 
music therapy has demonstrated effectiveness in treating ADHD 
(Purper-Ouakil et al., 2011; Meinzer et al., 2016; Shapero et al., 2021). 
A significant increase in serotonin (5-HT) secretion and a decrease of 
cortisol levels, blood pressure and heart rate were observed in 18 
children and adolescents with ADHD and depression, following music 
therapy such as spontaneous composition and listening to music with 
each session lasting 50 min twice a week for 3 months, as compared to 
the ADHD control group with no treatments (Park et  al., 2023). 
Positive changes in psychological measurements including the Child 
Depression Inventory and the Depressive Health Questionnaire also 
were noted (Park et al., 2023). These results underscore promising 
neurophysiological and psychological benefits of music therapy as an 
alternative treatment approach for children and adolescents with 
ADHD, though further research is required to better understand the 
effect and mechanisms of music therapy for ADHD (Park et al., 2023).
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Music has been used to act as a powerful medium for emotional 
regulation, characterized by alterations in melody and rhythm that 
match different emotional states (Mitterschiffthaler et  al., 2007; 
Fernandez-Sotos et  al., 2016; Feng et  al., 2019; Koelsch, 2020) 
(Figure 1). A significant reduction in depression ratings among 251 
children aged 8–16 years old with social, emotional, behavioral and 
developmental disorders was observed after 12 weeks of playing with 
musical instruments such as guitars, xylophones and keyboards 
(Porter et al., 2017). Moreover, 79 adults from 18 to 50 years old with 
unipolar depression exhibited significant improvements in depression 
symptoms, anxiety symptoms and general functioning after receiving 
20 bi-weekly sessions of music therapy including activities ranging 
from listening to music to playing, singing songs and free 
improvisation, compared to those receiving standard psychological 
interventions (Erkkila et al., 2011). Follow-up assessments further 
indicated that the positive effect of music therapy can be sustained for 
at least 6 months (Erkkila et al., 2011).

Post-Traumatic Stress Disorder (PTSD) is a mental health 
condition often triggered by a life-threatening or traumatic event such 
as personal assault or a serious accident (Jones et  al., 2020). It is 
characterized by symptoms like flashbacks, nightmares, severe 
anxiety, and uncontrollable reflection on the incident, all of which 
significantly degrade the quality of life (Church et al., 2018; Jones 
et  al., 2020). A notable  14.3% decrease in average PTSD severity 
scores and a 20.4% reduction in depressive symptoms were reported 
in 40 veterans with moderate to severe PTSD after undertaking 6 
weeks of personalized 1-h individual guitar coaching sessions (Pezzin 
et  al., 2018). The improvement in symptoms through active 
participation in music may not only be ascribed to the music itself but 
could also be associated with other factors, such as elevating self-
esteem through learning new skills, introducing their preferred 
hobbies, or the impact of personal expression (Pezzin et al., 2018) 

(Figure  1). Moreover, a randomized controlled trial involving 13 
volunteers of 8 males and 5 females with a mean age of 45.7 years old 
demonstrated a significant improvement in both objective and 
subjective sleep efficiency and a significant reduction in depression 
levels following music relaxation in mitigating insomnia among 
individuals with PTSD (Blanaru et al., 2012). These findings suggest 
that pre-sleep music relaxation can be  used as a therapeutic 
intervention for treating insomnia in patients with PTSD (Blanaru 
et al., 2012). Current studies remain preliminary, more research is 
necessary to specify the precise role of music in therapeutic 
interventions for PTSD (Pezzin et al., 2018).

4 Therapeutic potential of acoustic 
stimulus in treating neurological 
disorders

Music therapy also has been employed in the treatment of 
neurodegenerative diseases such as Alzheimer’s disease (AD) and 
Parkinson’s disease (PD) (Matziorinis and Koelsch, 2022) (Figure 1). 
AD is characterized by progressive deterioration of both 
autobiographical and semantic memory, cognitive function, language 
skills, and alterations in emotion and behaviors (Matziorinis and 
Koelsch, 2022; Aguree et al., 2023). The impact of music therapy on 
AD primarily lies in its ability to evoke memories in patients, to 
improve their mood and to alleviate stress (Cuddy and Duffin, 2005; 
Fang et al., 2017). Music therapy also can enhance social participation 
among AD patients, which is critical to prevent further deterioration 
of the disease (Cuddy et al., 2015; Peck et al., 2016). Despite challenges 
in recalling significant autobiographical memories, AD patients can 
robustly recognize familiar melodies (Cuddy and Duffin, 2005; Peck 
et al., 2016; Shankar, 2022).

FIGURE 1

Psychological and physiological shift of pre- and post-music therapy in patients of mood disorders and neurological diseases. The transition from 
psychological distress and neurological impairments to psychological well-being and physiological stability through music therapy is depicted (Guetin 
et al., 2009; Ozdemir and Akdemir, 2009; Loewy, 2020; Chen et al., 2021; Matziorinis and Koelsch, 2022; Fan et al., 2023; Navarro et al., 2023). Initial 
symptoms such as anxiety, tremors, and cognitive decline are characteristic of mood disorders (Fan et al., 2023) and neurological diseases in pre-
therapy states (Church et al., 2018; Schwartz et al., 2019; Jones et al., 2020; Matziorinis and Koelsch, 2022; Ghai, 2023). Following therapy, improved 
relaxation, cognitive acuity, and motor control are evident (Guetin et al., 2009; Ozdemir and Akdemir, 2009; Metzler-Baddeley et al., 2014; Pezzin et al., 
2018; Loewy, 2020; Chen et al., 2021; Matziorinis and Koelsch, 2022; Fan et al., 2023; Ghai, 2023; Navarro et al., 2023).
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Music-evoked autobiographical memories are prompted by musical 
cues, provoking immediate emotional reactions and spontaneously 
revealing information about an individual’s past (Cuddy et al., 2015; 
Shankar, 2022). Brief excerpts of popular music serve as potent triggers 
for autobiographical memories among healthy individuals (Janata et al., 
2007; Matziorinis and Koelsch, 2022). Remarkably, studies have shown 
that even exposure to unfamiliar music can enhance episodic memory 
recall in AD patients (Irish et al., 2006; Matziorinis and Koelsch, 2022). 
Accompanied by music, these patients displayed significant 
improvements in recalling autobiographical memories and a notable 
reduction in trait anxiety (Guetin et al., 2009; Ozdemir and Akdemir, 
2009; Navarro et al., 2023) (Figure 1).

PD is a neurodegenerative disorder characterized by symptoms 
such as tremors, bradykinesia, limb rigidity and balance issues (Fan 
et al., 2023). The principal use of music therapy in treating PD has been 
focused on enhancing patients’ motor skills (Fan et al., 2023). Studies 
indicated that the rhythm of music serves as an external catalyst, aiding 
patients in refining their gait and movements, a method known as 
Rhythmic Auditory Stimulation (Fan et al., 2023) (Figure 1).

Moreover, Huntington’s disease (HD) is the most prevalent 
autosomal dominant neurodegenerative disorder, presents early and 
selective pathology in the basal ganglia (Reiner et  al., 2011). The 
disorder is often characterized by psychiatric disturbances and motor 
deficits, including irritability, depression, anxiety, emotional 
dysregulation and involuntary choreiform movements (Julien et al., 
2007; Molnar et  al., 2021; Csehi et  al., 2023). A study of five HD 
patients indicated that drumming exercises of 15 min per day 5 times 
per week for 2 months considerably improve speech and pronunciation, 
and reduce choreiform movements (Metzler-Baddeley et al., 2014) 
(Figure  1). Additionally, Traumatic Brain Injury (TBI) is a brain 
dysfunction caused by an outside force, usually a violent blow to the 
head (Ghai, 2023). Studies have shown that music therapy can be used 
to improve gait, coordination, attention, memory, mood, and social 
interaction in individuals with TBI (Sihvonen et al., 2022; Ghai, 2023).

Furthermore, as a safe, cost-effective and non-invasive 
intervention, music can alleviate various types of pain, including those 
related to cancer, surgical procedures, inflammatory conditions, 
pediatric lumbar punctures and prostate biopsies (Nguyen et al., 2010; 
Hole et al., 2015; Lee, 2016; Kyriakides et al., 2018). For example, both 
receptive music therapy and group music therapy have proven 
effective in reducing pain, stress, depression, anger and anxiety in 
breast cancer patients (Lagattolla et  al., 2023). Music remains 
beneficial even when the patient is under general anesthesia, and can 
improve their post-operative experience (Hole et al., 2015).

5 Potential mechanisms of how 
acoustic stimuli function

5.1 Endocrine and immune system

It is still not clear how acoustic stimuli influence physiological and 
psychological conditions in humans. Emerging evidence has shown 
that innate and adaptive immunity can be  influenced by acoustic 
stimuli, with effects varying based on duration, character and intensity 
of the sound (Qin et al., 2012; Cui et al., 2016; Zhang et al., 2020). 
Short-term or low-intensity sound such as the music of Mozart can 
enhance immune function by decreasing total IgE levels and latex-
specific production in peripheral blood mononuclear cells, and 

skewing the cytokine pattern toward a Th1 type (Kimata, 2003). 
However, prolonged exposure to noise, such as traffic and mechanical 
sounds, impairs immune function by decreasing the number and 
activity of immune cells such as T-lymphocytes, natural killer (NK) 
cells and phagocytes (Folch et al., 1991; Archana and Namasivayam, 
2000; Pascuan et al., 2014; Vasilyeva et al., 2017).

It is likely that neuroendocrine system is responding to acoustic 
stimuli. Studies indicated that the Hypothalamic-Pituitary-Adrenal 
axis and the Sympathetic Adrenal Medullary system are regulated by 
sound exposure, which in turn affects levels of hormones such as 
adrenaline, noradrenaline, angiotensin II and cortisol in peripheral 
blood, and regulates expression levels of cytokines like TNF-α, IL1, 
and IL-17, and eventually the body’s immune responses (Kight and 
Swaddle, 2011; Pascuan et al., 2014; Hsiao et al., 2015; Recio et al., 
2016). It appears that positive sound exposure such as classical music 
can alleviate stress, promote proper function of the endocrine system 
and activate the immune system, while inappropriate or excessive 
noise exposure, for instance long-term traffic and construction noise, 
can stress the body, disrupt the endocrine system, excess immune 
responses and lead to occurrence of autoimmune diseases (Rogers 
et al., 1983; Roswall et al., 2017; Andersen et al., 2018).

5.2 Gene expression levels

Accumulating studies suggest that music stimulus promotes brain 
development and function by elevating levels of Brain Derived 
Neurotrophic Factor (BDNF), ceruloplasmin, and alpha-1-acid 
glycoproteins in the brain and serum (Wang et al., 2023). BDNF is a 
key molecule of neurotrophic factor families and plays a pivotal role 
in plastic changes of learning and memory (Huang and Reichardt, 
2001). After being activated by phosphorylation into p-BDNF, it binds 
to tropomyosin-related kinase B (TRKB), and promotes receptor 
dimerization and kinase activation (Fries et al., 2023). Acoustic stimuli 
can upregulate BDNF expression levels in the hippocampus of adult 
mice (Chikahisa et  al., 2006). Activated BDNF/TRKB pathway 
enhances downstream signaling pathways such as PLCγ1/PKC, PI3K/
AKT, and MAPK/ERK, and in turn promotes neuronal cell survival, 
proliferation and brain nerve development (Bai et al., 2019; Falcicchia 
et al., 2020; Li et al., 2021; Wang et al., 2023).

Small noncoding RNAs, in particularly microRNAs (miRNAs) 
function through regulating target protein coding genes (Bian and 
Sun, 2011; Zhang et al., 2012; Bian et al., 2013). When individuals 
were exposed to Mozart’s Violin Concerto No. 3 in G major, expression 
of several miRNAs were affected, notably an upregulation of miR-23a 
(Nair et  al., 2021). It’s likely that miR-23a enhances long-term 
neurological function, inhibits neuron apoptosis, and reduces 
neuroinflammation by inhibiting its target gene PTEN and activating 
the AKT/mTOR signaling pathway (Lin et  al., 2013). Moreover, 
studies have shown that miR-132 and miR-23b display substantial 
upregulation in human peripheral blood upon exposure to Mozart’s 
Violin Concerto No. 3 in G major (Nair et al., 2021; Walgrave et al., 
2023). It might in part explain the music effect on treating AD, as 
studies indicated that miR-132 combats AD by regulating the Tau 
protein level, preventing its aggregation, alleviating memory deficits, 
and restoring hippocampal neurogenesis (Liu et al., 2021).

These studies underscore that musical stimuli likely play a 
significant role in regulating gene expression, and in turn affect brain 
development and the progression of neurodegenerative diseases.
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5.3 Neurotransmitters

Dopamine, oxytocin and cortisol are important neurotransmitters, 
and their complex interplays form a vital neuroendocrine network 
responsible for modulating various physiological and psychological 
processes (Baskerville and Douglas, 2010; Tops et  al., 2012; Love, 
2014) (Figure 2A). The mesocorticolimbic dopamine system, which is 
crucial for reward processing and expression of affiliative behaviors, 
consists of interactions between oxytocin and dopamine (DA) that is 
integral to controlling motor functions, motivation, reward, and social 
behaviors (Baskerville and Douglas, 2010). This interaction influences 
various social behaviors and contributes to the pathology of 
dopamine-dependent disorders such as addiction and mood disorders 
(Baskerville and Douglas, 2010).

Moreover, oxytocin and cortisol maintain a reciprocal relationship 
(Alley et  al., 2019) (Figures  2A,B). Cortisol, the primary stress 
hormone, is regulated by the hypothalamic-pituitary-adrenal (HPA) 
axis, and can be triggered by stress and in turn affect oxytocin levels 
(Alley et al., 2019). Interestingly, oxytocin may function as a stress 
buffer and mitigate stress responses by reducing cortisol levels, thereby 
potentially promoting prosocial behaviors and stress resilience 
(McQuaid et al., 2016; Young et al., 2021; Takayanagi and Onaka, 
2022). Exogenous oxytocin administration has been shown to 
decrease cortisol levels, reinforcing its potential therapeutic role in 
stress-related and social disorders (Li et al., 2019). Conversely, cortisol 
can also modulate oxytocin levels, indicating a bidirectional and 
complex regulatory mechanism (McQuaid et  al., 2016). A study 
indicated that baseline oxytocin levels are inversely related to cortisol 
levels, suggesting that higher cortisol might be associated with lower 
oxytocin (Dumont, 2021). Cortisol administration induced a decrease 

in oxytocin associated with adrenocorticotropic hormone (ACTH) 
suppression, and an increase in oxytocin independent of ACTH 
suppression (Tops et  al., 2012). Moreover, under pathological 
conditions such as PTSD, both oxytocin and cortisol are dysregulated, 
but their interaction persists even when their levels are abnormal (Li 
et al., 2019).

In summary, the balance and feedback loops among dopamine, 
oxytocin and cortisol are critical for emotional stability and the body’s 
response to stressors (Takayanagi and Onaka, 2022) (Figures 2A,B). 
The regulatory systems controlling the expression and actions of these 
neurotransmitters are complex, involving both central and peripheral 
components of the nervous system (Yuhi et al., 2017). While precise 
mechanisms of their interactions are still being elucidated, they have 
significant implications for understanding and treating various 
conditions involving stress and social behavior dysregulation (Uvnas-
Moberg et al., 2015).

Interestingly, studies have shown that music might affect various 
brain functions through dopaminergic neurotransmission, making it 
potentially effective in treating symptoms of diseases associated with 
dopamine dysfunction (Sutoo and Akiyama, 2004). Previous research 
has shown that calcium boosts DA synthesis via a calmodulin (CaM)-
dependent system (Fischer et al., 2020). Elevated DA levels correspond 
to reduced blood pressure in spontaneously hypertensive rats (SHR) 
(Figure 2). Exposure to Mozart’s music K.205 reduced systolic blood 
pressure in SHR, and significantly escalated serum calcium levels and 
neostriatal DA levels (Sutoo and Akiyama, 2004). These findings 
suggest that music enhances calcium/CaM-dependent DA synthesis 
in the brain, leading to a decrease in blood pressure.

Moreover, in HD patients, abnormal dopamine function 
significantly contributes to the motor and cognitive symptoms of HD 

FIGURE 2

Neurotransmitter regulation by stress and acoustic stimuli. (A) Under normal conditions, dopamine, oxytocin maintain a dynamic equilibrium through 
interactions via the D2R and OTR receptors, oxytocin and cortisol maintain a reciprocal relationship via the hypothalamic-pituitary-adrenal (HPA) axis 
(Baskerville and Douglas, 2010; Tops et al., 2012; Love, 2014; Alley et al., 2019; Takayanagi and Onaka, 2022). (B) Under stress, increased cortisol levels 
trigger a negative feedback mechanism that downregulates the HPA axis and diminishes oxytocin levels, leading to downregulation of dopamine via 
the D2R-OTR interaction (Alley et al., 2019; Takayanagi and Onaka, 2022). (C) Musical stimuli normalize cortisol levels that are elevated due to stress, 
thereby restore the dynamic equilibrium of the HPA axis, and upregulate oxytocin, which in turn enhances dopamine levels through D2R-OTR 
interactions (Baskerville and Douglas, 2010; Tops et al., 2012; Love, 2014; Alley et al., 2019; Rasing et al., 2022; Xie et al., 2022; Okyay and Ucar, 2023). 
DA, dopamine; OT, oxytocin; CT, cortisol; CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone.
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(Jamwal and Kumar, 2019). Evidence from positron emission 
tomography and autoradiography has demonstrated that dopamine 
signaling in HD is disrupted early on, as indicated by a reduction in 
striatal dopaminergic D1 and D2 receptor density (Antonini et al., 
1996; Weeks et al., 1996; Van Oostrom et al., 2009). Clinical studies 
have revealed an increase in dopamine levels in early stage HD 
patients, whereas a decrease in late-stage (Bernheimer et al., 1973; 
Kish et al., 1987; Garrett and Soares-da-Silva, 1992). It appears that the 
increase in dopamine synthesis induced by music stimulation helps 
regulate dopamine levels in HD patients, and has a positive impact in 
their cognitive, psychological and motor functions (Schwartz et al., 
2019; Speranza et al., 2022; Tyagi et al., 2023) (Figure 2C).

Additionally, mood changes post exposure to music or noise 
seems correlated with the dopamine D2 receptor gene (DRD2) gene 
(Quarto et al., 2017). Studies have shown that people with the DRD2 
rs1076560 GG variant have improved mood and reduced prefrontal 
activity after music exposure, while those with the DRD2 GT variant 
display worsened mood and increased striatal activity after noise 
(Quarto et al., 2017). Thus, the influence of sounds such as music and 
noise on individuals’ mood and emotions vary substantially, possibly 
due to genetic differences for instance the DRD2 gene (Quarto 
et al., 2017).

Studies have indicated that activities such as singing (Wulff et al., 
2021; Bowling et al., 2022), listening to unfamiliar, sad music (Eerola 
et al., 2021), and group drumming (Yuhi et al., 2017) can significantly 
elevate endogenous oxytocin levels, suggesting a positive regulation of 
oxytocin levels by music stimuli, regardless of forms of the musical 
activity. It appears that prenatal music and singing interventions can 
be implemented to enhance expectant mothers’ moods and happiness 
and to support the mother-infant relationship, since oxytocin levels, 
expectant mothers’ feelings of happiness and perceived intimacy and 
closeness to the unborn baby were significantly increased for pregnant 
women undergoing music listening and singing during pregnancy 
(Wulff et al., 2021; Dagli and Celik, 2022). Furthermore, embryonic 
rodent studies also showed effects of oxytocin to reduce stress when 
exposed to Mozart’s K448 over eight consecutive days (Takano 
et al., 2022).

Furthermore, cortisol plays a significant role in a variety of mental 
and neurodegenerative disorders, such as depression, chronic stress, 
PTSD, fatigue syndromes, dementia and AD (Cheour et al., 2022; 
Rasing et al., 2022; García-González et al., 2023; Patel et al., 2024). 
These mental disorders are often profoundly associated with 
abnormally elevated levels of cortisol, which can severely damage 
physiological and mental health if maintained over a long period 
(Patel et al., 2024). Elevated cortisol levels have been observed in 70% 
of patients with depression and in individuals with AD (Linnemann 
and Lang, 2020; Rasing et  al., 2022). Interestingly, studies have 
indicated that various forms of music therapy, including 
improvisational music creation, music listening (Shoda et al., 2023) 
and group singing (Shoda et  al., 2023), can significantly reduce 
cortisol levels, alleviate anxiety, restlessness, depression, and improve 
cognitive function and the sense of well-being (Rasing et al., 2022; Xie 
et al., 2022; Okyay and Ucar, 2023; Shoda et al., 2023) (Figure 2C). 
Anxiety levels and salivary cortisol levels in women who received 
music therapy after miscarriage also were significantly reduced 
(Okyay and Ucar, 2023).

In summary, neurotransmitters play significant roles in brain 
development, maturation and function (Choi et al., 2023). Restoring 

neurotransmitter levels is considered one of the effective methods to 
treat PD and Huntington’s diseases (Jamwal and Kumar, 2019). 
Accumulating studies have illustrated that music stimuli can effectively 
regulate neurotransmitter levels, improve brain development, and 
treat diseases such as AD and PD (Kandimalla and Reddy, 2017; 
Jamwal and Kumar, 2019; Yang et al., 2023). Moreover, music can 
significantly increases the levels of oxytocin in the body while 
significantly reducing cortisol levels (Ooishi et al., 2017; Bowling et al., 
2022; Xie et  al., 2022). These results indicate that music exerts a 
significant effect on mental health by balancing levels of oxytocin and 
cortisol, and by enhancing dopamine levels (Ooishi et al., 2017; Sabino 
et al., 2020; Bowling et al., 2022; Osorio et al., 2022; Xie et al., 2022). 
The future research is required to explore mechanisms of music 
actions by examining changes in the levels of all these different 
neurotransmitters and their intrinsic relationships.

5.4 Neural circuits in response to acoustic 
stimulus

5.4.1 Frontal striatum circuit
Music’s profound effect on the frontal striatum circuit, which 

encompasses dopamine pathways interlinking the striatum with 
various areas of the prefrontal cortex, is underscored by its ability to 
modulate both psychological and physiological markers of pleasure 
and emotional arousal (Haber, 2016; Mas-Herrero et al., 2018). Studies 
employing transcranial magnetic stimulation revealed that this 
circuit’s activation markedly increases perceived pleasure and 
emotional arousal during music listening, providing causal evidence 
of its role in esthetic appreciation and reward (Mas-Herrero et al., 
2018). Additionally, interactions of the frontal cortices with the basal 
ganglia during musical experiences support involvement of the striatal 
pathway in the temporal and structural processing of sound patterns 
(Tanaka and Kirino, 2016). Listening to pleasurable music prompts 
dopamine release within this circuit, further highlighting its integral 
role in the reward system and in the perception and valuation of 
musical stimuli (Mas-Herrero et al., 2018; Simpson et al., 2022).

5.4.2 Empathy circuit
Empathy, a cornerstone of social interaction, involves mirroring 

the sensory and emotional experiences of others, a process intimately 
connected with music (Koelsch et al., 2021). Studies have demonstrated 
that empathic traits influence neural activity within the anterior insula 
and anterior cingulate cortex, key regions implicated in empathy which 
during music listening (Wallmark et al., 2018). Particularly, individuals 
with high levels of empathy exhibit intensified activation in these areas 
when enjoying familiar tunes, indicating a heightened pleasure 
response (Medford and Critchley, 2010; Taruffi et  al., 2021). The 
anterior insula, recognized as a central hub for empathetic processing, 
is particularly responsive to the emotive qualities of music, highlighting 
its role in fostering an emotional resonance between the music and 
listener (Mutschler et al., 2013). Furthermore, the anterior cingulate 
cortex, with its ties to both emotional and cognitive facets of empathy, 
is also actively engaged when individuals are moved by music (Medford 
and Critchley, 2010). This nexus of brain activity not only elucidates 
the neural underpinnings of empathy but also reveals how music can 
be  a potent catalyst for emotional understanding and empathic 
connections (Medford and Critchley, 2010; Laneri et al., 2017).
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5.4.3 Corticothalamic circuit
The interplay between auditory stimuli and pain perception is 

mediated by the corticothalamic (CT) circuits, with the auditory 
cortex (AC), thalamic posterior nucleus (PO), and ventral posterior 
nucleus (VP) playing central roles (Zhou et al., 2022). Research has 
demonstrated that certain sounds, including white noise at a specific 
sound pressure level above ambient noise, can significantly induce 
analgesia in mice (Zhou et al., 2022). This effect is facilitated by the CT 
pathways, which orchestrate the integration and distribution of 
sensory information (Brunelle and Llano, 2023). The analgesic effect 
of sound is dependent on a low signal-to-noise ratio, indicating a 
precise auditory modulation is required to trigger these pathways 
(Zhou et al., 2022). Furthermore, the auditory cortex is functionally 
connected to regions involved in nociception, indicating a broader 
network at play. Studies have shown that even without direct acoustic 
stimulation, the selective activation of these CT circuits can replicate 
the analgesic effects of sound (Zhou et al., 2022). This underscores the 
potential for therapeutic applications of music and sound in pain 
management, leveraging the nuanced understanding of the role of CT 
circuits in pain processing (Kuner and Kuner, 2021, 2022).

Noticeably, both human and rodent models have been used to 
study effects of music stimuli. Mouse and human brains exhibit 
strikingly similar inhibitory circuit motifs, particularly within the 
cerebral cortex neural circuits (Wong et al., 2023). This similarity 
implies a fundamental commonality in their information 
processing mechanisms (Wong et al., 2023). Orthologous genes 
between mice and humans also reveal broad patterns of 
neuroanatomical organization (Beauchamp et al., 2022). However, 
the human brain is significantly larger and more complex than that 
of a mouse, featuring a greater number of neocortical folds and 
specialized regions (Wong et al., 2023). The human cerebral cortex 
contains a substantially higher neuron count compared to that of 
the mouse (Loomba, 2022). Thus, even though mouse models are 
indispensable for neuroscience research due to their resemblance 
to human brains, substantial differences in brain structure, 
circuitry, and gene expression require meticulous consideration 
and methodological improvements.

Taking together, the effect of music stimulus on the body is largely 
achieved by influencing various neural circuits in the brain such as the 
frontal striatum circuit, empathy circuit, and corticothalamic circuit. 
The response of neural circuits to music stimulus can improve the 
brain’s perception, memory, emotional regulation pain management.

6 Perspectives and challenges of 
acoustic-based interventions

Current studies have shown promising effects of acoustic-
based interventions (ABIs) for various health conditions, 
leveraging the wide engagement of brain circuits by music and 
sound. Effects of music on regulating movement, emotion, 
learning and behaviors are likely tied to its ability to engage 
multiple neural systems (Trimble and Hesdorffer, 2017; Dingle 
et  al., 2021; Chen et  al., 2022). The complexity of ABIs poses 
several challenges such as therapeutic doses, characterization of 
ABI’s effects across diverse populations, and optimization of 
intervention strategies (Cuddy et al., 2015; Leuk et al., 2020; Chen 
et al., 2022; Edwards et al., 2023). Therefore, building on current 

evidence, a therapeutic music toolbox for brain disorders could 
encompass customized playlists targeting specific symptoms, 
rhythm-based exercises for distinct disorders. Such a toolbox can 
be designed to be evidence-based, widely accessible, and tailored 
to individual patient needs based on collaborations among 
neuroscientists, music therapists, and clinicians to ensure its 
efficacy and applicability.

Scientifically, future research should delve into examining 
intricate neural mechanisms underpinning therapeutic effects of ABIs, 
for example, understanding neural circuits involved in rhythm 
perception and the auditory-motor system by applying brain imaging, 
brain stimulation and computational analyses (Chen et al., 2022).

7 Conclusion

Acoustic stimuli, specifically music, have been demonstrated to 
have significant effects on various aspects of human health, from the 
development of preterm infants to adult mental health and 
neurodegenerative disorders. Music therapy has been shown to 
provide considerable benefits in stabilizing vital signs, promoting 
brain maturation, enhancing sleep quality, alleviating symptoms of 
mood disorders, and managing neurological diseases such as AD and 
PD. Compelling evidence also suggests that long-term exposure to 
noisy environments may lead to hearing loss, elevated stress levels, 
and subsequent adverse health outcomes such as sleep disorders and 
cognitive decline. Music therapy can improve health conditions by 
modifying endocrine and immune responses, gene expression levels, 
as well as the functionality of different brain circuits and pathways. 
Although many of the mechanisms behind music therapy are still 
being elucidated, the therapeutic potential of music and other acoustic 
stimuli is immense. Further research into the regulatory effects of 
music therapy on the body could help identify specific targets for drug 
development and medical treatment plans, and explore more effective 
and viable healthcare strategies to improve public health.
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