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A latent code based multi-variable 
modulation network for 
susceptibility mapping
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Quantitative susceptibility mapping (QSM) is a technique for obtaining quantitative 
information on tissue susceptibility and has shown promising potential for clinical 
applications, in which the magnetic susceptibility is calculated by solving an ill-
posed inverse problem. Recently, deep learning-based methods are proposed to 
address this issue, but the diversity of data distribution was not well considered, 
and thus the model generalization is limited in clinical applications. In this 
paper, we  propose a Latent Code based Multi-Variable modulation network 
for QSM reconstruction (LCMnet). Particularly, a specific modulation module is 
exploited to incorporate three variables, i.e., field map, magnitude image, and 
initial susceptibility. The latent code in the modulated convolution is learned 
from feature maps of the field data using the encoder-decoder framework. The 
susceptibility map pre-estimated from simple thresholding is the constant input 
of the module, thereby enhancing the network stability and accelerating training 
convergence. As another input, multi-level features generated by a cross-
fusion block integrate the information of field and magnitude data effectively. 
Experimental results on in vivo human brain data, challenge data, clinical data 
and synthetic data demonstrate that the proposed method LCMnet can achieve 
outstanding performance on accurate susceptibility measurement and also 
excellent generalization.
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1 Introduction

Magnetic susceptibility is an intrinsic physical property of a material that reflects its 
degree of magnetization. For instance, the susceptibility in brain imaging is dominated by 
iron content, myelin, calcification, hemorrhage etc. (Buch et al., 2015; Champagne et al., 
2021). Accurate reconstruction of tissue susceptibility map therefore may provide valuable 
information for the diagnosis of intracerebral bleeding and calcification, and also for 
monitoring neuro-degenerative diseases such as Parkinson’s disease, Alzheimer’s disease, 
multiple sclerosis, Huntington’s disease and even cognitive development in children (Chen 
et al., 2014; Barbosa et al., 2015; Murakami et al., 2015; Li et  al., 2016). Quantitative 
susceptibility mapping (QSM) is a novel magnetic resonance imaging (MRI) technique 
that measures the spatial distribution of susceptibility from phase signal of MRI data 
(Schweser et al., 2013; Deistung et al., 2017). QSM can be applied to in vivo tissues, organs 
and objects (Acosta-Cabronero et al., 2013; Sharma et al., 2015), displaying a broad and 
promising prospect for scientific researches and clinical applications.
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QSM utilizes MRI phase contrast to obtain the local field variation, 
from which the susceptibility map can be reconstructed by solving the 
field-to-source inverse problem. Due to singular angles in the dipole 
kernel, the susceptibility reconstruction is an ill-posed inverse 
problem (Wang and Liu, 2015). By exploiting the data redundancy, 
calculation of susceptibility through multiple orientation sampling 
(COSMOS) can achieve an accurate reconstruction (Liu et al., 2009), 
and it often acts as the golden standard in result evaluation. However, 
the multi-orientation scan is time consuming and inconvenient 
clinically, for it requires the subject to repeatedly change the head 
orientation. In the single-orientation QSM, thresholded k-space 
division (TKD) is the simplest and fastest approach, but yields 
streaking artifacts and misestimating (Wharton et al., 2010). For more 
accurate measurement, optimization-based methods are proposed 
with prior regularization constraints, e.g., MEDI (Liu et al., 2012), 
STAR-QSM (Wei et al., 2015) and SFCR (Bao et al., 2016).

With the great success of deep learning, convolutional neural 
networks (CNN) have been demonstrated as a powerful tool for 
medical image processing (Chlemper et al., 2017; Piantadosi et al., 
2020; Gravina et al., 2021). At present, CNN is introduced into the 
susceptibility reconstruction and there are some preliminary attempts 
on deep learning based QSM (Yoon et al., 2018; Bollmann et al., 2019; 
Polak et al., 2020; Gao et al., 2021; Si et al., 2023). Based on the U-Net 
architecture, QSMnet is trained to learn an end-to-end mapping from 
the field data to the susceptibility map (Yoon et al., 2018). DeepQSM 
is trained on the synthetic data generated by the forward model and 
is validated on the in vivo dataset (Bollmann et al., 2019). Different 
kinds of convolutional kernels have also been employed to improve 
network performance, such as octave convolution (Gao et al., 2021). 
The algorithm unfolding is also introduced into CNN-based QSM, 
e.g., VaNDI (Polak et al., 2020). In addition, the proximal gradient 
descent algorithm is unrolled with CNN in LPCNN (Lai et al., 2020) 
and MoDL-QSM (Feng et al., 2021), in which COSMOS map and the 
component derived from susceptibility tensor imaging (STI; Liu, 
2010) served as training labels. Recently, direct mapping from 
wrapped phase to magnetic susceptibility map has been implemented 
in iQSM (Gao et al., 2022), Affine transformation edited and refined 
deep neural network is used in AfterQSM (Xiong et al., 2023) for 
quantitative susceptibility mapping, and DeepSTI (Fang et al., 2023) 
implements STI with fewer orientations. However, the diversity of data 
distribution has not been well considered in existing works, leading to 
models with limited generalization ability in practical applications.

In general, the field map is the single input of susceptibility 
reconstruction network, whereas the valuable information in 
magnitude images is not sufficiently explored. Actually, when tissue 
signals in the field map are contaminated by serious imaging artifacts, 
the magnitude image may provide some important guidance for 
network learning, e.g., to identify the clear morphology of lesions and 
blood vessels. In this work, we propose a latent code based modulation 
network with multi-variable fusion, named LCMnet, intending to 
achieve a more accurate susceptibility measurement. The multi-source 
data utilized in our network includes the field map, magnitude image 
and pre-estimated susceptibility data. Figure 1 illustrates the detailed 
architecture of LCMnet, where the modulated convolution module 
(MCM) is the network backbone. The latent code based modulated 
convolution enables the model to be robust to various data of different 
distributions. In experimental results, the brain data of healthy 
human, QSM challenge and clinical hemorrhage are used to 
demonstrate the method performance.

2 Methods

In this section, the ill-posed inversion problem in susceptibility 
reconstruction is first described, and then the details of our network 
designs are elaborated.

2.1 Susceptibility pre-estimation

In magnetic resonance imaging, a biological tissue with a 
magnetic susceptibility value will generate a field perturbation when 
it is located in a static field (Li and Leigh, 2004). As described in 
Eq. (1), the total induced perturbations B∆(r) under the static field are 
described by a convolution of the magnetic susceptibility χ(r) with the 
z-component d rz � � of the spatial unit dipole (Fang et al., 2019).

 
B r B d r r d rz
� � � � � � � �� �� � �0

3. ·� r
 (1)

Where r  and ′r  refer to the locations of the observed field and 
susceptibility source respectively, and d rz � � is defined as Eq. (2):
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Where θ is the angle between r and B0. As described in Eq. (3), the 
magnetic field shift in the laboratory frame can be formulated as a 
point-wise multiplication in k-space:
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Where χ is the susceptibility distribution and k is the spatial 
frequency vector [kx, ky, kz] with k k k kx y z� � �2 2 2 . Denoting the 

dipole kernel in the Fourier domain with D k k kk z� � � �1 3
2 2

/ /  (Bao 
et  al., 2021), the susceptibility map may be  estimated from the 
measured field map using the inverse of the kernel as Eq. (4):

 � �k k kk D k B k� � � � � � ��1
 (4)

This problem is ill-posed because of the zero values of D kk � � in 
k-space on a double conical surface at the magic angle of 54.7° (Bao 
et al., 2016). A straightforward approach is to perform a threshold 
based k-space division, i.e., the TKD approach (Wharton et al., 2010). 
As shown in Eq. (5), k-space masking was used to avoid noise 
amplification in regions where the kernel function is small:
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Where T is the threshold value set to be 0.15–0.2, and k-space 
values in the ill-conditioned area are set to be zero in our experiments. 
In LCMnet model, we apply the susceptibility map pre-estimated by 
TKD method as one of the input sources, denoted as χint in 
Figure 1A. This susceptibility pre-estimation is the input of the first 
modulated convolution block.
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2.2 Feature extraction and multi-variable 
fusion

As depicted in Figure 1, a set of encoder and decoder blocks are 
connected in series and used as the basic units of LCMnet to acquire 
intermediate feature maps from the field maps. The feature maps 
gained by the n encoder blocks are denoted as {FB1,…, FB

n}, which are 
sent to the cross-fusion block to fuse with the feature extracted from 
magnitude image. Furthermore, FB

n  passes through two additional 
encoder blocks with downsampling, producing Fd fed to the decoder 
block. The configurations of each encoder and decoder block are 
illustrated in Figure 1B. One decoder block consists of a convolutional 
layer, a global average pooling and a linear layer. It can convert the 
feature map Fd into a latent code that reflects the distinctive attributes 
of feature maps. Considering that the background outside the volume 
of interest (VOI) differs in the training data, the operation of global 
average pooling is just restricted to the VOI.

The mechanism of multi-level features fusion makes the extracted 
features to be fully utilized and is conducive to enhancing the model 
capacity. When the information of different sources is fused effectively, 
the final reconstruction can be more reliable than only applying a 
single data source. In this way, the network can achieve better accuracy 
and robustness. We can see in Figure 1B that the cross-fusion block 
combines the multi-level feature maps learned from the field data with 
those extracted from magnitude images. In detail, the feature maps of 
each level FB

i  are processed by one Conv3, and then all multiple levels 
are fused through a Conv1. After that, the fused feature maps go 
through a Conv3 and output feature maps {FBM1 ,…, FBM

n }, which are 
one of the three inputs of each modulated block. In addition, the 
magnitude data used in the cross-fusion block is handled by a 

corresponding VOI mask, as shown in the inset of Figure 1B, to avoid 
the interference from the background information outside VOI.

2.3 Latent code based modulation

The modulated convolution is an operation that multiplies the 
parameters of the convolution kernel with a specific modulating 
signal. For a generative model, the modulating signal can be the 
latent code carried by input images. In the literatures of Karras et al. 
(2020) and Yang et al. (2021), by varying values of the latent code, it 
is possible to control multiple attributes of the generated image, 
thereby modifying the data distribution. Since the field maps will 
have different intensity scales with respect to organs, acquisition 
settings and so on, we introduce a latent code based modulation to 
enable the model auto-adaption to input data distribution. In 
Figure 1A, the modulated block is denoted as Modulated Conv_i, 
encompassing both modulation and demodulation operations, 
separately denoted as Mod and Demod. In our LCMnet, the MCM 
is constituted by three modulated blocks. Each of them is composed 
of three inputs: feature maps extracted from the susceptibility data, 
the latent code learned from the field data, and the multi-level 
feature maps produced from fused information of magnitude and 
field data. As the initial input of the MCM, the susceptibility map 
pre-estimated from TKD provides a raw approximation, potentially 
reducing the complexity of the model while increasing its stability 
and convergence speed. Within modulated convolution blocks, the 
latent code of the field maps is utilized to modulate the parameters 
of the convolution kernels, and the modulation operation can 
be expressed by the following equation:

FIGURE 1

The architecture of our proposed LCMnet network. (A) The main framework includes the modulated convolution module, cross-fusion module, 
encoder and decoder blocks. (B) The detailed constitutions of some blocks.
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Where wp q r c, , ,  and wp q r c, , ,
′  represent the original and modulated 

parameters of the convolution kernel. The subscripts of p, q, r indicate 
the coordinates of the convolution kernel. Li  is a vector representing 
the latent code, whose length is the same as the number of total 
channels. L l l li

c total channels� � �� �1, , _ , where i represent the index 
of modulated convolution block in Figure  1A, and lc is the 
corresponding latent code element for channel c. Accordingly, the 
learned latent codes can adjust the model parameters so that the 
modulated convolution is sensitive to the input data distribution. 
Subsequently, the demodulation operation normalizes the 
convolutional kernel to eliminate the numerical bias caused by the 
intensity information and to make model training more stable 
(Salimans and Kingma, 2016). This normalization process can 
be expressed in the form of:
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Where wp q r c, , ,
′′  is the parameter of the convolutional kernel after 

normalization and wp q r c, , ,  is the parameter of the convolutional 
kernel after being modulated by latent codes. A smaller positive 
constant µ is used to avoid zero division. Eqs. (6, 7) correspond to the 
operations of Mod and Demod in the modulated convolution shown 
in Figure 1. With the operation of Eqs. (6, 7), the latent codes can 
adjust the parameter of convolution kernel flexibly, making network 
adaptive to various susceptibility imaging.

3 Experiment

3.1 Data preparation

A set of volumetric data containing 44 phase measurements 
constitutes the in vivo healthy dataset. These volumetric data were 
acquired from a 7 T scanner with 32 channels head coil on ten healthy 
subjects with parameters of a voxel size = 1 × 1 × 1 mm3, 
FOV = 224 × 224 × 110 mm3, TR/TE1/∆TE = 45/2/2 ms, 5 ~ 9 echoes. 
This dataset is from LPCNN1 and the study is IRB approved with 
informed consent signed by each subject. Multiple steps of phase 
preprocessing were conducted on the in vivo dataset, including brain 
masking with FSL BET (Smith, 2002), phase unwrapping with a 
Laplacian-based method (Schofield and Zhu, 2003), and background 
field removal with iRSHARP (Fang et al., 2019). The multi-orientation 
data were registered to the supine position using FSL FLIRT 
(Jenkinson and Smith, 2001). After the coregistration, susceptibility 
maps were generated by COSMOS (Liu et  al., 2009) as the gold 
standard in experiments. For COSMOS algorithm, maximum number 
of iterations is set to 200, tolerance is set to 10−5. Due to the limit of 
computational resources, the whole volume data was cropped into 
patches of size 64 × 64 × 32 during the network training process. In 

1 https://github.com/Sulam-Group/LPCNN

total, 6,860 pairs of cropped patches were applied for model training 
and eight volumetric data were used in the test.

In addition, the hemorrhage data was acquired using a 3 T MRI 
scanner with TE1/∆TE = 3.6/5 ms, FOV = 256 × 256 × 128 mm3, and 
matrix size = 240 × 240 × 64. This data is used to verify the clinical 
application performance, and those phase preprocessing steps were 
the same as the pipeline for the in vivo dataset. IRB approved informed 
consent was signed by the subject.

The 2016 QSM challenge data was a healthy human brain subject 
with twelve orientations and acquired using GRE sequences with 
wave-CAIPI at a resolution of 1.06 mm, TR/TE = 35/25 ms 
(Langkammer et  al., 2018). The STI component χ33 was used as 
ground truth. The 2019 QSM challenge released one sample of 
simulated phantom with a calcification lesion, which is constructed 
based on a combination of in vivo T1 and T2* brain maps (Bilgic et al., 
2021). The images were acquired using a 7 T MRI scanner with TR/
TEs = 50/4/12/20/28 ms, 0.64 mm isotropic resolution, and flip angle 
15°. We employ this data to evaluate the generalization performance 
of LCMnet.

In order to diversify the dataset, a synthetic dataset was derived 
from the in vivo data through global linear amplification and the 
additional susceptibility sources. The global linear amplification 
factors are randomly set from 1 to 3. We added spherical magnetic 
susceptibility sources to the randomly selected brain tissue area, and 
set the value range of the magnetic susceptibility source between 
−0.4 ppm and 0.4 ppm. The field map corresponding to the magnetic 
susceptibility map is generated by the forward model, followed by the 
addition of random noise. The comparison between the synthetic 
dataset and the original in vivo dataset is illustrated in Figure  2. 
Figure 2B shows the field map of one slice and the corresponding 
magnetic susceptibility map. The large-scale field map fluctuations 
caused by strong magnetic susceptibility sources in adjacent slices may 
still have a significant impact on the displayed slice, therefore, the 
magnetic susceptibility source in δB and the susceptibility map do not 
pixel-wisely match in Figure 2. Considering the difference between 
synthetic data and real data, we retrained all deep learning models on 
simulated data using the same training methods used for training on 
healthy human brain data. The synthetic dataset serves the purpose of 
testing the adaptability of the deep learning model to a spectrum of 
data types.

3.2 Network training

The loss function for network training is a combination of MSE 
loss and HFEN loss (Ravishankar and Bresler, 2010), while it can 
be expressed as Eq. (8):

 
Loss f fF LoG LoG F� � � � � �|| || || ||( )Y Y Y Y




2 2

±.
 

(8)

where Y
  is the result predicted by LCMnet. Y  is the label data 

for network training. ||·||F  represents the Frobenius norm. The filter 
operation fLoG is with the Laplacian of Gaussian kernel. The hyper-
parameter α  is to balance the two loss terms.

In this work, network models were implemented using Python 
with Pytorch backend and were trained on an NVIDIA Titan X GPU, 
Intel Xeon CPU E5 2.10 GHz, 64 GB RAM. The network optimizer 
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was AdamW (Loshchilov and Hutter, 2017), and the weight decay was 
set to 5 × 10−4, with an initial learning rate of 10−4. We trained the 
LCMnet for 30 epochs with 15 h. To reduce memory consumption, the 
rim of whole volume data was appropriately tailored to the size of 
192 × 192 × 108, and thus the GPU processing time of LCMnet was 
0.85 s in test. The source code has been made publicly available at 
https://github.com/JoeWillbe/LCMnet.

3.3 Network architecture analysis

To validate the effectiveness of main modules in the proposed 
network, ablation experiments were designed and performed on the 
in vivo brain dataset. The modulated convolution module was replaced 
by the vanilla convolutions, denoted as LCMnet_NoMod. Similarly, 
the cross-fusion block was removed from LCMnet, denoted as 
LCMnet_NoFusion. The initial susceptibility map χint was displaced 
with the field map to investigate the effect of susceptibility 
pre-estimation, denoted as LCMnet_deltaB.

We analyze the architecture of LCMnet using the convergence 
curves of the loss function, as shown in Figure  3. At the initial 
epochs, the loss of LCMnet_deltaB is significantly larger than other 
models, which demonstrates the effectiveness of susceptibility 
pre-estimation. In comparison, loss curves of LCMnet_NoMod and 
LCMnet_NoFusion are better than LCMnet_deltaB, but inferior to 
LCMnet. As listed in Table 1, the original LCMnet achieves the best 
scores on all evaluation metrics, indicating the success of each 
specific design.

To assess the contribution of magnitude images, the input of 
magnitude data as shown in the inset of Figure 1B is deleted from the 
Cross-Fusion block. The modified model is denoted as LCMnet w/o 
Mag and is retrained by the in vivo dataset and then tested on the 
hemorrhage data. The result in comparison is illustrated in the 
Supplementary Figure S1. We can see that the susceptibility values of 
the hemorrhage region are underestimated in the LCMnet w/o Mag 

result. In contrast, the susceptibility map reconstructed by LCMnet 
presents more clear contours of the hemorrhage lesion, as indicated 
by the blue arrow, which implies that magnitude images may provide 
more valuable information for tissue structures.

4 Results

4.1 Healthy brain data

Figure 4 shows the reconstructed results of the in vivo human 
brain data in axial and coronal views. The scores of PSNR and MSSIM 
are noted in the figure, while the arrows indicate areas with notable 
differences. The susceptibility maps generated from LCMnet are the 
closest to COSMOS and have the best PSNR/MSSIM. More details can 
be observed in the zooming views and difference maps. Table 2 lists 
the quantitative metrics of the results reconstructed by different 
methods, where each score is an average of eight samples. In 
accordance with Figure 4, LCMnet achieves the best results on all 
evaluation metrics, i.e., PSNR 37.15, RMSE 56.95, MSSIM 0.940 and 
HFEN 54.88. Figure 5 also presents the bar graph analysis of ROIs 
selected from the deep gray matter. In general, the susceptibility values 
of all nuclei produced by LCMnet are close to those of COSMOS, 
which may facilitate research on neurodegenerative diseases.

To confirm whether LCMnet can still perform better than other 
models on data obtained by tilted orientation, we compare all methods 
with reconstructions between the head supine position and a tilted 
one of the same subject, as given in Supplementary Tables S1, S2. It 
reveals that the results corresponding to the supine orientation are 
better than other tilted orientations. Nevertheless, our proposed 
method consistently outperforms traditional methods such as TKD 
and SFCR, as well as deep learning-based methods like QSMnet and 
LPCNN. Furthermore, we compared the model reconstruction results 
of magnitude and field maps for different echoes. In 
Supplementary Figure S2 and Supplementary Table S3, the model 

FIGURE 2

Example of synthetic dataset. (A) Synthetic data with numerical linear amplification operation. (B) Synthetic data with magnetic susceptibility source 
addition.
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TABLE 2 Quantitative comparisons of the healthy brain results 
reconstructed by different methods.

PSNR RMSE MSSIM HFEN

TKD 34.93 ± 0.74 73.15 ± 5.97 0.921 ± 0.009 70.74 ± 7.33

SFCR 35.96 ± 1.02 65.69 ± 7.65 0.929 ± 0.010 57.77 ± 10.08

QSMnet 36.09 ± 0.69 64.19 ± 5.05 0.934 ± 0.006 58.61 ± 7.13

LPCNN 36.57 ± 1.05 60.89 ± 7.21 0.936 ± 0.009 58.49 ± 8.63

LCMnet 37.15 ± 0.97 56.95 ± 6.26 0.940 ± 0.008 54.88 ± 6.27

The bold values indicate that they are the best among various methods.

performance decline is evident when using single-echo data compared 
to multi-echo data input. Within a certain range of time differences 
between echoes, the reconstruction results for single-echo data show 
minimal variation.

4.2 QSM challenge data

Figure 6 displays the susceptibility reconstructions from different 
methods on the 2016 QSM challenge data. As pointed out by the 
arrows, there are obvious structure errors in most of difference maps, 
but compared to other methods LCMnet exhibits less residual relative 
to the ground truth. For instance, TKD yields significant errors, and 
SFCR exhibits large differences over the junction of two hemispheres, 
meanwhile, QSMnet suffers from severe errors in the sagittal 
difference map. As for LPCNN, its results of susceptibility and 
difference maps are also not as good as LCMnet, especially in the deep 
gray matter region. Furthermore, the PSNR and MSSIM values of 
either axial view or sagittal view are the best, in agreement with the 
perceptual observation. Table 3 reports the reconstruction quantitative 

metrics of different methods, in which LCMnet achieves the highest 
PSNR of 34.56, the lowest RMSE of 70.95 and the highest MSSIM of 
0.917. This result of LCMnet is generated by the model trained by the 
dataset acquired at 7 T MRI scanner without any retraining. If the 
network is fine-tuned using the 3 T data same with the 2016 QSM 
challenge data, the LCMnet results will be further improved.

With no fine-tuning, the model trained by the healthy brain data 
was further tested on the simulated phantom with calcification 
published by the 2019 QSM challenge, as shown in Figure 7. The TKD 
results show serious streaking artifacts around the calcified lesion, as 
indicated by the green arrow. The difference maps of SFCR have less 
error than QSMnet and LPCNN, and also the recovery of calcification 
is much better with no observable artifacts. Unfortunately, the results 
of QSMnet are poorer than SFCR, as there are many large residues in 
its difference maps. Although the reconstruction of LPCNN is 
improved compared to QSMnet, the results still contain some 
streaking artifacts in the region of calcified lesion. In all methods, 
LCMnet produces a good susceptibility map with better structure 
preservation. As pointed by the red arrows, the vessel structure in the 

FIGURE 3

The network architecture analysis of LCMnet using convergence curves of the loss function.

TABLE 1 Quantitative comparisons of ablation experiments on the in vivo 
human brain dataset.

PSNR RMSE MSSIM HFEN

LCMnet_deltaB 37.48 50.44 0.935 56.41

LCMnet_NoMod 37.69 51.53 0.939 55.09

LCMnet_NoFusion 37.80 50.94 0.940 54.40

LCMnet 37.91 53.70 0.946 53.70

The bold values indicate that they are the best among various methods.
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LCMnet result is the clearest and the most coherent to ground truth. 
However, we  should note that the network performance may 
be affected by image resolutions (Xiong et al., 2023). In this validation 
experiment, the LCMnet model is trained by data of 1 mm resolution, 
whereas the simulated phantom with calcification is in the resolution 
of 0.6 mm. If the model is retrained by data of the same resolution, the 
results can be further improved.

4.3 Hemorrhage data

We validate the generalization performance of LCMnet and its 
practical ability in clinical applications using a test on the hemorrhage 
data, as presented in Figure 8. Since the ground truth is unavailable 
for clinical data, the local field maps and magnitude images are 
displayed in the first and the second columns, where the hemorrhage 

FIGURE 4

Experiment results of different methods on in vivo human brain data. The top two rows show the results of different QSM reconstruction methods, 
PSNR/MSSIM value annotation below the slice, and the bottom two rows show the difference maps between the reconstructed susceptibility maps 
and the COSMOS. The zooming views of deep gray matter are also given in the insets.

FIGURE 5

(A) ROI contours outlined in two different slices. (B) Bar graph compares the mean susceptibilities and standard deviations of ROIs in deep gray matter 
reconstructed by TKD, SFCR, QSMnet, LPCNN and LCMnet, taking the COSMOS values as the reference. Caudate nucleus (CN), globus pallidus (GP), 
putamen (PU), red nucleus (RN), and substantia nigra (SN).
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FIGURE 6

Experiment results of different reconstruction methods on the 2016 QSM challenge data, PSNR/MSSIM value annotation below the slice.

TABLE 3 Quantitative results of different reconstruction methods on the 
2016 QSM challenge data.

PSNR RMSE MSSIM HFEN

TKD 30.73 110.22 0.876 98.84

SFCR 34.30 73.11 0.915 59.80

QSMnet 34.38 72.43 0.914 68.51

LPCNN 34.55 71.04 0.913 68.18

LCMnet 34.56 70.95 0.917 70.77

The bold values indicate that they are the best among various methods.

area is enlarged in zooming views and the lesion contour is annotated 
by the red curve. We can observe in the field map that the susceptibility 
artifacts are so severe that the boundary of hemorrhage area is unable 
to be distinguished. On the contrary, the magnitude image presents a 
relatively clear hematoma contour.

Figure 8 compares the susceptibility maps reconstructed by the 
four methods, and they are unavoidably corrupted by certain image 
artifacts. The SFCR reconstruction can recover the hemorrhage with 
a contour similar to the magnitude image, where the voxels affected 
by noticeable susceptibility artifacts are not few. In the susceptibility 
map of QSMnet, the impact of artifacts is more serious than SFCR and 
the lesion boundary is rather inaccurate, but the internal hemorrhage 
contains some tiny structures. Meanwhile, LPCNN results have 
significantly lower contrast and yield relatively blurred tissue textures. 
In contrast, the susceptibility map reconstructed by LCMnet exhibits 
reasonable susceptibility values and moderate image artifacts, as well 
as fine tissue structures consistent with the magnitude image. This 
experiment result demonstrates that LCMnet possesses a good 
generalization ability that could be prospectively exploited with more 
clinical data.

4.4 Synthetic data

The adaptability of deep learning-based QSM models to diverse 
datasets was evaluated through tests conducted on synthetic dataset. 
Test results for the synthetic data with susceptibility values linearly 
amplified are presented in Figure 9, with accompanying PSNR and 

SSIM values indicated below the visual representation. Notably, 
superior accuracy of reconstruction results over a wider range of 
susceptibility values are demonstrated by LCMnet. In contrast, 
QSMnet tends to underestimate magnetic susceptibility in the globus 
pallidus, and LPCNN exhibits excessive smoothing effects across the 
entire brain region.

When processing synthetic data with additional susceptibility 
sources, as depicted in Figure 10, LCMnet is proven to accurately 
reconstruct susceptibility values for both simulated positive and 
negative magnetic susceptibility sources, effectively suppressing 
artifacts around each magnetic susceptibility source. While 
QSMnet can partially reconstruct magnetic susceptibility sources, 
it still exhibits some deviations in the reconstruction, as indicated 
by the blue arrows in the difference map. The susceptibility map 
reconstructed by LPCNN introduces pronounced cross-artifacts 
due to the presence of added magnetic susceptibility sources, as 
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exemplified by the red circle in the figure. This substantial 
deviation can be attributed to interference from strong magnetic 
susceptibility sources in adjacent layers. The quantitative result 
comparisons are listed in Tables 4, 5 for synthetic data with linear 
amplification and additional susceptibility sources. It is observed 
that LCMnet achieved the most favorable reconstruction results 
compared to other methods.

5 Discussion

To validate the effectiveness of our designs in LCMnet, a group of 
ablation experiments were conducted. As the main backbone, 
modulated convolution module MCM explicitly incorporates the 
distribution information of the input data by the latent code based 
modulation. Specifically, the parameters modulation is performed on 

FIGURE 7

Experiment results of different reconstruction methods on the 2019 QSM challenge data, with zooming view of the calcified lesion on sagittal view.

FIGURE 8

Experiment results of different methods on the hemorrhage data. The lesion area was extracted and shown in the zooming views. The lesion contour 
is marked by red curves.
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FIGURE 9

Comparison of reconstruction results of different models on numerical linear amplification data, PSNR/MSSIM value annotation below the slice.

the channel dimension of convolution kernels and leads to an update 
of the feature map, according to latent codes learned from the decoder 
part. Once the network can appropriately respond to the input data 
with different distributions, it will be adaptive to adjust the intensity 
of feature maps during the network training. Attributable to the 
incorporation of MCM, our network demonstrates good 
generalization capabilities for the data with hemorrhage 
and calcification.

The inputs of LCMnet are composed of the field map, magnitude 
image and pre-estimated susceptibility data, forming a multi-
variable fusion. The employment of multiple sources offers sufficient 
information to the MCM, thus bringing better accuracy to the 
model. The ablation result in Figure 3 reveals that when we take the 
pre-estimated susceptibility map as the initial input of MCM, it can 
dramatically reduce the initial loss of the model and accelerate 
convergence. In this work, the susceptibility pre-estimation is 
derived from a simple method of TKD that is easy to calculate, even 
so, this reasonable combination did boost the model performance. 
Despite some artifacts may exist in the pre-estimation, they are well 
suppressed by LCMnet in the final reconstruction, as the calcification 
data shown in Figure 7, which implies that the model is robust to any 
probable bias induced by the initial susceptibility map. On the other 
hand, the regions with large field fluctuations consistently exhibit 
severe serious susceptibility artifacts, such as blood vessels and 
lesions. It is impossible to obtain a precise reconstruction purely 
based on the field map. In this view, the magnitude images may 

provide complementary information for the network to discriminate 
the ground truth and artifacts. It has been demonstrated in Figure 8 
and Supplementary Figure S1 that LCMnet can reconstruct a more 
accurate contour of the lesion with reasonable susceptibility values 
on the hemorrhage data. However, the other two networks of 
QSMnet and LCMnet w/o Mag yield blurred contours of the 
lesion area.

The latent code modulation technique allows the model to 
adaptively acquire information from multi-variable data. Results 
from synthetic datasets affirm that LCMnet exhibits robust 
adaptability to data with a broad numerical distribution range of 
susceptibility values. As the basic module to implement the 
modulation operation, the number of modulation convolution blocks 
used in MCM is 3. We  also carried out an additional ablation 
experiment to discuss its proper number. In the 
Supplementary Table S4, a comparison of models with different 
numbers of modulated blocks in a range from 2 to 5 is given. This 
experiment reveals that the model performance is positively 
correlated with the block number. In detail, when setting the number 
to be 2, the quantitative metrics of the reconstructed healthy data are 
inferior. As the number of modulated convolution blocks in LCMnet 
is increased, a significant improvement is observed between 2 and 3, 
while the performances with 3 blocks and 4 blocks are comparable. 
Nonetheless, the number of model parameters also increases with 
more blocks. Therefore, we  choose to utilize 3 modulated 
convolutional blocks in our experiments, which can be  adjusted 
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considering a trade-off between the computing cost and the 
reconstruction precision. In addition, given the portability of 
modulated convolution technology, this technique may be expected 
to enhance the accuracy and robustness of models in other image 
processing fields, such as STI.

Since the QSM reconstruction requires the network to realize an 
accurate end-to-end mapping from the local field data to the 
susceptibility value, we suggest not doing the normalization to the 

network input. Considering that LCMnet model used in all 
experiments is trained on the healthy human brain data, if the data 
with similar distribution is applied to retrain the network, the 
susceptibility results in Figures 6, 7 will be better. Accurate training 
label is necessary for a supervised learning strategy, but the medical 
imaging lacks ground truth, we  employ COSMOS map as the 
substitution in this work. Normally, the network performance is 
sensitive to the training data, so the training dataset specifically 
tailored for the data in solution may promote the results. Our 
proposed method is validated on the brain MRI data, but its usage is 
not limited to the susceptibility measurement in brain imaging. It may 
provide an inspiring paradigm for researches related to 
quantitative measurements.

6 Conclusion

In this work, we proposed a latent code based modulation network 
with multi-variable fusion for QSM reconstruction. The latent code 
modulation technique enables the model to adaptively learn the 
information of multi-variable data. Taking the susceptibility 
pre-estimation as the network input, it endows an improvement in the 
model stability and training convergence. In addition, feature maps 
extracted from the field data are fused with magnitude features in the 
cross-fusion block, which further enhances the network capability for 
those challenging clinical data suffering from serious artifacts. In 

FIGURE 10

Comparison of reconstruction results of different models on data with additional susceptibility source, PSNR/MSSIM value annotation below the slice.

TABLE 4 Quantitative results of deep learning QSM methods on the 
synthetic linear amplification data.

PSNR RMSE MSSIM HFEN

QSMnet 32.74 ± 3.14 52.18 ± 6.34 0.914 ± 0.018 49.88 ± 7.38

LPCNN 32.27 ± 3.24 55.01 ± 6.64 0.913 ± 0.021 56.04 ± 2.89

LCMnet 34.53 ± 4.29 42.53 ± 6.64 0.939 ± 0.019 42.75 ± 6.44

The bold values indicate that they are the best among various methods.

TABLE 5 Quantitative results of deep learning QSM models on the 
synthetic data with added susceptibility source.

PSNR RMSE MSSIM HFEN

QSMnet 35.57 ± 0.94 45.15 ± 9.11 0.921 ± 0.010 39.30 ± 8.39

LPCNN 33.55 ± 1.02 56.65 ± 2.78 0.924 ± 0.007 56.11 ± 7.04

LCMnet 38.13 ± 1.37 33.62 ± 6.30 0.943 ± 0.009 30.34 ± 6.65

The bold values indicate that they are the best among various methods.
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experiments, LCMnet was benchmarked against a suite of representative 
methods, i.e., the traditional TKD, the optimization-based SFCR, the 
deep learning based QSMnet and LPCNN, and the results show that 
LCMnet outperforms other methods in terms of measurement accuracy 
and practical generalization.
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