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Asteroid impact: the potential of 
astrocytes to modulate human 
neural networks within organoids
S. S. Lavekar , M. D. Patel , M. D. Montalvo-Parra  and R. Krencik *
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Astrocytes are a vital cellular component of the central nervous system that 
impact neuronal function in both healthy and pathological states. This includes 
intercellular signals to neurons and non-neuronal cells during development, 
maturation, and aging that can modulate neural network formation, plasticity, 
and maintenance. Recently, human pluripotent stem cell-derived neural 
aggregate cultures, known as neurospheres or organoids, have emerged as 
improved experimental platforms for basic and pre-clinical neuroscience 
compared to traditional approaches. Here, we  summarize the potential 
capability of using organoids to further understand the mechanistic role of 
astrocytes upon neural networks, including the production of extracellular 
matrix components and reactive signaling cues. Additionally, we  discuss the 
application of organoid models to investigate the astrocyte-dependent aspects 
of neuropathological diseases and to test astrocyte-inspired technologies. 
We examine the shortcomings of organoid-based experimental platforms and 
plausible improvements made possible by cutting-edge neuroengineering 
technologies. These advancements are expected to enable the development of 
improved diagnostic strategies and high-throughput translational applications 
regarding neuroregeneration.
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Introduction

Astrocytes are abundant cells in the central nervous system (CNS) that serve myriad 
functions in maintaining the general homeostasis of neurons during healthy development, 
maturation, and aging. For example, astrocytes directly manipulate synaptic network formation 
and function through various signaling molecules (Saint-Martin and Goda, 2022; Farizatto and 
Baldwin, 2023), remodel the extracellular matrix (Tewari et al., 2022; Dzyubenko and Hermann, 
2023), perform phagocytosis (Park and Chung, 2023), and regulate extracellular ions and 
neurotransmitters during neural activity (Andersen and Schousboe, 2023; Purushotham and 
Buskila, 2023). Beside neurons, astrocytes also conduct intercellular communication not only 
among themselves (Barber et al., 2021; Mazaud et al., 2021), but also to the neurovasculature 
(Diaz-Castro et al., 2023; Lia et al., 2023), other glia (e.g., oligodendrocytes and microglia; Liu 
et al., 2023), and peripheral immune cells (Han et al., 2021). In neuropathological conditions 
such as injury, inflammation, and neurodegenerative diseases, astrocyte signaling cues can 
become dysregulated and thus may be targets for therapeutic intervention (Brandebura et al., 
2023; Lawrence et al., 2023; Patani et al., 2023; Qian et al., 2023). Currently, our understanding 
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of astrocytes is based primarily on experimental rodent models. 
Because human and non-human primate astrocytes exhibit distinct 
features that are not recapitulated in rodents (Krencik et al., 2017a; 
Falcone and Martinez-Cerdeno, 2023), human-specific experimental 
models are also crucially needed.

For over a decade, astrocytes derived from human pluripotent 
stem cells (hPSCs) have been used as a cellular source to further 
understand basic neurobiology at the molecular and cellular 
levels, as well as for disease modeling, as we (Krencik et al., 2011, 
2015; Krencik and Ullian, 2013; Patel et al., 2019) and others (Li 
and Shi, 2020; Bigarreau et al., 2022; Kumar et al., 2022; Jovanovic 
et al., 2023) have previously described. However, major caveats 
remain to be addressed in the traditional methods for astrocyte 
generation, including the inconsistent choice of differentiation 
timepoints to conduct studies, cell culture medium components, 
stress induced by cellular dissociation, use of synthetic substrates 
that can alter functionality, and lack of neurons and other cell 
types that contribute intercellular signals for astrocyte 
physiological maturity. Altogether, these insufficient culture 
conditions likely introduce artifacts that cause astrocytes in 
culture to not accurately represent those within the nervous 
system. To overcome these issues, there has been a constant 
optimization of differentiation protocols, design of multicellular 
coculture approaches, and implementation of physiological 
systems to improve hPSC-based astrocyte studies. Here, we focus 
on the use of maintaining hPSC-derived neural cultures as 
aggregate cell cultures to investigate astrocytes and their impact 
upon neuronal function. These aggregate cultures are originally 
known as neurospheres (Zhang et al., 2001), or spheroids, and 
more recently are commonly referred to as organoids and other 
nomenclature (Pasca et  al., 2022; Jensen and Little, 2023). 
Organoids are composed of multicellular high density free-
floating and self-assembling aggregate cultures that permit 
dynamic restructuring, maintenance of long-term intimate 
connectivity, and production of endogenous extracellular matrix 
(ECM) components. Numerous recent reviews have discussed the 
advantages and technological advancements of neural organoids 
(Andrews and Kriegstein, 2022; Wang et  al., 2022; Yang et  al., 
2022; Wang L. et al., 2023; Zhou et al., 2023), yet few have focused 
on the impact of glia to modulate neuronal activity. Astrocytes can 
either be allowed to spontaneously arise as a small percentage of 
total cells over time within organoids (Lanjewar and Sloan, 2021), 
or be purposefully incorporated as a defined coculture approach 
for a more systematic system which we  previously, tongue-in-
cheek, named Asteroids (Krencik et al., 2017b; Cvetkovic et al., 
2018). How would the presence of astrocytes alter baseline and 
disease-associated neuronal activity in organoids? How does the 
high density and stable environment of organoids alter maturity 
and function of astrocytes? Here, we summarize recent studies 
examining various components of organoids that will undoubtably 
be  affected by the presence of astrocytes (i.e., inputs), and 
we provide perspectives on why the inclusion of astrocytes within 
neural organoids would provide a more accurate model of the 
human nervous system (i.e., outputs; Figure 1). This more complex 
version of organoids may improve their potential as a tool for 
accurate translational testing, such as transplantation therapy and 
drug testing to modulate neuroplasticity, neurodegeneration, 
and neuroregeneration.

Impact of astrocyte-derived 
extracellular components in organoids

Astrocytes are an integral part of the CNS throughout the course 
of the life span. One of their important functions is producing and 
modulating ECM components that affect, among other things, neural 
activity. The ECM in the CNS can be generally subdivided into (a) 
basement membrane of the vasculature that plays a part in the blood 
brain barrier and is mainly composed of collagens, laminins, 
fibronectins, and heparin sulfate proteoglycans (HSPGs) among 
others (Banks et al., 2021; Knox et al., 2022); (b) the interstitial matrix 
that allows diffusion between cells and is composed of hyaluronan, 
chondroitin sulfate proteoglycans (CSPGs, including lectican core 
proteins aggrecan, versican, neurocan, and brevican with 
glycosaminoglycan [GAG] side chains), and tenascins among others 
(Shetty and Zanirati, 2020; Ghorbani and Yong, 2021; Tonnesen et al., 
2023); and (c) perineuronal net (PNN) ECM that also consists of 
similar components, yet densely coats neurons to stabilize synapses 
and regulate neuroplasticity (Fawcett et al., 2019; Tewari et al., 2022; 
Dzyubenko and Hermann, 2023). Astrocytes produce many of these 
components as well as modulators such as matrix metalloproteinases 
(MMPs) and tissue inhibitors of metallo-preoteinases (TIMPs) that 
dynamically regulate the ECM at distinct stages of the lifespan and 
pathogenesis (Ulbrich et  al., 2021; Allnoch et  al., 2022). During 
astrocyte reactivity in response to traumatic injury, these components 
also play a role in the glial scar formation by inhibiting and/or 
supporting regeneration depending on the context such as severity of 
injury, time after injury, and distance to the epicenter (Escartin et al., 
2021; Hemati-Gourabi et al., 2022; Tran et al., 2022). Finally, there 
have been many recent insights into another major component of 
extracellular signaling: astrocyte-derived non-structural matricellular 
‘synaptogenic’ proteins that directly regulate synapse formation and/
or function, such as thrombospondins, glypicans, Sparcl1, Pentraxin 
3, etc. (Farizatto and Baldwin, 2023; Khaspekov and Frumkina, 2023). 
Altogether, and relevant to this review, questions remain whether 
these various types of ECM components and modulators are present 
within organoid culture models and how their absence or presence 
would alter neuronal function and thus interpretation of 
experimental data.

As ECM and other extracellular components derived from 
astrocytes play an integral role in synaptogenesis and/or function 
(Farhy-Tselnicker et al., 2017; Holt, 2023), an interesting question is 
whether they have been investigated within organoid models thus far. 
Compared to monolayer cultures of neurons and astrocytes, hPSC-
derived neural organoids appear to be enriched in proteoglycans and 
cell adhesion proteins that are known to interact with the ECM (Simao 
et al., 2018; Cvetkovic et al., 2022; De Simone et al., 2023). On the 
other hand, monolayer cultures are enriched in collagens, suggesting 
that the use of matrices to attach monolayer cultures, or the stiffness 
on plates, may elicit a more fibrotic-like production of the ECM. Thus, 
it is likely that organoids will also produce different ECM components 
in the presence of astrocytes and/or when regionally specified. For 
example, specific ECM components that are present in the human 
retina have also been detected in retinal organoids, including 
fibronectin, versican, brevican, the retinal interphotoreceptor matrix 
protein IMPG1, and the transmembrane cell adhesion glycoprotein 
CD44. Blocking IMPG1 and CD44 with antibodies interfered with 
photoreceptor development (Felemban et al., 2018), demonstrating 
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the potential functional consequence of modifying organoid matrix 
components either with exogenous application or by changing the 
cellular components. Because CD44 is produced by Müller glia in 
organoids (Eastlake et  al., 2023) and by hPSC-based astrocytes 
(Krencik et al., 2011), the presence of astrocytes within organoids may 
affect functional maturation through their interactions with matrix 
components such as hyaluronic acid (HA). For example, direct 
digestion of HA with hyaluronidase in organoids, or treatment with 
purified HA, alters synapse density, while modulation of neuronal 
activity can be observed after dissociation of cells onto multielectrode 
arrays (MEAs; Wilson et al., 2020). However, to our knowledge, the 
contribution of astrocyte-derived ECM on neuronal function within 
organoids has not yet been rigorously investigated.

The addition of astrocyte-derived ECM into organoids via direct 
inclusion of astrocytes or exogenous application is an opportunity to 

better understand their functional contribution. One approach is to 
extract native ECM through a decellularization process, producing an 
ECM in a hydrogel scaffold. Then, researchers can subsequently use 
this scaffold to determine the effect upon organoid maturation and 
function. Decellularization typically consists of the chemical and 
enzymatic removal of cellular components while retaining the 
ECM. Decellularized human brain ECM, containing GAGs, collagens, 
proteoglycans, and various glycoproteins, has been discovered to 
enhance neurogenesis and physiological maturation of neurons within 
organoids as compared to Matrigel, which is a commonly used rodent 
tumor-derived basement membrane composed of collagens, laminins, 
and proteoglycans (Cho et al., 2021). Similarly, compared to Matrigel, 
ECM scaffolds sourced from porcine brains cause a morphological 
difference at early stages in ventricular-like structures and early 
appearance of neurons within organoids (Sood et al., 2019). Also, the 

FIGURE 1

High priority targets within organoids that are expected to be modulated by astrocytes. Astrocytes dynamically regulate neuronal development and 
maturation in healthy and pathological conditions by influencing targets such as the extracellular matrix (ECM), neural networks and signaling with 
other non-neuronal cells to induce inflammation and/or reactivity. Their influence, or astrocyte-related inputs, can be subcategorized and potentially 
mimicked through synthetic means and lead to functional outcomes, or astrocyte-related outputs, as described.
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use of fetal ECM-enriched constructs revealed an increased activity 
and downregulation of reactive astrocyte markers, although it also led 
to a decrease of GAGs and an increase of collagen compared to the 
native tissue (Simsa et al., 2021), indicating that the technique needs 
further optimization. Decellularization has also been performed using 
adult bovine neural retina retinal pigment epithelium (RPE; Dorgau 
et al., 2019). The addition of RPE-sourced ECM components increased 
the generation of photoreceptors as well as ribbon synapses and light 
responsiveness in retinal organoids. It remains to be known whether 
there is an optimal formulation of ECM components, either cell-
derived or synthetically generated, to influence neural organoid 
function and whether an astrocyte-specific ECM formulation would 
have additional benefits compared to other cell types.

Astrocyte-derived, or astrocyte-inspired, ECM compositions can 
also lead to distinct autonomous and/or non-autonomous impacts. 
For example, protoplasmic astrocytes derived from mouse embryonic 
stem cells in monolayers produce elevated levels of permissive ECM 
components, such as laminin α5 and γ1, in contrast to fibrous 
astrocytes that produce inhibitory ECM components, such as 
spondin-1, that limit axonal growth capacity (Thompson et al., 2017). 
Primary rat astrocyte-derived ECM has been validated to protect 
against foreign body response that typically occurs due to 
microelectrode implants within brain tissue. In comparison to 
uncoated electrodes, astrocyte-derived ECM coating increased 
protection against macrophage activation and decreased astrogliosis 
(Oakes et al., 2018). Testing of distinct combinatorial formulations of 
three-dimensional (3D) ECM hydrogels with collagen, HA, and 
Matrigel revealed different degrees of reactivities of human fetal-
derived astrocytes (Placone et  al., 2015). In addition to distinct 
composition of ECM components, physical properties such as stiffness 
can also elicit various amounts of cellular reactivity. For example, in a 
3D hydrogel primary rat astrocyte culture, comparison of soft, 
medium, and stiff matrices revealed a differential response in cell 
shape and glial fibrillary acidic protein (GFAP) levels (Hu et al., 2021). 
In regards to organoids, because incorporation of defined scaffolds 
and matrices have already demonstrated an impact on structure 
(Lancaster et al., 2017; Muñiz et al., 2023), it is highly expected that 
astrocyte-derived ECM and/or astrocyte-inspired synthetic ECM 
would significantly affect long-term function of astrocytes and other 
constituents within organoids that will lead to the development of a 
more useful platform for in vitro drug analyses and high 
throughput studies.

Dysregulation of astrocyte ECM is also expected to be  a 
phenotypic consequence of disease states that can subsequently 
impact neuronal function, similar to what we previously observed 
with a model of Costello syndrome that displayed a dysregulated ECM 
and increase in synapse density using monolayer cultures (Krencik 
et al., 2015) and Asteroids (Krencik et al., 2015; Cvetkovic et al., 2018). 
In a neural organoid model of amyotrophic lateral sclerosis/
frontotemporal dementia, single cell sequencing revealed a large 
number of differentially expressed genes in astrocytes including those 
involved in ECM remodeling and synaptic plasticity (Szebényi et al., 
2021). In an organoid model of neurotoxicity using the cancer therapy 
drug Vincristine, dose-dependent toxicity of neurons and astrocytes 
was detected as well as a downregulation of ECM transcripts (Liu 
et al., 2019). Altogether, organoid models have demonstrated validity 
to explore the effect of drugs and genetic manipulations on changes in 
the ECM, and vice versa, albeit the exploration of astrocyte-specific 

contributions to these phenotypes has been limited. For example, 
there is still a lack of reproducible injury or inflammation-based 
organoid models to study the effect of glial scar components. Further, 
despite organoid studies that observe ECM changes in distinct 
contexts (Jabali et al., 2022; Pipicelli et al., 2023), the vast majority of 
approaches utilize immature organoids that do not contain a 
significant amount of astrocytes or mature neural network activity to 
dissect how a dysregulated ECM can lead to dysfunction in the mature 
and aged brain. Thus, there is a clear need for improved organoid 
models and technologies to understand the role of astrocyte-derived 
ECM in normal and diseased states, as well as testing ECM-based 
formulations for neuroprotection and/or neuroregeneration of mature 
neural networks.

Astrocyte coordination of neural 
network activity within organoids?

Neural networks in the CNS are interconnective systems of 
neurons that integrate and process information for signal transmission. 
These networks are complex and diverse; their make-up consists of 
various neuron types with regards to function and morphology. For 
example, networks can be composed of different ratios of excitatory 
and inhibitory subtypes of neurons that secrete different types of 
neurotransmitters, and they can be distinct depending on the brain 
region (Hanganu-Opatz et  al., 2021; Xing et  al., 2023). Neural 
networks are often defined by synchronous and oscillatory neuron 
activity that can vary in brain states and are dependent on synaptic 
connectivity within or across regions (Whittington et  al., 2018). 
Additionally, integrated as part of the neural network is the diversity 
of supporting glial cells that contribute to the development and 
maturation of neural networks (Knowles et  al., 2022; Pathak and 
Sriram, 2023; Whitelaw et  al., 2023). Due to their extensive 
morphological branching, a single astrocyte may contribute to the 
maintenance of thousands of synapses in a neural network (Stogsdill 
et  al., 2023). How do astrocytes specifically communicate with 
networks? In addition to their well-known regulation of extracellular 
potassium and glutamate, a diverse milieu of neurotransmitters 
activate receptors on participating astrocytes and cause signaling 
pathway activation, such as increased intracellular calcium that may 
lead to secretion of active substances (a.k.a., gliotransmitters) that 
then feedback into the network and alter network activity (Oliveira 
and Araque, 2022). For example, an astrocyte subpopulation in the 
rodent brain has been recently identified that secretes glutamate in 
response to stimulation (de Ceglia et al., 2023).

Currently, the formation of neural networks is enabled by the 
production and maintenance of organoids over a long period of time; 
numerous modifications and different technologies to do so have 
ultimately confounded comparison across different studies. However, 
the vast majority of fabrication techniques still follow a traditional 
approach that involves permitting hPSC-derived neural progenitors 
to self-aggregate and differentiate in a neural-supportive media with 
the addition of growth factors such as brain-derived neurotropic 
factor (Zhang et al., 2001). Over time, organoids further mature and 
are composed of a mixture of neural progenitor cells, neuron- and 
astrocyte-subtypes, as well as non-neural components, depending on 
the efficiency of neural induction. More recent modifications of this 
approach include the use of engineering techniques (e.g., 
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sphere-forming molds, 3D printing, bioreactors, microfluidic systems, 
and biomaterials) to control size, improve reproducibility, and 
incorporate microenvironments more similar to in vivo conditions 
(Kratochvil et al., 2019). Similar to monolayer approaches, organoids 
can also be specified into region-specific progenitor cells to generate 
subtypes of neural networks. For example, treatment with molecules 
to activate WNT and Sonic Hedgehog pathways can generate 
organoids with midbrain characteristics that contain tyrosine 
hydroxylase positive dopaminergic neurons for Parkinson’s disease 
modeling (Monzel et al., 2017; Renner et al., 2020). More recently, 
direct differentiation techniques have been incorporated to accelerate 
maturation into specific cell types. For example, we used transcription 
activator -like effector nuclease (TALEN) genetic engineering to 
directly differentiate neural cells via the use of a doxycycline inducible 
transcription factors, neurogenin 2 (NGN2) for neurons and SRY-box 
transcription factor 9 (Sox9) and nuclear factor 1 A (NFIA) for 
astrocytes. Thus, direct differentiation helped to rapidly produce 
postmitotic neurons and astrocytes, which were used to form 
all-inducible organoids (a.k.a., Asteroids) in specific cellular ratios that 
do not change over time (Cvetkovic et al., 2018). In either case, neural 
organoids have potential to eventually mature into a neural network 
of neurons communicating via functionally active synapses. The 
resultant neural networks can be used to discover and investigate 
factors that modulate network activity and to model disease processes 
that are known to occur within the human brain.

A key standard in defining neural networks within organoids is 
the presence of the synapses that ultimately contribute to the 
formation of network activity. These can be defined within organoids 
using several approaches. Immunostaining for synaptic markers is one 
of the standard methods to verify the presence of synaptic structures 
that contribute to the formation of network activity. Several studies 
have observed the presence of presynaptic markers, including 
synaptophysin, synapsin, and VGLUT1, as organoids mature (Thomas 
et al., 2017; Sakaguchi et al., 2019; Trujillo et al., 2019). The additional 
detection of colocalized pre-synaptic markers with post-synaptic 
markers, including PSD-95 and Homer, further indicates the presence 
of a synapse with increased rigor (Pasca et al., 2015; Monzel et al., 
2017; Cvetkovic et al., 2018; Renner et al., 2020). Within Asteroids, 
we observed a close proximity of synapses with astrocyte processes 
(Cvetkovic et al., 2022). Despite the presence of synapses throughout 
organoids, there is no guarantee that they have functional 
transmission. As a result, functional assays should be used to verify 
simultaneous activation of spatially distinct neurons in culture. For 
example, neuron monocultures exhibit increases of action potentials 
and synchronicity across several electrodes on MEAs during 
prolonged culture, and this phenomenon had enabled testing of 
epilepsy-related drugs (Odawara et  al., 2016). Similarly, when 
we  plated mature organoids containing astrocytes upon MEAs, 
synchronous activity was detected across several electrodes that was 
subsequently blocked by the addition of the AMPA/kainate receptor 
antagonist, CNQX, suggesting that synaptic activity mediated 
synchronous activity (Cvetkovic et  al., 2018). In paradigms that 
include inhibitory neurons within organoids, the addition of 
bicuculline to block GABAergic transmission increases synchronous 
events (Trujillo et al., 2019). In the case of region-specific midbrain 
organoids, the addition of quinpirole, an agonist of the inhibitory D2 
and D3 receptor, reduced synaptic neuron activity, suggesting the 
presence of synaptically connected dopaminergic networks (Monzel 

et  al., 2017). Ideally, a combination of these different approaches 
should be  combined to conclusively verify the presence of active 
synapses within organoids.

Another common approach to measure synchronous network 
activity is live calcium imaging using fluorescent calcium sensors and 
genetically encoded calcium indicators (GECIs). In one study, 
although synchronous calcium activity could not be  detected in 
organoids after 104 days in culture, dissociation and reformation of 
clusters over time led to synchronized network calcium activity that 
was increased by applying glutamate and blocked by GABA and 
CNQX (Sakaguchi et  al., 2019). However, synchronous calcium 
transients have been observed in other laboratories within organoids 
(Renner et al., 2020) without the need for dissociation, suggesting 
differences in culture conditions and protocols can have a dramatic 
effect on network activity. To our knowledge, whether the presence of 
astrocytes (in normal or disease-relevant states) modulates calcium-
based measurements of network activity in organoids has yet to 
be investigated, though data using monolayer culture studies support 
that astrocytes are likely to have a positive influence. For example, 
neuron monolayer cultures containing astrocytes exhibited 
synchronous calcium activity after 15 weeks of culture. In contrast, 
adding cytosine-beta-D-arabinofuranoside to deplete proliferating 
progenitors reduced glia and resulted in a complete lack of 
spontaneous network activity (Klapper et al., 2019). We expect it will 
also be informative to use a GECI approach specifically in astrocytes 
to investigate if, and when, astrocytes become a functional part of 
tripartite synapse within organoids.

Because fluorescent calcium sensors and rigid MEAs have 
drawbacks (e.g., the inability to measure activity beyond a small 
portion of the organoid surface), engineers have developed arrays that 
envelop and encase organoids throughout the entire surface of the 
structure. Various designs have been developed, including shell-like 
designs that encase organoids in a transparent sphere allowing for 
simultaneous microscopy (Huang et al., 2022) and rollable electrode 
arrays that are able to fit various sized organoids (Kalmykov et al., 
2021). These devices have shown promise so far with regards to a high 
signal-to-noise ratio and ease in analyzing changes in neuron activity 
when adding neuroactive compounds such as glutamate. Alternatively, 
for integration of electrodes throughout organoids, a flexible and 
stretchable electrode-laden mesh can be seeded with human stem cells 
and allowed to self-organize, producing an incorporated mesh of 
electrodes capable of both measurement and stimulation of the cells 
in an approach termed “cyborg organoids” (Li et al., 2019). It remains 
to be seen if the caveats of using these more complex methods for 
sensing neural activity are advantageous over the more user-friendly 
current state of the art. Regardless, it will be  important to devise, 
optimize, and validate innovative methods for long-term, high-
resolution, and high-throughput sensors for increased accuracy, 
reproducibility, and to enhance scientific rigor in the field.

In parallel to detecting neural networks, methods are needed to 
modulate activity in organoids. One promising method for 
modulation and to model clinically relevant functional neurosurgery 
is electrical stimulation. In vivo studies have discovered that prolonged 
electrical stimulation can promote neuronal axon growth and 
integration within the spinal cord to restore motor function in 
monkeys and rats (Alam et al., 2017; Barra et al., 2022). If electrical 
stimulation of neurons in vivo shows promise in re-establishing neural 
networks to restore motor function, then it stands to reason that 
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electrical stimulation of organoids may help promote neural network 
development and provide a novel system to test stimulation 
parameters. Investigators are currently exploring the application of 
direct electrical stimulation to organoids through tools such as the 
Utah Array to penetrate and stimulate organoids (Morales Pantoja 
et al., 2023). Unfortunately, a major caveat with this approach is that 
chronic electrical stimulation is technically challenging because the 
immature organoids are still developing and experience high 
movement within bioreactors or shaking flasks. To address this 
limitation, an electric field application has been alternatively used for 
stimulation, and this approach has resulted in increased axon growth 
and synapse density in both the mouse brain (Grossman et al., 2017) 
and organoid-like aggregate cultures (Meng et al., 2020), suggesting 
its capability to induce a more robust neural network. An alternative 
stimulation strategy that is commonly used for research, but not 
currently feasible for clinical translation, is genetically encoded 
optogenetic stimulation to target a specific population of cells 
engineered with light-sensitive ion channels. Similar to electrical 
stimulation, optogenetic stimulation of rats with cervical spinal cord 
injury improved forelimb recovery that was mediated by an increase 
in axonal growth and glutamatergic and GABAergic synapses 
(Mondello et al., 2023). Optogenetic studies in organoids have been 
more limited mainly due to the challenges of genetic engineering and 
long-term light stimulation (Morales Pantoja et al., 2023), though 
these studies have indeed been conducted (Osaki et  al., 2018; 
Andersen et al., 2020; Revah et al., 2022; Harley et al., 2023). Our lab 
has confirmed that optogenetic stimulation of neurons in organoids 
is feasible and permits the detection of astrocyte-dependent changes 
in activity during coculture (Cvetkovic et  al., 2022). This is an 
emerging field with promise, yet there is a clear need for optimized 
technologies to reproducibly stimulate neural organoids for 
neuromodulation studies. An important future direction in this field 
would be to generate closed-loop feedback with organoid-computer 
interfaces to modulate activity in real time as has been recently 
demonstrated in a simulation of the game “Pong” (Kagan et al., 2022).

With improved organoid fabrication techniques as well as unique 
ways to characterize the viability and physiology of neural networks, 
researchers can take a further step to model neuropathological 
conditions that involve synaptic networks. Neurexin 1 (NRXN1) 
deletions are linked to increased risk in schizophrenia. Along with 
cell-specific transcriptional changes, organoids with NRXN1 deletions 
displayed decreased synchronized calcium burst activity at 4–5 months 
of culture compared to control organoids (Sebastian et  al., 2023). 
Network oscillations have also been found to be altered in organoids 
subject to different pressure shockwaves modeling primary blast 
injury. Organoids exposed to high-pressure shockwaves had 
significant reduction in synchronous neuron firing as measured by 
MEAs (Silvosa et al., 2022). On the other hand, diseases featuring 
hyperactive neural networks have also been modeled in organoids. For 
example, neural organoids with MECP2 mutations, which are 
associated with Rett syndrome (a disease that commonly features 
epileptic symptoms), led to an increase in excitatory synaptic puncta, 
an increase in synchronized calcium transients, and increase in burst 
spike activity. Further, local field potential recordings of mutant 
organoids revealed a lack of low frequency oscillations that were 
instead replaced by epileptiform-appearing spike activity with high 
frequency oscillations. This epileptic model demonstrates that 
treatment of an anti-epileptic drug, sodium valproate, can reduce 

spike activity in mutant organoids. Additionally, treatment with a 
target inhibitor of TP53, which has been linked to Rett syndrome, 
reduced spike frequency and high frequency oscillations of local field 
potential measurements (Samarasinghe et  al., 2021). Similarly, 
organoid models of Angelman’s syndrome with UBE3A have 
disruptions in ubiquitin-mediated degradation of Ca2+ and voltage 
dependent big potassium (BK) channels that result in hyperactivity 
and rescued with the BK antagonist paxillin (Sun et al., 2019). In 
cancer model, neural organoids in coculture with glioblastoma (GBM) 
cells exhibit increased functional burst activity as measured on MEAs 
with increased synapse puncta density. Interestingly, these overactive 
neural networks may result in increased growth of the GBM cells 
through thrombospondin-1 signaling, supporting the idea that neural 
network hyperactivity positively affects GBM growth (Krishna et al., 
2023). Altogether, it is becoming clear that organoid-approaches are 
feasible and reliable models to investigate neuropathologies that effect 
neural activity as an alternative to monolayer cultures and animal 
models, though there remains distinct advantages and caveats to 
each approach.

Can astrocytes enhance the therapeutic ability of transplanted 
organoids to rescue diseased or structurally impaired neural 
networks? hPSC-derived dissociated astrocytes have been 
engrafted into animal models by our lab (Krencik et al., 2011) and 
others (Hastings et  al., 2022). However, to the best of our 
knowledge, astrocytes have not been specifically incorporated into 
organoids to test this question. Still, transplantation of organoids 
is emerging as a feasible alternative approach instead of the 
injection of dissociated cells. Midbrain specific organoids 
containing dopaminergic neurons have been transplanted into the 
striatum of Parkinson’s disease mouse models. The neurons then 
formed synaptic connections with host tissue and improved motor 
function in three motor tests (i.e., apomorphine-induced rotation, 
open field, and rotarod testing; Zheng et al., 2023). Alternatively, 
cortical organoids have been engrafted into the S1 region of a 
mouse cortex and exhibit connectivity via sensory whisker 
stimulation-induced activity. Further, optogenetic stimulation of 
organoids was discovered to drive reward-seeking behavior (Revah 
et al., 2022). In regard to the visual system, organoids have been 
transplanted into large injury cavities of the visual cortex and 
respond to orientation selective visual stimulation (Jgamadze et al., 
2023). As a final example, organoids that were transplanted into a 
stroke-mediated injury model increased repair of the infarcted 
core, potentially by means of increased differentiation into glial 
cells compared to injection of single-cell suspension. Behavioral 
tests were also performed, indicating improved performance on all 
sensorimotor function (Cao et al., 2023). Though these studies 
demonstrate efficacy, the advancements and novelty of using 
organoids over previous transplantation methods using fetal tissue 
aggregates and dissociated hPSC-derived cells are not clearly 
apparent and this approach needs major advancement before it can 
realistically be  translated to the clinic. In summary, with the 
discussed pioneering advancements of both the manipulation, 
measurement, and utilization of neural networks in organoids, this 
exciting field of basic and translational research is primed to 
rapidly expand. While we postulate that astrocytes or astrocyte-
inspired biomaterials will be  an important addition to model 
neural networks, other cell types will also be needed for accurate 
experimental models.
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Beyond the asteroid: multicellular 
crosstalk coordinates inflammatory 
signaling

Besides direct astrocyte-neuron interactions, there are multiple 
other cell types that may directly or indirectly modify this relationship. 
Here, we will focus on the role of microglia as they have been the 
subject of numerous neural organoid studies. Astrocytes and microglia 
remain in constant communication and coordinate their functions 
with crosstalk and feedback signaling cycles (Linnerbauer et al., 2020; 
Matejuk and Ransohoff, 2020; Vainchtein and Molofsky, 2020). In 
brief, microglia are a self-replicating resident immune component 
within the CNS that originates from non-neural lineages (Lazarov 
et al., 2023). Like astrocytes, microglia have numerous functional roles 
and have traditionally been characterized as either being in resting or 
activated states based on morphology and biomarker expression. 
However, more complex and dynamic sub-classifications have recently 
been proposed based on specific contexts, including sex, age, and 
environmental cues (Paolicelli et al., 2022). Microglia express a wide 
array of receptors, including those for neurotransmitters and 
cytokines, which enables them to respond rapidly to a plethora of 
environmental changes by releasing signaling molecules (e.g., 
inflammatory cytokines and neurotrophic factors). Further, they 
contribute to neuroplasticity through synaptic refinement, synaptic 
pruning, and ECM remodeling (Sancho et  al., 2021; Wong and 
Favuzzi, 2023). Altogether, these roles have been implicated as a cause 
and/or contributor to neurodegeneration and other neurological 
diseases (Scott-Hewitt et al., 2023). Similar to astrocytes, microglia 
have a long and diverse history of generation from hPSCs in order to 
investigate their baseline and disease-associated functions both as 
monolayer cultures and within organoids (Cakir et al., 2022; Garcia-
Epelboim and Christian, 2023; Maksour and Ooi, 2023; Warden et al., 
2023; Wenzel et al., 2023; Zhang et al., 2023). In this section, we will 
review recent research focused on microglia within organoid cultures 
and contemplate how their presence in organoids may help establish 
a better model to understand astrocyte-neuron–microglia interactions 
within different disease relevant conditions.

One of the main roadblocks to systematic inclusion of microglia, 
and multiple additional cell types, within organoids is the lack of 
standardization in neural organoid production. Various adjustments 
to protocols have been implicated to increase reproducibility and 
complexity of the resultant cellular population (Velasco et al., 2019; 
Shi et al., 2020; Sidhaye and Knoblich, 2021; Rosebrock et al., 2022; 
Sozzi et  al., 2022). To avoid obstacles such as uncontrolled size, 
merging within culture conditions, and anoxia, there have been 
innovative solutions proposed from the field of microfluidics (Zhu 
et al., 2023), acoustofluidics (Ao et al., 2021a; Cai et al., 2021), and 
scaffolding engineering (Rothenbucher et al., 2021). Likewise, there 
are various strategies to generate microglia from hPSCs by either 
permitting them to spontaneously arise within organoids or to 
purposely incorporate them. For example, if neuroectoderm 
specification is not completely efficient during neural organoid 
differentiation, mesoderm-derived progenitors can give rise to 
microglia within organoids. These microglia express microglia 
biomarkers and respond to lipopolysaccharide (LPS) treatment by 
releasing inflammatory cytokines (Ormel et al., 2018). Alternatively, 
neural progenitors can be generated with efficient neural induction 
and, before organoid production, cocultured with specific numbers of 

microglia that are able to prune synapses and become inflamed after 
viral infection (Xu et al., 2021). A similar strategy has been used to 
incorporate microglia in midbrain-specified organoids (Sabate-Soler 
et  al., 2022) and retinal organoids (Usui-Ouchi et  al., 2023). In a 
different approach, a tubular organoid-on-a-chip device has been used 
that forces microglia to migrate into organoids to study 
neuroinflammation while ensuring oxygen perfusion, thereby 
minimizing necrosis and hypoxia (Ao et al., 2021b). In addition to 
optimizing the strategy for including microglia into organoids, it is 
important to also consider the purity and age of the microglia as this 
likely also alters their function and communication with other cell 
types. One promising approach to rapidly produce synchronous 
microglia is direct differentiation directly from hPSCs using a single 
transcription factor (Sonn et al., 2022) or a combination of factors 
(Drager et al., 2022), though burdens still remain in these protocols as 
they require exogenous treatments of various exogenous factors to 
promote development and maturation. Altogether, regardless of the 
approach, it will be critical that studies accurately report their methods 
in detail in order to ensure reproducibility among various laboratories.

Whether the same intercellular inflammatory signaling observed 
in vivo also occurs between hPSC-derived microglia and astrocytes 
within organoids remains to be rigorously explored. In monolayer 
cultures, tri-cultures of neurons, astrocytes, and microglia have been 
used to model Alzheimer’s disease (Bassil et al., 2021; Guttikonda 
et al., 2021). Thus, it is expected that organoid cultures can effectively 
be utilized to examine astrocyte-microglia interactions in models of 
aged and/or diseased inflammatory conditions. Additionally, 
transplantation of organoids directly into the CNS may be  an 
opportunity to study microglia-astrocyte interactions within a more 
complex microenvironment. For example, organoids that have been 
seeded with CD43+ erythromyeloid progenitors survive longer and 
mature better when transplanted into the mouse cortex, potentially 
due to the absence of ligands in vitro that activate the CSF-1 receptor, 
vascularization of organoids, and appearance of mature astrocytes 
over time (Schafer et  al., 2023). Microglia within these organoid 
transplants exhibit morphological differences in response to systemic 
intraperitoneal injection of LPS as well as in the context of cells 
derived from idiopathic autism spectrum disorder. Thus, 
incorporating more complex cellular diversity within organoids or 
incorporating organoids into a more complex microenvironment will 
undoubtedly increase their relevance as a model for disease states and 
for cellular transplantation therapy.

Conclusion and future perspectives

Here, we have summarized major astrocyte-related components 
and technological innovations that we expect would either enhance 
or disrupt organoid function as defined by various experimental 
readouts (Figure  2). We  further discuss the expected resultant 
consequences of organoid development, maturation, and function, 
as well as the relevance of organoids in modeling the complex 
human brain. However, major caveats remain, such as low 
reproducibility, immaturity, and insufficient cellular complexity in 
ratios similar to those within the CNS. Further, optimizations of the 
organoid model system and technological advancements are 
emerging, including computations tools that are needed to decipher 
the complex molecular networks and mechanisms underlying the 
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myriad of astrocytic functions. For example, high resolution serial 
electron microscopy and computer vision models have recently 
been employed to dissect mouse astrocytic nanoarchitecture that is 
difficult to visualize with traditional methodology (Salmon et al., 
2023). Combinations of high resolution microscopy (Torres-Ceja 
and Olsen, 2022) and advances in expansion microscopy (Sarkar 
et  al., 2022) using organoids will undoubtably answer further 
questions with respect to the chemistry of astrocytes with synaptic 
clusters. Although organoid transplants show promise in integrating 
and repairing damaged neural networks, there exist substantial 

limitations in controlling maturation, connectivity, and viability, 
though incorporating biomaterials or genetic approaches to 
enhance vascularization into organoids is promising (Wang 
M. et al., 2023). The inclusion of astrocytes would likely enhance 
the ability of organoids to interface with the vascular through 
contact with donor astrocyte endfeet. With the addition of microglia 
in transplants, there is potential to take advantage of inflammatory 
reactions of glia as theranostic tools or cellular factories to produce 
genetically engineered anti-inflammatory molecules. Altogether, 
there is hope that traditional low efficient methodologies for neural 

FIGURE 2

Astrocyte-dependent influences on human neural networks and emerging technological advancements. Neural connectivity in organoids may 
be strengthened (top), or weakened (bottom), through astrocyte-derived components including extracellular matrix (ECM), synaptogenic factors, 
gliotransmitters, and cytokines that affect the crosstalk between cells such as microglia. Emerging technologies, including those that modulate and 
sense neural activity, will be needed to investigate the influence of astrocytes on network function in organoids. Further improvements in establishing 
mature synaptic networks in organoids will advance support of established scientific findings and more clinically relevant strategies, high throughput 
drug screens and cell replacement therapy approaches.
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organoid generation and experimentation will become extinct due 
to the impact of more systematic bioengineering-inspired neural 
organoids such as Asteroids and future innovations.
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