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Introduction: Active rehabilitation requires active neurological participation

when users use rehabilitation equipment. A brain-computer interface (BCI) is

a direct communication channel for detecting changes in the nervous system.

Individuals with dyskinesia have unclear intentions to initiate movement due to

physical or psychological factors, which is not conducive to detection. Virtual

reality (VR) technology can be a potential tool to enhance the movement

intention from pre-movement neural signals in clinical exercise therapy.

However, its effect on electroencephalogram (EEG) signals is not yet known.

Therefore, the objective of this paper is to construct a model of the EEG

signal generation mechanism of lower limb active movement intention and then

investigate whether VR induction could improve movement intention detection

based on EEG.

Methods: Firstly, a neural dynamic model of lower limb active movement

intention generation was established from the perspective of signal transmission

and information processing. Secondly, the movement-related EEG signal

was calculated based on the model, and the effect of VR induction was

simulated. Movement-related cortical potential (MRCP) and event-related

desynchronization (ERD) features were extracted to analyze the enhancement

of movement intention. Finally, we recorded EEG signals of 12 subjects in normal

and VR environments to verify the effectiveness and feasibility of the above

model and VR induction enhancement of lower limb active movement intention

for individuals with dyskinesia.

Results: Simulation and experimental results show that VR induction can

effectively enhance the EEG features of subjects and improve the detectability

of movement intention.

Discussion: The proposed model can simulate the EEG signal of lower limb

active movement intention, and VR induction can enhance the early and

accurate detectability of lower limb active movement intention. It lays the

foundation for further robot control based on the actual needs of users.

KEYWORDS

movement intention, electroencephalogram, virtual reality induction, movement-
related cortical potential, event-related desynchronization, brain-computer interface

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1305850
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1305850&domain=pdf&date_stamp=2024-01-30
https://doi.org/10.3389/fnins.2023.1305850
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1305850/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1305850 January 25, 2024 Time: 17:4 # 2

Dong et al. 10.3389/fnins.2023.1305850

1 Introduction

With the aging population and the frequency of accidents,
the number of individuals with lower limb dyskinesia is gradually
increasing. Exercise therapy after surgery has been indicated as
an effective way to help patients recover (McDonald et al., 2022).
Human lower limbs support the weight of the body, which creates
movement challenges for lower limb dyskinesia individuals, so they
inevitably need external assistance. Exoskeleton robots can not only
help the body stand upright but can also assist the user in walking. It
has been extensively researched, designed, and implemented (Kalita
et al., 2020; Xiang et al., 2020).

Exoskeleton robots are required to be able to personalize and
intelligently assist the user. An important principle within the
use of exoskeleton robots is that the robots assist lower limb
dyskinesia people to actively undertake prescribed movements
rather than their limbs moving passively. It is critical that robots
perceive the user’s movement intention (Qiu et al., 2021). Human
active movement intention is the result of cognitive processes
in the brain. The process of human brain cognition and its
body expression can be described in two parts: “Uplink Pathway:
Electroencephalogram (EEG) signal generation” and “Downlink
Pathway: Electromyography (EMG) and other biological signal
generation” (Zhang et al., 2021). EEG contains brain real-
time information, which could be used to understand the
current motor-related brain activity and further predict the
next motor task. Furthermore, a brain–computer interface (BCI)
could help researchers to investigate users’ movement-related
neurophysiological changes in a non-invasive way (Abiri et al.,
2019). This technology would pave the way for intelligent assistance
of exoskeleton robots.

Some scholars have studied the neurophysiological changes
related to movement intention through BCI. Detection or
prediction of movement intention via EEG signals is the
ultimate goal. Sburlea et al. (2017) investigated the detection of
gait intention; the results showed that the detector combines
movement-related cortical potential (MRCP) amplitude and phase
features of EEG signals and has 62.5% accuracy in healthy subjects
and 59% in stroke patients. Lopez-Larraz et al. (2016) identified
movement intention with the cue-guided paradigm; the accuracy
of movement intention detection was 84.44% in healthy subjects
and 77.61% in incomplete spinal cord injury patients. Jeong et al.
(2017) validated a single-trial readiness potential performance
in the lower limb exoskeleton environment and the average
classification accuracy was 80.7% in healthy subjects. Hasan et al.
(2020) employed a discrete wavelet transform-based method to
detect the movement intention, the accuracy of detecting “rest
vs. start” was 76.41% and “walk vs. stop” was 74%, with healthy
subjects outperforming amputee subjects. In addition, there are
some studies on filtering algorithms (Jeong et al., 2020; Mascolini
et al., 2022), feature extraction methods (Wang et al., 2020; Jia et al.,
2022), and detection methods (Chaisaen et al., 2020) to improve the
performance of movement intention detection or prediction. The
accuracy of lower limb movement intention detection in people
with dyskinesia is lower than in healthy individuals with BCI
intention detection. How to enhance the detectability of lower limb
movement intention in people with dyskinesia based on BCI and

enable them to accurately control exoskeleton robots is an urgent
problem.

To solve this problem, the process by which the brain
generates movement intentions and related EEG signals should
be analyzed. The brain can filter and select the information,
and only selectively filtered information can be perceived (Leone
et al., 2017). The brain’s generation of specific intentions is
affected by facilitating and preventive factors, which is a process
of competition. Individuals with lower limb dyskinesia experience
physical discomfort during exercise, such as pain or fatigue, which
generates a plethora of preventive factors that affect movement
intentions. Although EEG signals have many advantages, they are
inherently weak, non-stationary, and susceptible to interference.
The brain of individuals with lower limb dyskinesia contains
ambiguous and complex information, with a low signal-to-noise
ratio and multiple confounding factors, which are not conducive to
the analysis of movement-related neural signals (Jochumsen et al.,
2015; Sburlea et al., 2016). Therefore, their movement intention
detection accuracy is lower than that of healthy people. However,
the current BCIs cannot address the impact of multiple factors on
people with lower limb dyskinesia.

Cognitive neuroscience research suggests that human
movement intention and preparation are greatly affected by
their mental state of exercise (Van Overwalle et al., 2020). Some
scholars have proposed to introduce virtual reality (VR) technology
in rehabilitation training to build a three-dimensional audio-visual
integrated virtual environment with multiple perceptions so that
users can complete the two-way interaction between virtual and
reality in a simulated environment. Immersive scenarios could
help to filter out some of the external distractions and maximize
the user’s ability to focus on the movement task, promoting
motor neurological rehabilitation. Berton et al. (2020) statistically
analyzed the clinical data on the impact of VR technology on
orthopedic patients from 2015 to 2020, the results showed that
VR technology had a positive effect on the rehabilitation of
patients. The case study by Chillura et al. (2020) showed that
the combination of traditional rehabilitation under VR and
robot-assisted rehabilitation could enhance functional recovery;
the improvement effect of patients after combined treatment was
significantly greater than that after conventional rehabilitation
alone. Maggio et al. (2021) evaluated the usefulness of robot-aided
gait training (RAGT) equipped with virtual reality augmented
visuomotor feedback through EEG changes and confirmed that
RAGT and VR can achieve better patient-tailored improvement
in functional gait. These studies showed that VR technology
plays a positive role in the rehabilitation of people with lower
limb dyskinesia, but this is only a qualitative description, which
does not indicate the impact of VR on brain or body changes in
movement. Whether VR technology enhances movement intention
or improves the detectability of movement intention is still unclear,
and understanding the effect of VR on movement-related EEG
potential change is important for movement intention detection
based on BCI.

To study the mechanism of VR induction, it is necessary to
analyze the brain information processing, establish a model for the
generation of EEG signals, and then analyze the effect of different
situations on its signal features. Some mathematical models of EEG
generation were established and EEG signals have been simulated.
Wendling et al. (2002) focused on the high-frequency EEG activity
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and modeled EEG signals in epileptic patients. Zavaglia et al.
(2008) built an EEG generation model by combining three neural
mass models and simulated EEG power spectral density in some
regions of interest during simple tasks. Chehelcheraghi et al. (2017)
added external modulatory input and dynamic self-feedback to the
Wendling neural mass model and simulated EEG signals in α, β,
and γ bands. These models simulated macroscopic EEG signals
by considering the brain regions of the sensing zone as a whole.
However, brain information processing involves different regions
and has a hierarchical relationship. Moreover, elements related to
movement intention generation need to be added to the model to
produce the corresponding EEG signal features. In this regard, the
van der Pol oscillator is often used as a model for simulating EEG
features. Baghdadi et al. (2018) modeled the ERD/ERS features of
EEG signals using van der Pol oscillator simulations. Ghorbanian
et al. (2015) simulated eyes-closed and eyes-open EEG based on
the van der Pol oscillator, and the model showed that very good
agreement exists between the model output and the EEG in terms of
the power spectrum. Szuflitowska and Orlowski (2021) applied the
Van der Pol model oscillator to study brain activity during temporal
left lobe seizures. Therefore, to establish the EEG generation model
of movement intention, it is necessary to combine the above
different types of models and add more details. After modeling, the
effect of the VR system on the EEG signal features can be analyzed
by changing the parameters of the mathematical model.

In this study, we investigated the EEG generation of lower
limb movement intention and its action expression mechanism
and categorized brain information processing into primary and
advanced processing. Then, an EEG signal generation model of
lower limb active movement intention that fused the van der Pol
oscillator and the neural mass model was established based on brain
information processing laws. In addition, the model was simulated
to investigate whether it is possible to enhance the movement
intention significantly from EEG signals during leg lifts with VR
induction. Finally, a comparative experiment was conducted on
12 healthy subjects to analyze EEG signal features and verify the
correctness of the model. The rest of the paper is constructed in
the following way. Section 2 describes the model and methods of
the study. Section 3 describes the experiment. Section 4 contains
the results of the model simulation and experiment. Section 5 is
the discussion of the study. Section 6 is the limitations. Section 7
provides a conclusion to the study.

2 Methodology

2.1 Generation of lower limb movement
intention and its virtual reality induction
enhancement mechanism

The brain generates intention after cognition and decision-
making. The process of movement intention generation is shown
in Figure 1A. Human receptors continuously receive information
from the body’s internal or external environment, which is
converted into electrical signals and transmitted to corresponding
brain regions through specific nerve conduction pathways for
primary processing. Then, the brain reprocesses and fuses the
results with different primary processing regions, which can be

regarded as an advanced processing process. Finally, the movement
intention is generated and expressed in the EEG signals of the brain
motor area.

For individuals with lower limb dyskinesia, pain during
movement is the main factor that affects their movement intention.
This is a prevention factor. However, psychological experimental
research shows that visual information accounts for the largest
proportion of the information received by the brain, which is 83%
(An et al., 2017). In a VR induction system, virtual scenarios could
provide an immersive and directional environment. It helps the
users to perceive and focus on specific targets, generate selective
attention, and enhance attention retention. Special scenarios
could improve the competitiveness of the promoting factors
for intention generation in the information-selective processing
of the brain. In addition, individual willpower also affects the
continuity of movement intention. The process of generating
lower limb movement intention with the VR induction system
is shown in Figure 1B. Pain irritation and individual willpower
usually cannot be changed, while VR scenarios could provide
positive visual information for generating movement intention and
maximizing its benefits. Furthermore, attention enhancement and
retention could enhance the efficiency of useful information, that
is, enhancing motor control circuitry of the human brain, making
movement-related neural associations easy to detect. Thus, the VR
induction system increases the influence of specific signals in the
brain’s advanced processing process by altering the input signals.

2.2 Mathematical models

Brain neurons encode movement intention. The generation
of neural oscillations is considered a marker of brain activity, it
can be analyzed by mathematical models of brain dynamics. Two
types of brain dynamics models are commonly used to describe
the generation of EEG signals. The first type is the micro-level
model, which describes the activity of a single neuron in detail;
explicitly combines the properties of ion channels, axons, and
dendrites; and explores the chemical properties of action potentials
with the changes in intracellular ion concentrations (Abbott, 1999;
Baladron et al., 2012). The model is computationally complex and
ignores the interactions between cells, which cannot fully reveal
the response characteristics of whole brain EEG signals (Bossy
et al., 2015). The second type is the neural mass model (NMM),
which is proposed due to the discovery that neurons with the same
function can cluster and have similar dynamic properties (Wilson
and Cowan, 1973). It assumes that neurons in the same population
share similar inputs and synchronize their activity, reflecting the
overall discharge behavior by describing the average characteristics
of the neural population (such as average discharge rate, average
membrane potential, etc.). The model uses multiple state variables
to describe the dynamics of the entire neural population and
its synapses, which has the advantages of low computational
complexity, simple parameters, and clear physiological significance.

According to physiological research and the foregoing analysis,
there are two stages between receiving various information from
human receptors and generating movement intention. The goal
of the primary processing model is to synchronize the generated
signals with the external stimulus signals. The advanced processing
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FIGURE 1

Generation of lower limb movement intention. (A) The generation of movement intention with secondary brain processing. (B) Various factors
compete to produce movement intention for individuals with lower limb dyskinesia.

model couples the multiple types of signals obtained from the
primary processing to output EEG signals indicating movement
intention. Cascading these two models is the model proposed in
this paper. In comparison with the universal model that simulates
EEG at different frequencies, the proposed model could simulate
not only spontaneous EEG signals but also the situation with
external stimuli. Compared with the model that mimics the
shape of EEG features, the proposed model has a clear physical
significance. Overall, the proposed model is a model for movement
intention generation that is more consistent with the physiological
knowledge of brain processing and has good interpretability. The
brain activity of movement intention generation could be expressed
by the following two models.

2.2.1 Brain primary processing model
With the development of physiology and anatomy, researchers

have segmented the brain according to its cell composition,
arrangement, structure, and other characteristics. Each region plays
a different role in processing information in the brain. Rhythmic
neural electrical activity is the basis of brain cognitive function.
This spontaneous neural electrical activity can be regarded as a
dynamic self-excited oscillation process. When stimulated by the
external environment, the endogenous neural activity in the brain
is regulated by the external stimulus, the neural oscillation will be
synchronized with the external rhythm (Thut et al., 2011). Thus,
in primary brain processing, the neurons could be represented as
oscillators, and synchronization is the oscillatory output.

A small oscillating neuronal assembly could be described by a
van der Pol oscillator, as shown in Equation 1. Y is the output, λ

is the bifurcation parameter, and Ẏ determines the state variable of
the oscillator. When λ ≤ 0, there is no oscillation, when λ > 1, it
enters a specific limit cycle with periodicity, and when 0 < λ < 1,
the oscillator oscillates at a frequency p with an amplitude of 2

√
λ.

Ÿ − (λ− Y2)Ẏ + p2Y = 0 (1)

When an external input (including the external input from the
VR induction system) has the same frequency as the oscillator, the
neural population could be affected by the oscillation. When the
oscillator receives an input of the same frequency, the oscillator

would not be affected when the input is the same as the oscillator
phase, and the oscillator could gradually converge to the input
through periodic stimulation when the phase is different. As
the period increases, the average phase of the neuron oscillator
gradually converges with the input, which is synchronization.
The completion of synchronization means that information has
been transmitted to corresponding brain regions through specific
neural pathways.

2.2.2 Brain advanced processing model
The advanced processing of the brain is coordinated through

the firing activity of a large number of widely interconnected
neurons. It can be described in NMM. Based on the generation
mechanism of nerve impulses, the classical NMM describes
the interaction of different synaptic dynamics among pyramidal
neurons, excitatory interneurons, and inhibitory interneurons
(Wilson and Cowan, 1972; Jansen et al., 1993). It was initially
used to study the mechanism of generation of alpha rhythms
(Lopes da Silva et al., 1976) and the generation of simulated
visual evoked potentials (Jansen and Rit, 1995). Physiological
anatomy research suggests that the inhibitory synapses of
pyramidal neurons in the hippocampus of the brain can
be divided into slow inhibitory synaptic responses and fast
inhibitory synaptic responses (Miles et al., 1996). Therefore,
researchers divided inhibitory interneuron populations into slow
inhibitory interneuron populations and fast inhibitory interneuron
populations, and successfully simulated EEG signals that input
targets were pyramidal cells (Wendling et al., 2002). However,
input from neuronal populations can reach every interneuron.
The results of a parameters sensitivity analysis showed that the
model dynamics changes of excitatory interneurons and slow
inhibitory interneurons were not obvious; thus, only the inputs
to pyramidal neurons and fast inhibitory interneurons need to be
considered. In addition, fast inhibitory interneurons exhibit self-
inhibition (Ursino et al., 2010). Simulating brain parameters under
different conditions (Vindiola et al., 2014; Mangia et al., 2017;
Ferrat et al., 2018) and constructing a coupled brain network
structure can clarify the changes in brain activities (Garnier et al.,
2015; Chehelcheraghi et al., 2016).
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FIGURE 2

Neural mass model topology. The arrow line represents the
excitatory transmission process, and the round-headed line
represents the inhibitory process.

Based on previous research, the improved NMM topology is
shown in Figure 2, where pyramidal neurons receive excitatory
inputs from the excitatory interneurons and inhibitory inputs
from the fast inhibitory interneurons and slow inhibitory
interneurons. Pyramidal neurons transmit excitatory inputs to
excitatory interneurons, fast inhibitory interneurons, and slow
inhibitory interneurons. Slow inhibitory interneurons transmit
inhibitory input to fast inhibitory interneurons and the fast
inhibitory interneurons inhibit themselves. In the model, n is
used to represent the neuron, and subscripts 1, 2, 3, and 4 of
parameters represent pyramidal neurons, excitatory interneurons,
slow inhibitory interneurons, and fast inhibitory interneurons,
respectively. Attention enhancement and retention produced by
the VR induction system affect the connectivity parameters of the
various neuronal clusters, thereby enabling the brain to generate
specific EEG signals.

2.2.3 Lower limb movement intention generation
model

The primary processing and advanced processing of the brain
are connected in series. According to the above method, the
movement intention is generated when the promote factors are
greater than the prevent factors; the motor areas of the cerebral
cortex also display characteristic EEG signals. The model is shown
in Figure 3.

In brain advanced processing, the primary processing results
are collectively used as the input to the pyramidal neurons:

u1(t) = uev(t)− uip(t) (2)

Where uev(t) represents the result of the primary processing of
positive external visual information Uev(t) and uip(t) represents
the result of the primary processing of negative internal pain
irritation Uip(t). The primary processing is simulated by the van
der Pol oscillator.

Fast inhibitory interneurons could also receive input from other
populations, which is recorded as u4(t). Here, it is assumed that
they are connected through excitatory synapses.

Each population consists of a cascade of linear and nonlinear
modules, receiving average postsynaptic membrane potential vi
from other neural populations, the average synaptic connection
constant represents the coupling between neural populations.
Then, the membrane potential is converted into the average peak

density of the neurons, and the sigmoid function is used to simulate
the existence of inhibition and saturation, denoted by zi. Thus,
zi = S(vi). Changing the value could simulate the impulse responses
of different synapses; the process is represented by hi(t).

By combining these two models, the brain’s processing
of movement intention generation could be simulated and
corresponding EEG signals could be generated. The complete lower
limb movement intention generation model corresponds to the
following set of differential equations:

Pyramidal neurons

dy1(t)
dt
= x1(t)

dx1(t)
dt
= G2ω2z1(t)− 2ω2x1(t)− ω2

2y1(t)

z1(t) =
2e0

1+ e−rv1
− e0

v1(t) = C12y2 − C13y3(t)− C14y4(t)

(3)

Excitatory interneurons

dy2(t)
dt
= x2(t)

dx2(t)
dt
= G2ω2(z2(t)+

u1(t)
C12

)− 2ω2x2(t)− ω2
2y2(t)

z2(t) =
2e0

1+ e−rv2
− e0

v2(t) = C21y1(t)

(4)

Slow inhibitory interneurons

dy3(t)
dt
= x3(t)

dx3(t)
dt
= G3ω3z3(t)− 2ω3x3(t)− ω2

3y3(t)

z3(t) =
2e0

1+ e−rv3
− e0

v3(t) = C31y1(t)

(5)

Fast inhibitory interneurons

dy4(t)
dt

= x4(t)

dx4(t)
dt

= G4ω4z4(t)− 2ω4x4(t)− ω2
4y4(t)

dy4′(t)
dt

= x4′(t)

dx4′(t)
dt

= G2ω2u4(t)− 2ω2x4′(t)− ω2
2y4′(t)

z4(t) =
2e0

1+ e−rv4
− e0

v4(t) = C41y1(t)− C43y3(t)− C44y4(t)+ y4′(t)

(6)

In the model, yi(t) represents the output of the corresponding
neuron, and the overall output of the model is v1(t). Moreover,
the subscript 4’ represents the negative self-loop of fast inhibitory
interneurons. Cij represents the synaptic constant from neuron j to
neuron i. Gi represents the strength of the individual synapses and
ωi represents the reciprocal of the time constant. The sigmoidal
function is centered on 0 and the parameters of the sigmoid
function are represented by e0 and r.
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FIGURE 3

Layout of the lower limb movement intention generation model.

3 Experiment

3.1 Experimental system overview

In this study, an experimental platform was built to verify
the above analysis. The experimental platform is built as shown
in Figure 4A, including a VR module, an EEG signal acquisition
module, an EMG signal acquisition module, and a host computer.
HUAWEI VR Glasses were used to provide a VR environment.
It adopts a dual fast LCD screen, with a field of view angle of
90 degrees and a binocular resolution of 3K and supports VR
sound effects that move with the head. The advantage of VR
glasses over VR helmets is that glasses do not need to be worn
through the top of the head, which can reduce the adverse effects
on EEG signals caused by friction between the device and the
head. A Neuracle 32-channel EEG cap (Neusen W-EEG) was
used to collect the EEG signals, and a Neuracle 16-channel EMG
(NeuSen WM) acquisition instrument was used to collect the
surface electromyography (sEMG) signals. The computer is used
to receive and store the EEG and sEMG signals. Signal processing
is carried out through MATLAB.

The construction of the virtual scenarios is shown in Figure 4B,
which is implemented based on the Unity3D editor. The virtual
character model induces the subjects to perform specified actions.
The light source of the scene is the color of the sky, and the scene
camera is bound to the virtual reality glasses. When the virtual
characters in the scenarios start to move, the subjects need to follow
them to move.

3.2 Subjects

A total of 12 college students were selected as subjects
(marked as S1-S12), 10 male and 2 female, without any history

of sensorimotor deficits or any psychological disorders. The
demographic and physiological information of the subjects is
summarized in Table 1. This study was approved by the Ethics
Committee of Xi’an Jiaotong University (Ethics number: 2021-
360). Before the start of the experiment, each of the subjects
was introduced to the relevant tasks and signed the informed
consent form.

3.3 Experimental protocol

The experiment was completed in the Bio-Mechatronics and
Service Robot Laboratory of Xi’an Jiaotong University. The leg
lift movement is the subject of movement because it is one of
the important basic movements in lower limb movement. This
experiment is a control experiment. The experimental group used
the VR induction system to induce the subjects to perform the
action, the control group did not use it and changed to a single-tone
prompt. To ensure the single variable principle of the controlled
experiment, the VR induction system included the same single-tone
prompt as the control group. All subjects were required to complete
two experiments, one for the experimental group and the other for
the control group. The experiments were conducted on the same
day with a long break in between to minimize variability caused by
factors such as fatigue. During the experiment, the subjects should
always maintain a natural standing state. There were a total of 5
sessions in this experiment, and the sequence diagram is shown
in Figure 4C. Each session consisted of 10 trials. In each trial, the
subjects first kept still for 5 s and then performed actions according
to the prompts. Signals around and before the start moment of the
movement were monitored so that the movement execution was
not limited to but did not exceed 4 s (2 s to raise the leg and 2 s to
lower it). After the actions were completed, there was a short rest
to prepare for the next trial. Each of the sessions was 135 s long
with a break of 2–5 min between two consecutive sessions. Finally,
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FIGURE 4

Experimental system. (A) The experimental platform. (B) Virtual scenarios. (C) Experimental Sequence Diagram.

TABLE 1 Demographic characteristics of the subjects.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 MEAN ± SDT

Age (years) 23 22 24 26 24 23 25 28 24 24 24 23 24.2± 1.5

Height (cm) 177 172 178 168 178 163 175 171 168 174 178 176 173± 4.7

Weight (kg) 71 73 74 63 64 53 67 68 57 72 64 69 66.3± 6.2

each subject’s experimental and control group data were collected
50 times, respectively.

3.4 EEG data collection and movement
evaluation

This experiment recorded the EEG signals of subjects during
exercise. The measurement points of EEG electrodes under the
international 10/20 system were FZ, FC1, FC2, CZ, C3, C4, CP1,
CP2, and PZ. Before acquiring data, an appropriate conductive gel
was applied to the scalp and ensure that the required impedance
between the electrodes and the scalp was less than 5 k�. The
sampling frequency was 1,000 Hz.

Lower limb movements were evaluated by surface EMG signals.
Six surface EMG sensors were placed in the subjects’ rectus femoris,
vastus lateralis, vastus medialis, semitendinosus, tibialis anterior,
and gastrocnemius. These EMG data provided the changes in
lower limb muscle activation during the experiment. The sampling
frequency of the sEMG sensor was 1,000 Hz.

3.5 Data analysis method

The Cz channel of the EEG cap corresponds to the lower limb
motor-related cortex, so we selected the EEG signal data of the

Cz for analysis (Li et al., 2018; Romero-Laiseca et al., 2020). Two
major neural phenomena can be captured with EEG in relation to
movement intention when human lower limbs are moving, event-
related desynchronization (ERD), and MRCP. ERD is recognized
as a decrease in the α (µ) band power (8–13 Hz) and in the
β band power (14–25 Hz) with movement (Qiu et al., 2016).
MRCP is a low-frequency negative shift in the EEG recording
that takes place approximately 0.5–2 s before the movement
production. MRCP is readily masked by higher frequency activity,
and its amplitude is usually between 5 and 30 µV (Shakeel et al.,
2015). These two features could be calculated from the original
EEG data. The collected EEG signals contain artifacts such as
noise, EMG, and power frequency interference, which need to
be filtered out before analysis. This study used empirical mode
decomposition and independent component analysis for artifact
removal.

Short-time Fourier transform (STFT) is used to analyze
the collected data in time-frequency domain. It multiplies a
time-limited window function before Fourier transforms the
signal instead of Fourier transforming the entire signal. It
assumes that the signal is stationary in the short time interval
of the analysis window, and the spectrum of the signal at
each moment in the time domain is obtained by moving
the window function on the time axis. To observe the EEG
responses of different states in the time domain, event-related
spectral perturbation (ERSP) is used to analyze the power
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spectrum changes of EEG. The calculation of ERD features is as
follows:

Ei,j =
1
n

n∑
k=1

s2i,j,k (7)

Ebi =
1
m

m∑
j=1

Ei,j (8)

ERD =
(
Ei,j − Ebi

Ebi

)
× 100% (9)

Here, s represents the EEG signal. i, j, and k denote the trial number,
epoch number, and sample number. E represents the mean power
of the EEG data and n is the length of sub-epochs. Eb represents the
baseline consisting of m epochs of each trial.

In STFT calculation, the choice of window function is
crucial. The rectangular window has severe spectrum leakage. The
BlackMan-harris window has an excessively wide main lobe that
reduces the frequency resolution. The Hanning window has both
good frequency resolution and less spectral leakage. Therefore,
the Hanning window is used in this study. The EEG data were
subdivided into 1-s-long epochs with a 200-ms overlap. Then, each
epoch was processed for ERD extraction. Furthermore, the change
of EEG power with frequency can be calculated by taking the ERSP
power at different frequencies and then according to the mean
value of the time dimension. Time-domain MRCP features could
be extracted by filtering directly.

Moreover, a convolutional neural network (CNN) was used
to detect the lower limb movement intention of the experimental
group and the control group. Based on the convolutional neural
network framework, this paper designed 13 convolutional layers, 5
pooling layers, 3 fully connected layers, and 1 normalization layer.
The input data were filled with the “same” operation to ensure that
the input and output sizes were the same after the convolution
operation. The size of the convolution kernel was 3 × 3 and
activated by the tanh function. The maximum pooling method was
adopted for the pooling layer and the stride was 2× 2.

4 Result

4.1 Simulation analysis

The central nervous system can always have rhythmic and
spontaneous discharges without any external stimulation, so the
input of the model can be simulated by a uniformly distributed
random signal. The u4(t) during advanced brain processing is
simulated by white Gaussian noise with mean 0 and variance 5.
Referring to physiological knowledge, Sigmoid saturation (s−1)
e0 = 2.5, Sigmoid steepness (mV−1) r = 0.56, EEG signals of
different states can be simulated by adjusting the connectivity
constant and synaptic impulse response (Ursino et al., 2010).

The simulation results of the EEG signal during voluntary
movement without external stimulus are shown in Figure 5A.
When there is an external stimulus from the VR system, the
stimulus can be represented by a sine curve at the moment of
movement intention generation. The model input for this case is a
uniformly distributed random signal superimposed on a sinusoidal
signal. The simulation results of EEG signals during VR-based
motion are shown in Figure 5B. Figures 5C, D are the simulated
signals corresponding to the actual acquired EEG signals of S1 at the
Cz channel. The simulated signal in the time domain is similar to
the actual collected signal. Then, the features related to movement
intention need to be extracted and analyzed from the simulated
EEG signals.

Event-related desynchronization and MRCP features of the
simulated EEG signals were extracted. The calculated EEG signal
power in α and β frequency bands is shown in Figure 6A. It
can be seen that the power is decreased in both α and β bands,
and the power decrease is more pronounced with the stimulus
from the VR induction system. The results of filtering the low
frequency (0–10 Hz) EEG signal are shown in Figure 6B. It can
be seen that during the preparation and execution of lower limb
movements, the amplitude of the EEG signal decreases first and

FIGURE 5

(A) The simulation results of the EEG signal during voluntary movement without external stimulus. (B) The simulation results of EEG signals during
exercise with a VR environment. (C) The EEG signal of the Cz channel from S1. (D) The EEG signal of the Cz channel from subject 1 with VR
induction system.
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FIGURE 6

Characteristics of simulated EEG signal. (A) Frequency-domain features (B) Time domain features.

FIGURE 7

(A) The time-frequency plots of the experimental and control groups of subjects. (B) A representative subject. The starting position of the red box is
the ERD onset time.

then increases. The signal is more negatively shifted with the
stimulus from the VR induction system. In general, comparing
the simulated EEG signals of VR induction or not, both MRCP
and ERD features are more obvious when there is movement

with the external stimuli from the VR induction system. This
means that the use of a VR induction system would be more
conducive to detecting/predicting movement intention from EEG
signals.
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TABLE 2 ERD onset time and peak value statistics.

Subject ERD Onset Time (s) Peak Value (dB)

Experimental Group Control Group Experimental Group Control Group

S1 −1.133 −1.133 −30.237 −26.430

S2 −1.000 −0.933 −40.359 −31.113

S3 −1.809 −1.860 −27.831 −26.705

S4 −1.993 −1.867 −27.018 −23.066

S5 −2.015 −1.860 −31.345 −29.446

S6 −1.963 −1.603 −25.126 −24.293

S7 −1.600 −0.067 −30.964 −24.133

S8 −1.912 −1.037 −34.243 −24.264

S9 −1.860 −1.654 −32.932 −24.370

S10 −1.800 −1.867 −28.973 −23.279

S11 −1.654 −1.088 −29.010 −24.362

S12 −1.933 −1.067 −32.449 −22.621

MEAN± STD −1.723± 0.319 −1.336± 0.526 −30.874± 3.796 −25.340± 2.511

4.2 Neurophysiological data analysis

4.2.1 ERD time-frequency analysis
The collected EEG data of the experimental group and the

control group were analyzed offline. Nerve conduction velocities
ranged from approximately 50 to 70 m/s, and the nerve pathways
involved in the reception of stimuli to intention generation were
all on the millimeter scale. Therefore, the differences between the
onset time of movement defined by the experimental group and
the control group could be ignored. An epoch is 5 s before to
2 s after the motion. After preprocessing and filtering artifacts, 8–
30 Hz fourth-order Butterworth band pass filtering was performed
to obtain EEG signals in α and β frequency bands. The EEG data
from −5 s to −2 s were regarded as the resting state, and the time-
frequency plots of the 12 subjects at −2 s to 2 s were calculated
and plotted based on this baseline. The signal was collected at
the Cz channel. Figure 7 shows the time-frequency plots of the
experimental and control groups of subjects.

Figure 7A shows that all subjects in the experimental group
and control group had ERD phenomenon near the start of motion
(−2∼2 s). The experimental group experienced a wider range
of ERD phenomena and a more significant decrease in power
compared to the control group. For quantitative analysis, the first
occurrence −20 dB point is chosen as the point of initiation of
ERD, and the ERD peaks of the experimental group and the control
group were counted. As shown in Table 2, the mean onset time
of ERD of subjects in the experimental group and control group
was −1.723 ± 0.319 s and −1.336 ± 0.526 s, and the mean peak
values were −30.874 ± 3.796 dB and −25.340 ± 2.511 dB. There
was a significant difference in ERD Onset Time (p = 0.0191) and
a highly significant difference in Peak Value (p = 0.0001) between
the experimental and control groups. Most of the results yielded
the same conclusion as the mean. All subjects in the experimental
group had lower peaks than the control group, and most of the
experimental group had ERD Onset Time earlier than the control
group. However, the ERD onset time of the experimental group for

S3 and S10 appeared slightly later than that of the control group,
0.051 s and 0.067 s, respectively, not exceeding 0.1 s. Nevertheless,
the time-frequency plots clearly show that S3 and S10 produced
a wider range of ERD phenomena in the experimental group,
producing peaks that were 1.126 dB and 5.694 dB lower than in the
control group, respectively. Figure 7B is a representative subject.
The control group only showed a significant ERD phenomenon
near the movement onset time, whereas the experimental group
showed a wider range, especially before the start of the movement.
The starting position of the red box is the ERD onset time.

Additionally, comparing the statistical significance of the
difference in ERD between the experimental group and the control
group, the compared test was calculated at the 95% significance
level, and the results are shown in Figure 8A. All subjects showed
differences near the onset of exercise at both the α and β frequency
bands, especially for the α frequency band. Surprisingly, except for
S1, S3, and S12, the other 9 subjects showed differences in early
stages. Figure 8B is a representative subject. The major significant
blocks are marked in red rectangles. It showed early significant
differences even before the movement onset. Early features could
be conducive to pre-movement intention pattern detection.

Moreover, to investigate how baseline EEG was affected by
experimental and control groups, baseline EEG powers from all
channels at α and β frequency band (8–25 Hz) were calculated
and averaged across all subjects. The data conformed to a normal
distribution according to the Shapiro–Wilk test. The experimental
group had a kurtosis of −0.9 and a skewness of 0.8, while the
control group had a kurtosis of 4.9 and a skewness of 2.1. Figure 9
shows the boxplot of the EEG baseline power, the average EEG
baseline power of the experimental group was 5.66 × 10−4 v2, and
the control group was 3.89 × 10−4 v2. Although the average EEG
baseline power of the experimental group was slightly higher than
that of the control group, the results of the t-test showed that the
experimental group and the control group were not significantly
different.

Therefore, in the overall ERD time-frequency analysis, the
baseline EEG power of the experimental group and the control
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FIGURE 8

(A) The comparison results of ERD in the range of [–2,2] seconds between the experimental group and the control group. (B) A representative
subject. The experimental group showed early significant differences in ERD even before the movement onset.

FIGURE 9

EEG baseline power.

group were consistent, which means that the VR induction system
could not change EEG in the resting state. It could induce
more obvious early ERD features to enhance the detectability of
movement intention.

4.2.2 Frequency domain power analysis
The ERSP power of all subjects was calculated, and the

frequency domain power of the experimental group and the control
group was analyzed. The graph of the change of EEG power with
frequency is shown in Figure 10. The red line is the frequency
domain power of the experimental group and the blue line is the
frequency domain power of the control group.

All subjects in the control group and the experimental group
had the same trend of frequency domain power change. The power
was dropped in the α and β Frequency bands. From the perspective
of power attenuation, throughout the entire frequency range, the
experimental group of most subjects had greater attenuation than
the control group. Because of the opposite results presented at

certain moments in some smaller ranges (such as the power of S9
at around 13 Hz), the characteristic frequencies of each frequency
band need to be analyzed. The frequency corresponding to the
minimum value in the figure was the characteristic frequency;
detailed data is shown in Table 3.

The characteristic frequencies of the α band experimental
group and the control group were 10.9± 1.4 Hz and 10.8± 2.0 Hz,
respectively. The characteristic frequencies of the β band were
18.7 ± 1.7 Hz and 19.2 ± 1.9 Hz. The characteristic frequencies
of the experimental group and the control group were correlated
(R = 0.94), so the experimental group did not change the main
frequency of feature generation. The power of characteristic
frequency is shown in Figure 11. The power of the experimental
group decreased more than that of the control group. In the
α band, the average peak power of the experimental group
was −3.679 ± 1.281 dB, and that of the control group was
−2.156 ± 1.039 dB. In the β band, the average peak power was
−3.490± 0.984 dB and−2.379± 0.835 dB, respectively.

The frequency domain power analysis shows that the
characteristic frequencies generated by each frequency band in
the experimental group and the control group are correlated.
That means the VR induction system could generate more
significant power attenuation in EEG to enhance the detectability
of movement intention.

4.2.3 Time-domain MRCP feature analysis
The collected EEG data of two working conditions were

analyzed. An epoch is 5 s before to 2 s after the motion. The
epoch was preprocessed to eliminate the artifacts, and 0.1–10 Hz
filtering was performed to obtain low-frequency signals. Figure 12
compares the MRCP features extracted from subjects in the
experimental group and the control group. The red line is the
MRCP of the experimental group and the blue line is the MRCP
of the control group. It could be seen that all subjects in the
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FIGURE 10

Energy curves in the frequency domain. The experimental group has more energy attenuation than the control group in α and β bands.

TABLE 3 Characteristic frequency in α and β band.

Subject Experimental Group Control Group

α Band (Hz) β Band (Hz) α Band (Hz) β Band (Hz)

S1 13.0 17.0 14.0 20.0

S2 11.0 19.0 8.0 21.0

S3 14.0 19.0 14.0 19.0

S4 12.0 21.0 12.0 21.0

S5 10.0 21.0 11.0 20.0

S6 11.0 17.0 11.0 17.0

S7 10.0 20.0 9.0 22.0

S8 11.0 18.0 10.0 20.0

S9 9.0 18.0 13.0 18.0

S10 10.0 16.0 8.0 15.0

S11 9.0 17.0 9.0 17.0

S12 11.0 21.0 11.0 20.0

MEAN± STD 10.9± 1.4 18.7± 1.7 10.8± 2.0 19.2± 1.9

experimental group showed obvious MRCP characteristics, and the
amplitude of this potential began to decrease 2–3 s before the onset
of motion and then rebounded. In total, 11 subjects in the control
group showed MRCP characteristics, only S5 did not show obvious
MRCP characteristics.

To compare the differences in the characteristics of the
experimental group and the control group, the peak points of
the MRCP characteristics were counted as shown in Figure 13A.
The peak value of all experimental groups decreased more than
that of the control group, with a significant statistical difference
(p = 0.0082). The average peak value of the experimental
group was −14.052 ± 8.757 µV and the control group was
−7.855 ± 4.345 µV. Furthermore, comparing the peak time of the

two groups, the time of peak appearance of the experimental group
was −0.111 ± 0.343 s and the control group was −0.103 ± 0.412
s. Whether the peak time of the two groups came from the same
distribution was verified through a quantile-quantile plot, as shown
in Figure 13B, the red line is the distribution of the experimental
group and the blue line is the distribution of the control group. The
peak time of the experimental group and the control group follow
different distributions, with statistical differences.

In time-domain MRCP feature analysis, the result means
that the VR induction system could induce more significant
MRCP features compared to enhancing the detectability of
motion intention.
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FIGURE 11

The power of characteristic frequency.

FIGURE 12

MRCP features. The experimental group showed obvious characteristics.

FIGURE 13

(A) The MRCP peak. (B) The quantile-quantile plot of peak time.
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TABLE 4 Classification results.

Subject Accuracy (%) Sensitivity (%) Specificity (%)

Experimental
Group

Control
Group

Experimental
Group

Control
Group

Experimental
Group

Control
Group

S1 83.50± 1.29 82.41± 2.81 82.14± 2.42 83.47± 2.96 87.50± 2.55 86.23± 5.89

S2 85.20± 2.84 79.81± 0.60 80.91± 1.64 76.92± 0.70 91.86± 5.18 84.62± 1.37

S3 83.26± 2.06 80.49± 1.52 81.45± 1.85 82.61± 2.49 90.72± 4.87 77.78± 1.24

S4 81.33± 2.14 80.17± 1.09 79.37± 1.42 81.20± 1.29 83.84± 3.07 78.85± 2.31

S5 84.88± 3.65 82.87± 2.56 85.22± 3.15 86.78± 2.64 85.56± 5.24 84.21± 5.71

S6 83.41± 1.14 81.25± 1.11 84.35± 2.49 79.49± 1.43 86.67± 2.07 85.71± 1.76

S7 84.50± 2.45 81.63± 1.67 83.04± 2.54 80.91± 1.76 86.36± 3.55 84.88± 3.14

S8 86.73± 3.35 84.91± 3.59 85.45± 3.18 83.19± 3.79 90.70± 4.21 88.17± 4.84

S9 86.34± 3.05 83.00± 2.88 84.35± 2.42 82.14± 2.55 88.89± 4.46 86.36± 4.47

S10 90.50± 6.74 84.18± 1.82 90.32± 6.13 81.82± 2.07 90.72± 8.06 88.37± 2.40

S11 85.85± 2.94 83.96± 1.68 86.96± 3.70 85.71± 2.91 85.56± 2.59 86.02± 3.78

S12 84.50± 2.52 81.94± 2.19 86.61± 3.20 80.99± 2.36 88.64± 4.65 86.32± 4.48

MEAN± STD 85.00± 2.85 82.22± 1.96 84.18± 2.84 82.10± 2.25 88.08± 4.21 84.80± 3.32

4.3 Offline classification analysis

To maintain the optimal performance of CNN classifiers, it is
necessary to adjust the parameters. The principle is to enable the
validation set to be classified with no more than 95% specificity
while maintaining at least a sensitivity of 75%. The calculation
formulas for sensitivity and specificity are as follows:

Sensitivity =
True Positive

True Positive+ False Negative
(10)

Specificity =
True Negative

True Negative+ False Positive
(11)

Table 4 shows the offline classification results of 12 subjects in the
experimental and control groups. Results for each subject were the
mean after 10-fold cross-validation. The CNN classifier maintains
a reasonable true positive detection rate while ensuring a minimal
false positive detection. The accuracy rates for the experimental and
control groups were 85 ± 2.85% and 82.22 ± 1.96%, respectively.
Similarly, the sensitivity and specificity were 84.18 ± 2.84%,
82.1 ± 2.25% and 88.08 ± 4.21%, 84.8 ± 3.32%, respectively.
The results showed that the accuracy (p = 0.0008) and specificity
(p = 0.0097) of the experimental group were significantly higher
than those of the control group, and the sensitivity (p = 0.0490)
of the experimental group was significantly higher than that of the
control group specificity. This means that the VR induction system
could enhance the detectability of intentions.

4.4 Comparison of EMG activity

To further analyze the potential impact of the VR environment
adopted by the experimental group on motor activity, muscle
activation in the experimental and control groups was compared.
Muscle activation can reflect the overall level of the movement
execution process. The rectus femoris is an important muscle
that reflects lower limb movements, therefore the EMG signal
at the rectus femoris is used to calculate muscle activation. The

FIGURE 14

Comparison of EMG activity.

EMG power average for each trial of the subjects was calculated
to obtain a global statistical representation of muscle activation
energy. Figure 14 shows a boxplot of the EMG activity from all
subjects. It can be seen that there was no significant difference in
the EMG activity of the subjects in the experimental group and the
control group. This indicates that the movement execution of the
experimental group and the control group in the experiment was
consistent.

5 Discussion

The above results show that the motion of the subject with
the VR induction could enhance the detectability of movement
intention via EEG signals compared with the general situation.

Most existing BCI control technologies have some
shortcomings because they are based on empirical evidence
or experimental results. Thus, mathematic modeling can further
our understanding of the physiological mechanisms for the
responses of EEG behavior. By simulating the lower limb
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movement intention generation model in different conditions, the
results show that the EEG signals related to movement intention
had the corresponding features in the time and frequency domain,
whatever the conditions. However, the VR induction could
increase the significance of features. This provides a basis for
feature selection during subsequent classification. The proposed
model analyzes the mechanism of the brain’s movement intention
in sections and discusses the coupling of multiple neuronal
clusters, which is of great practical significance for the study of
the brain functional network. Movement intention with the VR
induction enhanced mechanism provides a new method for the
active regulation of nerves in patients’ clinical rehabilitation.

In our experimental work, with ERD time-frequency analysis,
we found that subjects’ lower limb movement with VR induction
leads to a more prevalent ERD phenomenon, which has a better
time-frequency resolution. Significant peak drops could make it
easier to detect. Some results showed a certain early saliency
compared with the general situation, which indicates that it is easier
to be detected before the movement occurs. However, the baseline
power is not affected by different scenes. This suggests that VR
induction could be an effective way to detect motion intention
using EEG signals.

Moreover, the ERD in the β band is more significant than that
in the α band, whether with VR induction or not. Further frequency
domain power analysis demonstrates that the power of α and β

bands had both decreased, and the characteristic frequencies were
similar. Compared to the characteristic frequency power in the α

and β bands, the power drop in the β band is obviously greater than
in the α band. When using the VR induction system, the decline
was enhanced in both the α and β bands, significantly so in the α

band. This means that peak α power and peak β power could be
used as a combined feature in movement intention detection with
VR induction and peak β power was highly sensitive to detection.

Time domain MRCP feature analysis shows that the features
generated are more obvious with VR-based motion, and the
amplitude drops more. The MRCP consists of the readiness
potential (RP), motor potential, and movement-monitoring
potential (MMP). RP is considered to reflect the planning or
preparation of the movement and motor potential and MMP is
thought to reflect movement execution and control of performance.
RP feature enhancement could help to decode pre-movement EEG
signals.

The enhancement of the above features is of great significance
for clinical practical applications. The offline classification results
prove that the VR induction system could improve the detectability
of the BCI system. The analysis is based on Cz sampling points
and the region around Cz corresponds to lower limbs (Blanco-Diaz
et al., 2023). In addition, there is no significant difference between
the experimental group and the control group in muscle activation
energy during movement. This means the VR induction system
could improve the movement-related features of EEG signals and
further enhance the detectability of lower limb movement intention
based on BCI.

Furthermore, the enhancement of the VR system on the brain
is multifaceted and may contribute to brain nerve remodeling
(Namazi et al., 2021; Tan et al., 2021). The mathematical model
we have developed is based on the physiological mechanisms of
the brain information processing process. The focus of this study
is on movement intention, so the simulation study was carried

out for the EEG signals related to movement intention. During
the simulation of the model, the intervention of the VR system
was considered to have an effect on the selective attention process
during brain information processing. When the input signal was
changed, only the synaptic constants between the neuronal clusters
were changed, and there was no specific change in the structure of
the model, so we believe that the model has the ability to migrate to
other similar tasks, which will be studied in the future. This study
was conducted on EEG signals related to movement intention.
Simulation results based on the model guided the analysis of the
experimental data, and the consistent conclusions obtained from
the experimental and simulation results can illustrate the validity of
the model.

In summary, the time and frequency domain characteristics of
subjects’ EEG signals induced by VR are more obvious, the features
appear earlier, and the intention detection accuracy is higher.
Therefore, the intervention of VR induction can significantly
improve the detectability of movement intention.

6 Limitations

Virtual reality scenarios make user interaction more natural
when using rehabilitation robots, while immersion in the VR
environment requires users to wear VR glasses or VR headsets,
which may cause discomfort or visual fatigue. However, current
research suggests that the help of an immersive VR environment
can at least help increase movement intention, which in turn
promotes neurorehabilitation. It could help people with impaired
athletic ability to regain lost athletic ability to a certain extent with
less effort and in less time. Additionally, to reduce the potential
for hazards when moving while wearing a VR device, appropriate
safety protocols should be designed and implemented so that users
can be alerted to any tasks that require attention. This raises
another interesting research question that should be investigated
in future studies.

The limitation of this study is that the improved neural
mass model in our study from a macroscopic point of view
described the EEG generation mechanism of movement. Although
the features of the simulated EEG signals had the same result as
the experiment result, it still lacks some physiological validation.
This should be refined in subsequent studies. In addition, EEG-
EMG coherence analysis can respond to a certain extent to signal
changes, which is a worthy topic for future research and contributes
to the study of movement intention recognition methods based
on the fusion of EEG and EMG signals. Furthermore, the
experiment did not use subjects with lower limb dyskinesia,
which will be resolved in future studies, but this study has been
able to prove the effectiveness of VR induction in movement
intention enhancement. The generation of active movement
intention is the premise of active rehabilitation, and it is of great
significance to improve the detectability of EEG related to the
active motion intention of patients. To further improve the results,
extensive research should be carried out on the details of the VR
paradigm in the future.
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7 Conclusion

In order to solve the problems of weak movement intention
and low recognition accuracy in the rehabilitation process of
people with lower limb motor dysfunction, this paper studied
whether VR induction could enhance the detectability of lower
limb active movement intention. The active movement intention
generation process of individuals with lower limb dysfunction was
analyzed, and an EEG generation theoretical model was established.
A comparative experiment was conducted on 12 healthy subjects.
Through simulation research and experimental results analysis of
EEG signals, the multiple features were enhanced when subjects
used VR induction so that VR induction could work as a tool
to enhance the distinguishability of lower limb active movement
intentions from EEG signals. Furthermore, offline classification
proves that VR induction could enhance the detectability of
movement intention. However, further work is necessary to
quantify the effect of VR scenario stimuli on neural signals.
Moreover, advanced signal processing and learning techniques
could be employed to further enhance the results. In general, the
current results show promising insights into VR scenarios and their
effect on movement intention, preparation, and execution.
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