
TYPE Original Research

PUBLISHED 15 December 2023

DOI 10.3389/fnins.2023.1303242

OPEN ACCESS

EDITED BY

Angarai Ganesan Ramakrishnan,

Indian Institute of Technology Hyderabad, India

REVIEWED BY

Hao Jia,

University of Vic–Central University of

Catalonia, Spain

Jayavardhana Gubbi,

TCS Research, India

*CORRESPONDENCE

Ming Chu

chuming_bupt@bupt.edu.cn

RECEIVED 27 September 2023

ACCEPTED 28 November 2023

PUBLISHED 15 December 2023

CITATION

Bi J, Chu M, Wang G and Gao X (2023) TSPNet:

a time-spatial parallel network for classification

of EEG-based multiclass upper limb motor

imagery BCI. Front. Neurosci. 17:1303242.

doi: 10.3389/fnins.2023.1303242

COPYRIGHT

© 2023 Bi, Chu, Wang and Gao. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

TSPNet: a time-spatial parallel
network for classification of
EEG-based multiclass upper limb
motor imagery BCI

Jingfeng Bi1, Ming Chu1*, Gang Wang1 and Xiaoshan Gao2

1School of Automation, Beijing University of Posts and Telecommunications, Beijing, China, 2School of

Automation Science and Electrical Engineering, Beihang University, Beijing, China

The classification of electroencephalogram (EEG) motor imagery signals has

emerged as a prominent research focus within the realm of brain-computer

interfaces. Nevertheless, the conventional, limited categories (typically just two

or four) o�ered by brain-computer interfaces fail to provide an extensive array of

control modes. To address this challenge, we propose the Time-Spatial Parallel

Network (TSPNet) for recognizing six distinct categories of upper limb motor

imagery. Within TSPNet, temporal and spatial features are extracted separately,

with the time dimension feature extractor and spatial dimension feature extractor

performing their respective functions. Following this, the Time-Spatial Parallel

Feature Extractor is employed to decouple the connection between temporal and

spatial features, thus diminishing feature redundancy. The Time-Spatial Parallel

Feature Extractor deploys a gating mechanism to optimize weight distribution and

parallelize time-spatial features. Additionally, we introduce a feature visualization

algorithm based on signal occlusion frequency to facilitate a qualitative analysis

of TSPNet. In a six-category scenario, TSPNet achieved an accuracy of 49.1% ±

0.043 on our dataset and 49.7% ± 0.029 on a public dataset. Experimental results

conclusively establish that TSPNet outperforms other deep learning methods in

classifying data from these two datasets. Moreover, visualization results vividly

illustrate that our proposed framework can generate distinctive classifier patterns

for multiple categories of upper limb motor imagery, discerned through signals of

varying frequencies. These findings underscore that, in comparison to other deep

learning methods, TSPNet excels in intention recognition, which bears immense

significance for non-invasive brain-computer interfaces.

KEYWORDS

brain-computer interface, deep learning, electroencephalogram, multi classification,

motor imagery

1 Introduction

Brain-computer interface (BCI) plays a pivotal role in facilitating communication and

control between the human brain and external devices (Ang and Guan, 2015; Chaudhary

et al., 2016). Among various techniques, electroencephalography (EEG) offers a notable

advantage in terms of its superior time resolution when compared to similar methods

like functional magnetic resonance imaging and near-infrared spectroscopy. The enhanced

temporal resolution of EEG enables swift communication between users and computers,

which, in turn, contributes significantly to the development of rehabilitation systems for

patients with tetraplegia and aids in supporting the daily activities of healthy individuals (Suk

and Lee, 2013; Leeb et al., 2015; Ang and Guan, 2017). A multitude of algorithms have been
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developed for EEG pattern classification in diverse BCI

applications (Iacoviello et al., 2016; Foong et al., 2020; Zhang

et al., 2020; Wang et al., 2021, 2023; Chen et al., 2022; She et al.,

2023). In their research, Wang et al. (2021) redefined the common

spatial pattern (CSP) as a constrained minimization problem,

establishing equivalence between the reformulated CSP and the

original CSP. Additionally, Zhang et al. (2020) proposed a deep

learning framework that incorporates convolutional and recurrent

neural networks. EEG-based BCI applications commonly rely

on four main types of neurophysiological patterns, namely,

steady-state visual evoked potential (SSVEP) (Autthasan et al.,

2020; Kwak and Lee, 2020; Rivera-Flor et al., 2022; Zhang et al.,

2022; Chailloux Peguero et al., 2023; Yan et al., 2023), event-related

potential (ERP) (Cecotti and Graeser, 2011; Zou et al., 2016; Li

et al., 2020), movement-related cortical potentials (MRCPs) (Xu

et al., 2014; Jeong et al., 2020), and motor imagery (MI) (Siuly

and Li, 2012; Higashi and Tanaka, 2013; Edelman et al., 2016; He

et al., 2016; Chaisaen et al., 2020; Wu et al., 2020; Gaur et al., 2021;

Ma et al., 2022; Fan et al., 2023; Zhang et al., 2023). Among these

EEG applications, MI has garnered increasing attention within

BCI systems due to its ability to elicit oscillatory neural activity

in specific frequency bands over the motor cortex region without

external stimuli.

In previous research on MI, Duan et al. (2021) proposed

a binary standard task-related component analysis method

(bSTRCA). In bSTRCA, correlation coefficients were extracted

as features, and a linear discriminant analysis classifier was

then used to classify the features. Filter bank selection can

further enhance the performance of bSTRCA, leading to the

introduction of the binary filter bank task-related component

analysis (bFBTRCA) method (Jia et al., 2022). Additionally, they

adapted the structure of the bSTRCA method for multi-class

standard task-related component analysis (mSTRCA). Moreover,

the multi-class filter bank task-related component analysis

(mFBTRCA) method (Jia et al., 2023) was developed by

integrating filter bank selection into mSTRCA. This method is

applied to classify multi-class limb movements by segmenting

MRCP signals into low-frequency filter banks. It optimizes multi-

channel signals within these banks using spatial filters to extract

correlation features, which are then combined and classified

using a support vector machine. Jin et al. (2020) introduced a

sparse Bayesian ELM-based algorithm to enhance the classification

performance of MI. Jin et al. (2019) proposed a correlation-

based channel selection (CCS) method to identify channels

that contain more correlated information. Zhang et al. (2019)

introduced a novel algorithm called temporally constrained sparse

group spatial pattern (TSGSP) for simultaneously optimizing

filter bands and time windows within CSP to further improve

the classification accuracy of MI EEG. Jiao et al. (2019)

presented a novel sparse group representation model (SGRM)

to enhance the efficiency of MI-based BCI by leveraging

intrasubject information. Barachant et al. (2012) introduced a

new classification framework that incorporates the concept of

Riemannian geometry into the manifold of covariance matrices.

Aghaei et al. (2016) proposed separable common spatial-spectral

patterns (SCSSP). Most of the previous MI-based research has

produced excellent results, but the current BCI system based on

MI can only effectively distinguish between left and right motor

execution/imagery.

Deep learning (DL), as a subcategory of machine learning,

currently represents the state-of-the-art approach in computer

vision and natural language processing applications (Sakhavi

et al., 2018). Beyond its application in computer vision, DL has

also found utility in various domains, including brain-computer

interfaces (BCI). Recent findings by Schirrmeister et al. (2017)

have demonstrated that advancements in machine learning, such as

batch normalization and exponential linear units, when combined

with a carefully curated training strategy, have significantly

enhanced the performance of deep convolutional neural networks

(DCNNs) in decoding, achieving results on par with the widely

adopted filter bank common spatial patterns (FBCSP) algorithm. In

a novel development, Vuckovic and Sepulveda (2012) introduced a

two-modality, four-category BCI classifier based on motor imagery

involving movements of the left and right wrists. Meanwhile,

Hajinoroozi et al. (2016) put forward an innovative channel-wise

convolutional neural network (CCNN) architecture. Additionally,

they explored CCNN-R, a variant of CCNN employing restricted

Boltzmann machines to replace conventional convolutional filters.

Furthermore, Tabar and Halici (2017) conducted a study on the

classification of EEG motor imagery signals using convolutional

neural networks (CNNs) and stacked autoencoders (SAEs). They

proposed a new deep network by amalgamating CNNs and SAEs.

Despite notable advancements in recent years, limitations persist

in motor imagery-based BCI research. The primary focus has been

on binary classification tasks, such as distinguishing between left-

hand and right-hand motor imagery tasks or right-hand and right-

foot motor imagery tasks, among others. Related research has, at

most, extended to four-category classification problems, such as

distinguishing between left and right hand, foot, and tongue motor

imagery tasks. In reality, human upper limbmovements encompass

six distinct and typical categories, including elbow flexion, elbow

extension, forearm supination, forearm pronation, hand open, and

hand close. These six classes encompass the natural and continuous

spectrum of upper limb movements. However, existing EEG-based

motor imagery classifications have been limited to just two or

four categories. This limitation starkly contrasts with the way

individuals naturally plan to execute movements, hindering the full

replication and support of the richness and diversity of human

upper limb actions.

In this paper, we introduce a Time-Spatial Parallel Network

(TSPNet) based on deep learning for the classification of six

categories of upper limb movements. The TSPNet comprises

three critical components: the Time Dimension Feature Extractor

(TDFE) and the Spatial Dimension Feature Extractor (SDFE)

for extracting temporal and spatial features, and the Time-

Spatial Parallel Feature Extractor (TSPFE) for parallelizing time-

spatial features. Specifically, the TDFE module employs residual

convolutional blocks to extract temporal features, while the

SDFE module utilizes residual convolutional blocks to extract

spatial features. The TSPFE module subsequently eliminates the

correlation between temporal and spatial features to reduce feature

redundancy. Furthermore, the TSPFE module utilizes a gating

mechanism to optimize weight distribution and parallelize time-

spatial features. Diverging from existing networks that employ

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1303242
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bi et al. 10.3389/fnins.2023.1303242

binary classification, our deep learning model in this study

adopts multi-class classification. Additionally, we propose a feature

visualization algorithm based on signal occlusion frequency to

qualitatively analyze the proposed TSPNet. In summary, the

primary contributions of our work are as follows:

1. A time-spatial parallel network (TSPNet) is introduced for the

recognition of six classes of upper limb motor imagery.

2. Within TSPNet, a critical module called TSPFE is introduced to

parallelize time-spatial features.

3. We provide a publicly accessible dataset containing EEG data

from ten individuals, comprising a total of 1,800 samples

of upper limb motor imagery data (hand open, hand close,

forearm supination, forearm pronation, elbow flexion, and

elbow extension) categorized into six classes.

The remainder of this article is organized as follows. In Section

2, we offer a comprehensive exploration of the architecture of our

proposed TSPNet model, along with a detailed description of the

feature visualization algorithm based on signal occlusion frequency

that we have put forth. Moving on to Section 3, we present

the datasets and implementation details, accompanied by ablation

studies and a thorough comparison of experimental results.

Moreover, we conduct experiments related to feature visualization

in this section. Finally, Section 4 provides the conclusion to

this article.

2 Methods

In this section, we introduce the Time-Spatial Parallel Network

(TSPNet). We provide a detailed description of its key components,

namely the Time Dimension Feature Extractor (TDFE), Spatial

Dimension Feature Extractor (SDFE), and Time-Spatial Parallel

Feature Extractor (TSPFE). Furthermore, we present an algorithm

for feature visualization based on occluded input signal frequency,

which is used for qualitative analysis of TSPNet. Our code will be

publicly available on “https://github.com/Special4519/TSPNet.”

2.1 Time-spatial parallel network
framework

As depicted in Figure 1, the proposed TSPNet comprises three

main components: the Time Dimension Feature Extractor (TDFE),

the Spatial Dimension Feature Extractor (SDFE), and the Time-

Spatial Parallel Feature Extractor (TSPFE). Specifically, the TDFE

employs a convolutional layer with kernel sizes of 1 × 7 to detect

time dimension features from the input EEG signals. The structure

of the input EEG is represented as [16, 1, 500, 1], where 16 denotes

the number of signal channels, and 1,500 represents the sampling

time points (the product of sampling frequency and time). Next,

the TDFE uses residual convolutional blocks with kernel sizes of 1

× 1 and 1 × 3 in a parallel structure to extract shallow and deep

time features within the time dimension. The resulting output is

then fed into the SDFE. Let IEEG represent the original input EEG

signals; this stage can be formulated as:

FTD = HTDFE(IEEG) = HHT(HMT(HLT(IEEG))) (1)

where HTDFE(·) represents the time dimension feature extraction

procedure, which is divided into the shallow time feature extraction

stepHLT(·), the middle time feature extraction stepHMT(·), and the

deep time feature extraction step HHT(·). FTD is the output time

dimension feature vector from the TDFE module.

The SDFE employs residual convolutional blocks with kernel

sizes of 1 × 1, 3 × 1, and 5 × 1 in a parallel structure to extract

spatial features. The input to this stage is FTD, and the output is

then fed into the TSPFE. This stage can be formulated as:

FSD = HSDFE(FTD) (2)

where HSDFE(·) denotes the spatial dimension feature extraction

procedure. FSD is the output spatial dimension feature vector

from the SDFE module. The feature FSD extracted by the SDFE

module is used as the input for the TSPFE module. First, the

TSPFE removes the connection between time features and spatial

features to eliminate redundancy. Then, the TSPFE employs a

gating mechanism to achieve a more effective weight distribution

and parallelize time-spatial features. Finally, the output FTSP is

pooled by global average pooling (GAP) and connected to the fully

connected layer and the softmax layer.

We adopt the generic cross-entropy loss function to train the

proposed TSPNet model. defined as follows:

loss = −
1

N

N
∑

n=1

K
∑

i=1

witni ln yni (3)

where N is the number of samples, K is the number of categories,

wi represents the weight for category i, tni indicates whether the nth

sample belongs to the ith category, and yni is the output for sample

n and category i, which is determined by the softmax function. yni
also represents the probability that the network associates the nth

input with category i.

2.1.1 Time dimension feature extractor
The EEG signal is a type of non-stationary and nonlinear signal

with strong randomness (Garcia-Martinez et al., 2021). Traditional

signal processing methods are based on the theoretical analysis of

linear systems, which inevitably results in the loss of a significant

amount of information carried by the original signal. In order to

extract complex features in the time dimension, we propose a Time

Dimension Feature Extractor (TDFE) module that only convolves

in the time dimension, as shown in Figure 2A.We also compare the

TDFE with a non-residual block TDFE-NR, as shown in Figure 2B.

The comparison results are presented in Section III. In the TDFE,

we utilize a convolutional layer with kernel sizes of 1×7 to increase

the receptive field of the network. This allows the TDFE to cover a

larger area with the convolutional filters. Subsequently, the shallow

time feature extraction step HLT(·) can be defined as

xLT = σ [Ŵ(xin,w
64
1×1)]+ σ [Ŵ(xin,w

64
1×3)] (4)

where, xLT represents the shallow time feature vector, xin is the

input vector for the shallow time feature extraction step, σ denotes

the ReLU activation function, Ŵ represents the residual mapping

to be learned, and w64
1×1 and w64

1×3 are the weights of 1 × 1 and
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FIGURE 1

Architecture of TSPNet: mainly comprising three components—TDFE module, SDFE module, and TSPFE module.

FIGURE 2

Exploring di�erent TDFE forms: a comparative study of two

structures in classification accuracy, demonstrating the superiority

of the residual block TDFE, with BN representing batch

normalization layer. (A) Structure of TDFE. (B) Structure of TDFE-NR.

1 × 3 convolutional kernels with 64 channels, respectively. The

shallow time feature extraction step uses residual convolutional

blocks with kernel sizes of 1×1 and 1×3 in parallel to fuse different-

level features of the input xin into the shallow time feature vector.

Similarly, the middle time feature extraction step HMT(·) and the

deep time feature extraction step HHT(·) can be defined as

xMT = σ [Ŵ(xLT,w
128
1×1)]+ σ [Ŵ(xLT,w

128
1×3)] (5)

xHT = σ [Ŵ(xMT,w
256
1×1)]+ σ [Ŵ(xMT,w

256
1×3)] (6)

where xMT represents the middle time feature vector, xHT

represents the deep time feature vector, and it is also the time

dimension output feature vector of the TDFE module.

2.1.2 Spatial dimension feature extractor
Regarding spatial dimension feature extraction, we introduce

two spatial feature extractors. The Spatial Dimension Feature

Extractor (SDFE) can be seen in Figure 3A and utilizes a max-

pooling layer to reduce the size of the feature map. On the other

hand, SDFE-NP, shown in Figure 3B, omits the max-pooling layer

but sets the convolution stride in the spatial dimension to 2. In

terms of convolutional structure, both SDFE and SDFE-NP employ

three groups of parallel structures with convolutional kernels of

different sizes to extract spatial dimension features at various levels.

This stage can be expressed as follows:

FSD =
∑

β=1,3,5

σ [Ŵ(xHT,w
512
β×1)] (7)

where, FSD represents the spatial dimension output feature vector,

β is the number of residual paths, σ denotes the ReLU activation

function, Ŵ signifies the residual mapping to be learned, and w512
1×1,

w512
3×1, and w512

5×1 are the weights of 1 × 1, 3 × 1, and 5 × 1

convolutional kernels, each with 512 channels.

2.1.3 Time-spatial parallel feature extractor
To extract parallel features from both the time and spatial

dimensions, we propose a Time-Spatial Parallel Feature Extractor
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FIGURE 3

Exploring di�erent SDFE forms: a comparative study of two structures in classification accuracy, demonstrating the superiority of SDFE, with BN

representing batch normalization layer. (A) Structure of SDFE. (B) Structure of SDFE-NP.

FIGURE 4

Structure of TSPFE.

(TSPFE), as illustrated in Figure 4. In the TSPFE, each channel’s

input data is processed separately and represented as X. First, we

calculate the affine transformation matrix Q ∈ RW×W through

X ∈ RH×Wand transpose matrix X⊤:

Q = X⊤MX (8)

where, M ∈ R
H×H represents a weight matrix. The elements of

Q reflect the similarity between the time dimension and spatial

dimension features. AsM is a square matrix, its diagonalization can

be expressed as:

M = P−1DP (9)

where P is an invertible matrix, and D is a diagonal matrix.

Subsequently, Eq. (8) can be rewritten as:

Q = X⊤P−1DPX (10)

LetM be a symmetric matrix; thenM must be both orthogonal

and diagonal. The orthogonal matrix P projects the feature into

an orthogonal space, eliminating the connection between the time

feature and the spatial feature to prevent redundancy. This stage

can be formulated as:

Q = X⊤P⊤DPX = (PX)⊤DPX (11)

next, we normalize the columns and rows of the Q matrix and

multiply it with the original X matrix:

Qc = softmax(Q) (12)

Qr = softmax(Q⊤) (13)

Fc = X ⊗ Qc (14)

Fr = X ⊗ Qr (15)

where ⊗ denotes matrix multiplication by channel. Fc and

Fr represent time features and spatial features, respectively.

Considering that different channels and time points have varying

importance, we introduce a gating mechanism to achieve better

weight distribution:

Fc = Fc ∗ fg(Fc) = Fc ∗ σ (wf Fc + bf ) (16)

Fr = Fr ∗ fg(Fr) = Fr ∗ σ (wf Fr + bf ) (17)

where ∗ denotes element-wise multiplication, σ denotes the ReLU

activation function, wf represents the convolution weights, and bf
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is the convolution bias. Finally, we combine Fc and Fr to obtain

FTSP, which is the time-spatial parallel feature:

FTSP = [Fc, Fr] (18)

The final extracted time-spatial parallel feature is pooled using

global average pooling (GAP) and connected to the fully connected

layer and the softmax layer.

2.2 Feature visualization algorithm

Input: Test datasets T = {X1, . . . ,XM}, real

label of test datasets Y = {y1, . . . yM},

well-trained TSPNet classifier f (X,ω) with

parameters ω, feature extraction function φ(Xj,ωφ )

with parameters ωφ.

Output: Scalp topographic maps for different

categories and different frequencies.

Step 1: Use the well-trained TSPNet classifier

f (X,ω) with parameters ω to predict the label Yp

for the test datasets T.

Yp = f (T,ω)

Step 2: Compare the predicted label Yp with the

real label Y to get the correctly recognized test

datasets Tc.

Step 3: Filter the correctly recognized test

datasets Tc using the filters with frequency ranges

(δ : 0.5− 3Hz, θ : 3− 7Hz,α : 7− 13Hz,β : 13− 200Hz) to

obtain the filtered datasets Tδ, Tθ, Tα, and Tβ

using Eq. (20).

Step 4: Extract the activated features for each

filtered datasets Tδ, Tθ, Tα, and Tβ using the

feature extraction function φ(Xj,ωφ ) with

parameters ωφ to obtain the feature maps Fδ, Fθ, Fα,

and Fβ using Eq. (21).

Step 5: Average the feature maps Fδ, Fθ, Fα,

and Fβ according to different categories.

Step 6: Draw scalp topographic maps for

different categories and different frequencies

using the averaged feature maps from Step 5.

Algorithm 1. Feature visualization algorithm based on signal occlusion

frequency.

To qualitatively analyze TSPNet, we propose a feature

visualization algorithm based on signal occlusion frequency, as

illustrated in Algorithm 1. The test dataset is denoted as T =

{X1, . . . ,XM}. The real labels of the test dataset are denoted as

Y = {y1, . . . , yM}, where M represents the total number of test

trials. f (X,ω) is a well-trained TSPNet classifier, whereω represents

the classifier’s parameters. First, the test dataset T is input into the

classifier to obtain the predicted labels Yp.

Yp = f (T,ω) (19)

We then compare the predicted labels Yp with the real labels Y

to identify the correctly recognized test dataset, denoted asTc. Next,

Tc is filtered using filters with frequency ranges (δ : 0.5−3Hz, θ : 3−

7Hz,α : 7− 13Hz,β : 13− 200Hz), expressed as



















Tδ = filter(TC , δ)

Tθ = filter(TC , θ)

Tα = filter(TC ,α)

Tβ = filter(TC ,β)

(20)

where, Tδ , Tθ , Tα , and Tβ represent the correctly recognized

test datasets in different frequency ranges. These test datasets in

different frequency ranges are then input into the feature extraction

function φ(Xj,ωφ) of TSPNet to obtain the activated features in

different frequency ranges, expressed as



















Fδ = φ(Tδ ,ωφ)

Fθ = φ(Tθ ,ωφ)

Fα = φ(Tα ,ωφ)

Fβ = φ(Tβ ,ωφ)

(21)

The activated features in different frequency ranges are

then averaged based on different categories. Finally, scalp

topographic maps are generated for different categories and

different frequencies.

3 Experiments and results

In this section, we begin by providing a brief overview of

the datasets and our experimental setup. Following this, we

conduct ablation studies. Subsequently, we compare TSPNet with

various deep learning methods [MSATNet (Hu et al., 2023),

EEGSym (Perez-Velasco et al., 2022), DeepConvNet (Schirrmeister

et al., 2017), EEGNet-8,2 (Lawhern et al., 2018)] using two datasets.

Finally, we perform experiments related to feature visualization.

3.1 Datasets

Dataset I was collected through our experiments. We recruited

10 healthy participants aged between 24 and 38 years, with a

mean age of 30 years (standard deviation 5 years). Five of the

participants are male, and all are right-handed. The study was

conducted in accordance with the Declaration of Helsinki, and

informed consent was obtained from all subjects. This study does

not require ethical approval because of its non-invasive nature,

utilization of anonymous data, and adherence to the Helsinki

Declaration. Subjects had normal or corrected-to-normal vision

and no history of neurological or psychiatric disorders. They

performed six categories of motor imagery tasks involving elbow

flexion, elbow extension, forearm supination, forearm pronation,

hand open, and hand close, all related to the right upper limb. EEG

signals were recorded using 16 active Ag/AgCl electrodes with the

OpenBCI CytonDaisy 16-channel Biosensing Board. We applied

an 8th order Chebyshev bandpass filter from 0.01 to 200 Hz and

used a notch filter at 50 Hz to suppress power line interference. The

sampling frequency was set to 500 Hz, with the reference electrode
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TABLE 1 ADAM optimizer parameters.

Parameters Value Parameters Value

Initial learn rate 0.001 Learn rate drop factor 0.1

Gradient threshold 1 Learn rate drop period 500

Max epochs 1,000 Squared gradient decay factor 0.999

Mini batch size 64 Gradient decay factor 0.9

placed on the left earlobe and the ground on the right earlobe. EEG

electrodes were positioned following the international standard 10–

20 electrode system. Dataset I comprises 18,000 epochs (300 trials

× six categories × 10 subjects). This dataset has been uploaded to

IEEE DataPort and can be accessed at “https://dx.doi.org/10.21227/

8qw6-f578.”

Dataset II is provided by Ofner et al. (2017) and is available

in the BNCI Horizon 2020 database at “http://bnci-horizon-

2020.eu/database/data-sets.” It includes electroencephalography

(EEG) data from 15 healthy subjects aged between 22 and

40 years, with a mean age of 27 years (standard deviation

5 years). EEG signals were measured using 61 channels

covering frontal, central, parietal, and temporal areas,

employing active electrodes and four 16-channel amplifiers

from g.tec medical engineering GmbH, Austria. In total,

Dataset II contains 5,400 epochs (60 trials × six categories ×

15 subjects).

3.2 Implementation details

In Dataset I and Dataset II, we train the data for each

subject separately. In each training iteration, the data is divided

into a training dataset and a testing dataset with a partition

ratio of 70%–30%. The dataset is randomly shuffled, resulting

in a total of 10 partitions. The average classification accuracy

of these 10 experiments serves as the evaluation criterion.

We employ the ADAM optimizer (Kingma and Ba, 2015)

for model training, and the optimizer parameters are detailed

in Table 1. The development of TSPNet is carried out using

MATLAB R2020b (The MathWorks, Inc., Natick, MA, USA),

and training is performed on a high-performance GPU (GeForce

RTX 5000) integrated into an Intel (R) Core (TM) i7-7000K

CPU processor with 64 GB RAM. For comparison, we evaluate

TSPNet alongside other end-to-end deep learning methods,

including MSATNet (Hu et al., 2023), EEGSym (Perez-Velasco

et al., 2022), DeepConvNet (Schirrmeister et al., 2017), and

EEGNet-8,2 (Lawhern et al., 2018). These methods are based on

convolutional neural networks for EEG signal classification. To

adapt these models to our datasets, we modify the classification

number of the output layer to six, as required by the two

datasets used in this study. Originally designed for EEG signals

of 128 and 250 Hz, we down-sample the EEG signals in

Dataset I and Dataset II to match their respective architectures.

Training these models follows the same procedure as that of the

TSPNet model.

3.3 Ablation studies on the Dataset I

In this section, we evaluate the impact of the proposed TDFE,

SDFE, and TSPFE modules on the performance of TSPNet.

Additionally, we validate the influence of different structures

within the TDFE (Figure 2B) and SDFE (Figure 3B) modules on

TSPNet. The experiments were conducted on Dataset I. Consistent

with the details outlined in the implementation, during each

ablation experiment, the training set and test set maintained a

70%–30% ratio, ensuring equal and balanced numbers for all

classes to guarantee an equal chance level for each class. The

experimental results are presented in Table 2, and a detailed analysis

is provided below.

1) Ablation studies for TDFE: To demonstrate the effectiveness

of the TDFE module, we remove the TDFE module and refer to

it as TSPNet-w/o-TDFE. As shown in Table 2, when compared

to TSPNet-w/o-TDFE, TSPNet exhibits a 22.3% increase in

mean classification accuracy, indicating that the TDFE module,

convolved in the time dimension, is effective for TSPNet.

Furthermore, we replace the TDFE module with the non-residual

block TDFE (referred to as TSPNet-TDFE-NR) to demonstrate the

effectiveness of the residual block structure in TDFE. TSPNet shows

improvement in all subjects, with a notable 20.5% boost in subject-3

(58.1% vs. 37.6%).

2) Ablation studies for SDFE: First, we validate the effectiveness

of the SDFE module. We remove the SDFE module and refer to it

as TSPNet-w/o-SDFE. Our TSPNet shows an overall improvement

of 22.5% (49.1% vs. 26.6%), clearly demonstrating that the SDFE

module, convolved in the spatial dimension, significantly enhances

TSPNet’s performance. Next, we replace the SDFE module with the

non-maxpooling block SDFE (referred to as TSPNet-SDFE-NP) to

illustrate the impact of the maxpooling structure in SDFE. When

comparing TSPNet with TSPNet-SDFE-NP, TSPNet achieves an

overall increment of 15.2% (49.1% vs. 33.9%).

3) Ablation studies for TSPFE: To further demonstrate the

effectiveness of the TSPFE module, we remove the TSPFE module

and denote it as TSPNet-w/o-TSPFE. Compared to TSPNet-w/o-

TSPFE, TSPNet’s mean classification accuracy increases by 24.3%

(49.1% vs. 24.8%), underscoring the critical role of the TSPFE

module in enhancing TSPNet.

3.4 Comparisons with the deep learning
reference methods

1) Quantitative analysis on the Dataset I: TSPNet is compared

with deep learning methods [MSATNet (Hu et al., 2023),

EEGSym (Perez-Velasco et al., 2022), DeepConvNet (Schirrmeister

et al., 2017), EEGNet-8,2 (Lawhern et al., 2018)]. The experimental

results shown in Table 3 and Figure 5 demonstrate that TSPNet

achieves the best mean accuracy on Dataset I. Compared

to EEGNet-8,2, our TSPNet achieves approximately a 14.7%

improvement in mean classification accuracy (49.1% vs. 34.4%).

Notably, for subject-9, TSPNet outperforms EEGNet-8,2 by

∼22.2% (54.1% vs. 31.9%). Because of the equal and balanced

distribution of each class in the training data during the training

process, the chance level for all six classification experiments in this
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TABLE 2 Performance (mean ± SD) (in %) of ablation studies for TDFE, SDFE, and TSPFE on Dataset I.

Subjects Methods

TSPNet-w/o-
TDFE

TSPNet-
TDFE-NR

TSPNet-w/o-
SDFE

TSPNet-
SDFE-NP

TSPNet-w/o-
TSPFE

TSPNet

S1 25.8± 0.18 33.8± 0.17 24.6± 0.09 32.4± 0.13 22.3± 0.17 46.6± 0.11

S2 26.1± 0.16 31.2± 0.12 24.3± 0.11 33.6± 0.21 21.8± 0.08 42.4± 0.05

S3 28.9± 0.11 37.6± 0.14 27.2± 0.17 36.8± 0.11 25.4± 0.04 58.1± 0.03

S4 25.3± 0.07 32.5± 0.07 28.5± 0.12 31.8± 0.14 24.1± 0.07 51.5± 0.09

S5 23.5± 0.12 31.5± 0.08 25.9± 0.07 32.3± 0.08 23.4± 0.15 45.9± 0.07

S6 27.1± 0.10 30.3± 0.04 28.3± 0.08 35.4± 0.06 24.2± 0.03 48.6± 0.05

S7 25.6± 0.16 35.9± 0.18 24.1± 0.14 36.7± 0.07 25.8± 0.12 49.2± 0.13

S8 28.1± 0.19 33.5± 0.10 26.4± 0.13 31.4± 0.14 24.3± 0.08 48.2± 0.08

S9 32.5± 0.21 36.8± 0.07 31.3± 0.08 37.2± 0.11 31.8± 0.17 54.1± 0.05

S10 25.1± 0.07 30.8± 0.16 25.4± 0.20 31.4± 0.08 24.9± 0.14 46.4± 0.04

Mean 26.8± 0.024 33.4± 0.025 26.6± 0.022 33.9± 0.023 24.8± 0.026 49.1± 0.043

Bold values represent the best results.

TABLE 3 Performance (mean ± SD (in %) comparison with deep learning methods on Dataset I.

Subjects Methods

MSATNet EEGSym DeepConvNet EEGNet-8,2 TSPNet (ours)

S1 35.5± 0.21 38.6± 0.07 36.6± 0.04 36.9± 0.15 46.6± 0.11

S2 39.4± 0.15 39.2± 0.15 37.7± 0.07 33.4± 0.07 42.4± 0.05

S3 41.1± 0.16 44.5± 0.08 38.6± 0.21 38.4± 0.08 58.1± 0.03

S4 36.4± 0.12 31.5± 0.23 33.8± 0.11 30.4± 0.13 51.5± 0.09

S5 39.3± 0.07 33.8± 0.05 32.1± 0.06 30.6± 0.05 45.9± 0.07

S6 34.2± 0.13 39.3± 0.12 30.5± 0.09 31.8± 0.11 48.6± 0.05

S7 31.7± 0.22 33.8± 0.11 36.1± 0.12 36.8± 0.05 49.2± 0.13

S8 36.8± 0.11 39.3± 0.08 31.6± 0.18 38.2± 0.09 48.2± 0.08

S9 33.2± 0.07 33.6± 0.06 32.5± 0.07 31.9± 0.06 54.1± 0.05

S10 37.4± 0.05 30.4± 0.14 36.5± 0.04 35.6± 0.17 46.4± 0.04

Mean 36.5± 0.028 36.4± 0.042 34.6± 0.027 34.4± 0.030 49.1± 0.043

p-value 4.46e−5 4.53e−5 1.00e−5 6.79e−6 –

Bold values represent the best results.

study is 16.67%. To assess whether there is a significant difference

in accuracy between TSPNet and other comparison methods, two-

sample t-test was conducted in this study. The null hypothesis

assumes that the accuracy of TSPNet and other comparison

methods follows a normal distribution with equal means and

unknown but identical variances. The alternative hypothesis is

that there’s a notable difference in accuracy between TSPNet and

the other comparative methods. If the p-value is less than the

significance level of 0.05, then the null hypothesis is rejected.

The results, as indicated by the p-value in Table 3, signify a

significant difference in accuracy between TSPNet and the other

comparison methods.

2) Quantitative analysis on the Dataset II: We evaluate the

proposed TSPNet onDataset II to demonstrate its advantages. First,

we use all 61-channel EEG signals in Dataset II for experiments.

The classification accuracy experimental results of 15 subjects are

listed in Table 4. It can be seen from Table 4 and Figure 6 that

our TSPNet achieves an average classification accuracy of 49.7

± 0.029, which is superior to all other comparison methods.

Compared with Ofner et al. (2017), the performance of TSPNet

has improved, with a relative improvement of 24.5% (49.7% vs.

25.2%). Compared with EEGNet-8,2, the performance of TSPNet

has improved, with a relative improvement of 17.5% (49.7% vs.

32.2%). Furthermore, to compare the influence of EEG signals with

different channel numbers on classification results, we select 16-

channel EEG signals corresponding to Dataset I from Dataset II

for classification experiments. As shown in Table 5 and Figure 7,

TSPNet also achieves the best mean accuracy. As can be seen from

Tables 4, 5, the mean classification accuracy of 61-channel data

is 2.2% (49.7% vs. 47.5%) higher than that of 16-channel data.

One possible reason is that more channels contain more spatial

information. The p-values of two-sample t-test for TSPNet and
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other comparison methods, as shown in Tables 4, 5, indicate a

significant difference in classification accuracy between TSPNet

and the other comparison methods on Dataset II.

3.5 Visualization experiments

3.5.1 Visualization of EEG source estimation
The TSPNet, as proposed in this article, is a brain-computer

interface (BCI) model based on motor imagery (MI). The

underlying principle of the MI-BCI system is that when a

person envisions a movement, specific regions of their brain

FIGURE 5

Box plot of classification accuracy for Dataset I.

become activated, leading to alterations in their EEG signals.

LORETA (Pascual-Marqui et al., 1994) is employed to visualize the

source estimation of EEG data for the two datasets utilized in this

article. This source estimation reveals the contributions of multiple

sources to scalp EEG signals within a single cortical map. Figure 8

displays the EEG signal source estimation for the same action

in both datasets, with a time interval of 250 ms spanning from

−0.5 to 1 s. Figure 8A corresponds to Dataset I, while Figure 8B

corresponds to Dataset II. This visualization is independent of

TSPNet. The routines from the toolbox (Tadel et al., 2011) were

employed to compute the inverse solutions for this visualization.

The toolbox is open-source and available for free download

FIGURE 6

Box plot of classification accuracy for data from 61 channels in

Dataset II.

TABLE 4 Performance (mean ± SD) (in %) comparison with deep learning methods on Dataset II using 61 channels.

Subjects Methods

MSATNet EEGSym Ofner et al. DeepConvNet EEGNet-8,2 TSPNet (Ours)

S1 40.4± 0.03 46.1± 0.04 29 37.2± 0.03 32.1± 0.05 49.7± 0.03

S2 35.4± 0.04 39.4± 0.07 23 38.5± 0.07 35.1± 0.13 48.6± 0.13

S3 45.7± 0.12 47.2± 0.03 23 36.1± 0.11 37.8± 0.12 53.2± 0.05

S4 38.7± 0.07 41.7± 0.11 29 36.1± 0.04 35.7± 0.03 49.4± 0.12

S5 36.3± 0.04 41.9± 0.08 24 32.8± 0.06 29.5± 0.06 48.9± 0.06

S6 34.4± 0.11 43.2± 0.12 24 31.4± 0.03 31.6± 0.13 45.9± 0.07

S7 44.3± 0.08 36.8± 0.13 24 30.8± 0.07 31.2± 0.08 52.8± 0.04

S8 35.7± 0.12 37.9± 0.07 26 33.9± 0.05 29.7± 0.11 52.5± 0.13

S9 43.5± 0.06 42.5± 0.12 28 32.4± 0.08 32.5± 0.05 54.8± 0.12

S10 39.4± 0.14 45.4± 0.05 23 30.5± 0.13 27.5± 0.11 47.4± 0.07

S11 42.6± 0.04 45.8± 0.11 22 33.4± 0.03 28.5± 0.04 44.5± 0.09

S12 38.5± 0.13 43.2± 0.08 28 28.6± 0.09 32.1± 0.13 45.8± 0.05

S13 42.4± 0.08 43.7± 0.06 27 34.4± 0.06 30.5± 0.03 50.9± 0.04

S14 41.6± 0.06 37.9± 0.09 25 31.5± 0.13 35.4± 0.12 49.8± 0.07

S15 46.2± 0.03 41.2± 0.04 23 35.2± 0.04 33.5± 0.06 50.7± 0.03

Mean 40.3± 0.037 42.3± 0.031 25.2± 0.023 33.5± 0.027 32.2± 0.028 49.7± 0.029

p-value 9.33e−8 4.78e−5 1.03e−13 5.32e−11 9.38e−12 –

Bold values represent the best results.

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1303242
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Bi et al. 10.3389/fnins.2023.1303242

TABLE 5 Performance (mean ± SD) (in %) comparison with deep learning methods on Dataset II using 16 channels.

Subjects Methods

MSATNet EEGSym DeepConvNet EEGNet-8,2 TSPNet (Ours)

S1 34.3± 0.04 37.4± 0.12 29.9± 0.06 29.9± 0.12 51.3± 0.08

S2 33.1± 0.07 37.4± 0.05 33.7± 0.13 33.2± 0.08 46.2± 0.05

S3 45.4± 0.03 45.4± 0.13 38.7± 0.12 35.8± 0.07 53.1± 0.04

S4 35.9± 0.12 34.8± 0.08 31.8± 0.05 28.6± 0.14 44.3± 0.04

S5 36.1± 0.04 37.5± 0.08 30.3± 0.08 31.1± 0.06 42.2± 0.03

S6 35.8± 0.07 40.4± 0.12 35.5± 0.04 35.1± 0.07 47.9± 0.08

S7 42.1± 0.06 42.6± 0.03 29.4± 0.05 26.6± 0.09 45.6± 0.06

S8 35.5± 0.11 38.9± 0.13 37.8± 0.12 30.6± 0.07 43.8± 0.12

S9 43.5± 0.13 42.6± 0.04 26.5± 0.13 31.2± 0.04 47.2± 0.07

S10 42.4± 0.04 43.4± 0.09 30.9± 0.06 28.8± 0.13 45.4± 0.02

S11 41.7± 0.04 43.8± 0.13 28.6± 0.07 30.1± 0.12 47.9± 0.03

S12 38.4± 0.13 38.6± 0.04 35.6± 0.13 29.1± 0.04 51.2± 0.07

S13 34.3± 0.05 35.2± 0.04 36.4± 0.08 34.6± 0.05 52.7± 0.13

S14 39.8± 0.07 43.4± 0.06 34.7± 0.07 33.5± 0.08 48.3± 0.03

S15 39.5± 0.13 42.8± 0.07 33.7± 0.09 32.8± 0.13 44.8± 0.08

Mean 38.5± 0.037 40.3± 0.033 32.9± 0.035 31.4± 0.026 47.5± 0.032

p-value 4.29e−6 2.86e−5 1.03e−9 2.53e−11 –

Bold values represent the best results.

FIGURE 7

Box plot of classification accuracy for data from 16 channels in

Dataset II.

at “https://github.com/aojeda/headModel.” As demonstrated in

Figure 8, specific areas of the cerebral cortex become activated

during motor imagination, resulting in corresponding changes in

EEG signals.

3.5.2 Feature visualization based on signal
occlusion frequency

To investigate how TSPNet can successfully decode

information from EEG signals, Algorithm 1 is utilized to

visualize the features extracted from TSPNet, and the results are

presented in Figure 9. The red circles in the Figure 9 indicate

distinct classifier patterns that can be used for differentiation. It

can be observed from Figure 9 that the movements hand open

and hand close exhibit distinct classifier patterns in the frequency

ranges θ : 3–7 Hz and α : 7–13 Hz. Similarly, the movements

elbow flexion and elbow extension display distinctive patterns at δ

: 0.5–3 Hz, θ : 3–7 Hz, and β : 13–200 Hz, while the movements

forearm supination and forearm pronation feature unique classifier

patterns at δ: 0.5–3 Hz and α: 7–13 Hz. These visualization

results demonstrate that the proposed framework is capable of

generating distinct classifier patterns for various upper limb

motor imagery categories across different frequency bands in

EEG signals.

3.5.3 Feature visualization before and after TSPFE
To elucidate the pivotal role of the TSPFE module in TSPNet,

we present the transformation of feature maps before and after the

TSPFE module into scalp topography maps in Figure 10. It can

be observed that the features after the TSPFE module are more

pronounced compared to those before the TSPFE. This is attributed

to the fact that TSPFEmodule further extracts concurrent temporal

and spatial features. The features before TSPFE undergo only

time dimension feature extraction from the TDFE module and

spatial feature extraction from the SDFE module. Combining

the results of ablation experiments in Table 2, the absence of

the TSPFE module results in a 24.3% accuracy decrease for

TSPNet-w/o-TSPFE compared to TSPNet, while TSPNet-w/o-

TDFE and TSPNet-w/o-SDFE experience decreases of 22.3 and

22.5%, respectively. This underscores the critical importance of

TSPFE in TSPNet.
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FIGURE 8

Visualization of EEG source estimation. (A) Visualization of EEG source estimation for Dataset I. (B) Visualization of EEG source estimation for

Dataset II.

FIGURE 9

Feature visualization based on signal occlusion frequency.

4 Discussion

In this work, we introduced TSPNet, a convolutional neural

network classification model for motor imagery brain-computer

interfaces. It enables the classification of six classes of upper

limb movements based on motor imagery EEG signals. Our work

provides a detailed explanation of its three constituent structures,

TDFE, SDFE, and TSPFE.We conducted classification experiments

on TSPNet using two datasets, comparing it with other deep

learning methods [MSATNet (Hu et al., 2023), EEGSym (Perez-

Velasco et al., 2022), DeepConvNet (Schirrmeister et al., 2017),

EEGNet-8,2 (Lawhern et al., 2018)]. The experimental results

demonstrate that our proposed TSPNet outperforms the compared

methods in terms of classification accuracy. Additionally, results

from the two-sample t-test indicate a significant difference in

accuracy between TSPNet and the compared methods. Feature

visualization results, as shown in Figure 10, suggest that the TSPFE

module plays a crucial role in TSPNet. Before TSPFE, the TSFE
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FIGURE 10

Feature visualization before and after TSPFE.

module only convolves to extract time dimension features, while

the SDFE module only convolves to extract spatial dimension

features. TSPFE decouples the connection between time and

spatial features, reducing feature redundancy. It utilizes a gating

mechanism to optimize weight distribution, ultimately parallelizing

time and spatial features. Furthermore, the proposed feature

visualization algorithm based on signal occlusion frequency,

qualitatively analyzes TSPNet’s performance (as depicted in

Figure 9), showing its ability to generate different classifier patterns

for various classes across different frequency bands.

Compared to EEGNet (Lawhern et al., 2018) and

MSATNet (Hu et al., 2023), TSPNet utilizes a signal frequency

range of 0.01–200 Hz. This range is significantly broader than

the signal frequency ranges used by EEGNet (0.1–40 Hz) and

MSATNet (0.5–100 Hz). The qualitative analysis results of TSPNet

using the feature visualization algorithm based on signal occlusion

frequency indicate that TSPNet can generate different classifier

patterns within the range of 0.1–200 Hz across various frequency

bands. Additionally, TSPNet’s signal sampling frequency of

500 Hz surpasses the sampling frequencies of EEGNet (128

Hz) and MSATNet (250 Hz). A higher sampling frequency

results in a greater number of sampled points and more EEG

information within a unit of time. It’s worth noting that the

TSPNet method proposed in this article demonstrates a higher

accuracy (49.7% vs. 44%) in the motor imagery on Dataset II

compared to the experimental results of Ofner et al. (2017)

in movement execution. This difference can be attributed to

several factors. Firstly, Ofner et al. utilized low-frequency signals

(0.3–3 Hz), and the signal sampling frequency was 256 Hz,

which is lower than the 500 Hz used in this paper. Secondly,

and importantly, Ofner et al. employed a traditional approach

involving feature extraction combined with machine learning

classification patterns. The classification performance was highly

dependent on the performance of the feature extraction algorithm.

In contrast, TSPNet is an end-to-end deep learning model based

on convolutional neural networks, where feature extraction and

classification interact throughout the entire training process with

shared weights, providing a distinct advantage in multi-class tasks.

In terms of limitations, despite the superior performance of the

proposed TSPNet compared to other methods used in this paper,

the accuracy in the six-class motor imagery task remains relatively

low. Under the current research results, it is insufficient to generate

precise and error-free control signals for the motion control of

neural prosthetics or robotic arms. Several factors contribute to

this limitation. Firstly, the intrinsic complexity and variability of

EEG signals make achieving high decoding accuracy challenging.

Secondly, EEG signals are generated by electrical potentials from

different regions of the brain but are measured through electrodes

placed on the scalp. Due to the conductivity and geometric

properties of the head tissues, the recorded signals are spatially

ambiguous and cannot accurately represent the potential neural

sources. To address the current limitation of low classification

accuracy, in future research, we will explore the integration of

transfer learning into the classification of motor imagery EEG

signals to enhance the performance of the classification model.

Simultaneously, we will develop a continuous decoding strategy to

further improve the classification accuracy of motor imagery tasks

through multiple consecutive decoding steps.

5 Conclusion

In this article, the TSPNet is proposed to achieve intention

recognition for multiclass upper limb motor imagery. Ablation

studies demonstrate the necessity of each module in the proposed

TSPNet. Our proposed TSPNet achieved a classification

accuracy of 49.1% ± 0.043 in Dataset I and 49.7% ± 0.029 in

Dataset II for 6 categories of upper limb motor imagery EEG

signals. Comparison results with other deep learning methods

demonstrate the superior performance of the TSPNet model.

Subsequently, we introduce a feature visualization algorithm

based on signal occlusion frequency to qualitatively analyze

TSPNet. These visualization results demonstrate that the

proposed TSPNet is capable of generating distinct classifier

patterns for various upper limb motor imagery categories across

different frequency bands in EEG signals. The results show

that the proposed TSPNet can achieve intention recognition

for multiple category upper limb motor imagery, which is

of special significance in non-invasive BCI applications and

provides the possibility to increase the degrees of freedom for

devices controlled by BCI, such as robots, manipulators, or nerve

rehabilitation devices.
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