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1. Introduction

During the first years of life, the human brain undergoes rapid structural and functional

development, laying the foundation for cognitive behavior’s progression throughout the

individual’s life. The structural covariance network (SCN), constructed based on varying

cortical morphological features extracted from structural MRI, reflects the coordinated brain

maturation between cortical regions (Alexander-Bloch et al., 2013; Gilmore et al., 2018).

It is associated with white matter networks, functional networks, cognitive functions, and

genetic heritability, making it valuable for early brain development studies (Chen et al.,

2011; Gong et al., 2012; Alexander-Bloch et al., 2013; Seidlitz et al., 2018; Fenchel et al.,

2020). Regarding the construction of SCN, the most representative method is to estimate

the similarity between cortical regions by calculating the correlation of their morphological

features [such as cortical thickness (CT), surface area (SA), gray matter volume (GMV),

sulcal depth (SD), etc.] at the population level (He et al., 2007; Alexander-Bloch et al., 2013;

Gilmore et al., 2018), which has been widely applied in adult and adolescent populations.

In recent years, some studies have proposed SCNs constructed at the individual level (Kong

et al., 2015;Meng et al., 2015; Li et al., 2017, 2021; Seidlitz et al., 2018; Yu et al., 2018; Sebenius

et al., 2023), which can capture individual difference information. However, current studies

of early brain development based on cortical morphology mainly focus on statistical analysis

of morphological features, while exploration of the SCN is relatively limited, especially at the

individual level. The neuroimaging research for early brain development based on SCN is

still in its infancy, more work needs to be done to better explore the neural mechanisms of

brain development.

This opinion paper aims to comprehensively analyze the relevant literature on early brain

development from the perspectives of cortical morphological indicators and SCNs during

both the fetal period and the first 5 years of life. We will delineate the research significance of

SCNs in the context of early brain development, while also addressing the existing challenges

and outlining potential directions for future research. It is expected that these analyses will

shed light on the field of early brain development based on morphological SCN.

2. Morphological SCN in early brain development

2.1. Developmental patterns during the fetal period

The fetal period is a crucial stage in early brain development, marked by the prolific

formation of dendrites and synapses within the cortical plate and significant transformations
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in cerebral cortical morphology (Dubois et al., 2007; Cao et al.,

2017). During this phase, the cerebral cortex rapidly develops

from an initial smooth structure without gyri and sulci into

an extremely complex folded structure (Dubois et al., 2007).

With the formation of sulci-gyri, the complexity of the cerebral

cortex also increases. This cerebral developmental process unfolds

progressively, with primary cortical folding emerging around 20

gestational weeks, followed by the initiation of secondary cortical

folding at approximately 32 gestational weeks (Feess-Higgins and

Larroche, 1987; Dubois et al., 2019). It has been found that the total

brain tissue volume undergoes a nearly 3-fold linear augmentation

from 29 to 41 gestational weeks, among which, GMV demonstrates

an almost 4-fold increase (Hüppi et al., 1998; Anderson et al., 2015).

Concurrently, SA undergoes a substantial expansion, expanding

nearly 4-fold between 27 and 40 gestational weeks (Dubois

et al., 2019), with the lateral surface generally showing faster

growth rates than the ventral and medial surfaces. Furthermore,

the developmental pace of SA manifests heterogeneity among

distinct cortical regions. Notably, SA of most primary cortices

develops faster than the high-order association cortices, such as

sensorimotor areas and auditory areas, showing a weekly average

increment of more than 25% during 26–29 gestational weeks (Xia

et al., 2019).

Currently, research on fetal development using the cortical

morphology-based SCN remains relatively understudied. It

has been shown that the SCN exhibits dynamic topological

reorganization during this period. Notably, due to the challenges

associated with obtaining high-quality fetal brain images,

premature infants are often utilized as a means to simulate

early brain development in the prenatal stage. A study involving

premature infants that established the SCN based on SD

demonstrated that in premature infants without or with slight

injuries, the global efficiency of SCN increases gradually with

age during 26.7–43 gestational weeks (age at scan), whereas the

characteristic path length decreases with age (Kim et al., 2020).

By 40 gestational weeks, premature infants without or with slight

injuries exhibited no significant differences in SD and network

connection strength compared to full-term infants. These findings

suggest that the information integration capacity of the brain

network is continuously enhancing during the third trimester.

2.2. Developmental patterns during the
first 5 years of life

The first 5 years of life is an important period for early postnatal

development. At full-term birth, the cortical folding pattern of

neonatal brain largely resembles that of adults (Duan et al., 2017b,

2019), and exhibits sex differences, hemispheric asymmetry, and

individual differences (Hill et al., 2010; Li et al., 2014a; Duan

et al., 2019, 2020). Notably, 0–2 years old is the most dynamic

stage of postnatal brain development. Specifically, the brain volume

expands rapidly and new tertiary cortical folds appear (Feess-

Higgins and Larroche, 1987; Gilmore et al., 2007; Dubois et al.,

2019). Various cortical morphological features, e.g., GMV, CT,

SA, SD, folding index, and multiscale decompositions of cortical

curvature, exhibit dramatic developmental changes during this

period. The cortical development rate for most of these features is

substantially higher during the first year than in the second year,

with growth rates slowing down after 2 years of age (Li et al., 2014b,

2015; Lyall et al., 2015; Duan et al., 2017a, 2020). Specifically, during

0–1 years old, infant GMV increases about 108–149%; during 1–

2 years old, GMV increases by about 14–19%; after 2 years old,

GMV undergoes minor growth throughout childhood and exhibits

a decline during adolescence (Knickmeyer et al., 2008; Groeschel

et al., 2010; Gilmore et al., 2011, 2018). Regarding CT of infant

brain, there is an average increase of 31% during 0–1 years old,

followed by a growth of 4.3% during 1–2 years old, ultimately

reaching 97% of adult thickness by 2 years old (Li et al., 2015; Lyall

et al., 2015; Gilmore et al., 2018). It is noteworthy that CT peaks at

around 14 months, and subsequently undergoes a gradual thinning

process during adolescence (Lyall et al., 2015; Wang et al., 2019).

Currently, research on SCN-based early brain development

patterns of children across the first 5 years of life is still in a

nascent stage. Studies have found that in full-term neonates, SCN

already exhibits the small-world topology and ordered modular

organization (Fan et al., 2011; Meng et al., 2015). During 0–2 years

old, the global efficiency, local efficiency, clustering coefficient, and

modularity index of SCN constructed based on CT increases with

age, and the shortest path length decreases with age (Fan et al., 2011;

Meng et al., 2015), which suggest that both network segregation

and integration enhances with age. However, a study on infants

aged 0–2 years old found that in SCNs constructed based on CT,

the global efficiency increases while the local efficiency decreases

with age; in SCNs constructed based on curvedness, the global

efficiency decreases while the local efficiency increases with age (Nie

et al., 2014). Another study on 3–5-year old infants showed that the

global efficiency of SCN constructed based on CT and curvedness

decreases to varying degrees, while local efficiency increases to

varying degrees (Nie et al., 2013). The inconsistencies among these

findings may arise from variations in the morphological features

and analysis methodologies used for network construction. In

addition, a cross-sectional study of infants at 37–44 gestational

weeks found age-related associations in the average structural

connectivity strength (SCS) of network nodes. Among them, the

SCS of sensorimotor cortex, auditory cortex, and visual cortex

increases significantly with age (Fenchel et al., 2020; Galdi et al.,

2020), while the SCS of cingulate gyrus and limbic cortex declines

with age. These findings collectively indicate that after birth, the

information integration and transmission capacity of the infant

brain networks are significantly enhanced, leading to a more

efficient organization.

2.3. The research value of morphological
SCN in early brain development

Morphological SCNs provide valuable insights into the

complex organization of the human brain. These networks

reveal organized co-variation of cortical regions’ morphological

properties, to some extent resembling white matter and functional

networks, and have been reported to be associated with specific

cognitive and behavioral functions (Chen et al., 2011; Gong et al.,

2012; Alexander-Bloch et al., 2013; Seidlitz et al., 2018; Fenchel
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et al., 2020). In addition, SCNs exhibit genetic heritability and

undergo changes across the lifespan, with structure alterations

observed in neuropsychiatric disorders, such as Alzheimer’s

disease and schizophrenia (He et al., 2008; Seeley et al., 2009;

Yao et al., 2010). Individual-level morphological networks offer

a novel perspective on understanding brain development and

neuropsychiatric conditions (Cai et al., 2023). The individual

SCNs assess inter-regional morphological similarity in single

subjects mainly by estimating the similarity/divergence of regional

feature distributions (Li et al., 2021; Sebenius et al., 2023) or by

evaluating the correlation of regional feature vectors (Li et al.,

2017; Seidlitz et al., 2018). This approach enables the investigation

of individual topological brain changes in both healthy and

diseased states. The relationship between morphological similarity

and gene co-expression enriches our understanding of brain

organization. Consequently, SCNs hold substantial neuroscientific

significance in studying early brain development, contributing

to the comprehension of cognitive development and risk for

neuropsychiatric disorders in early childhood.

2.4. Current challenges

Despite pioneer studies on early brain development from the

perspective of SCN, there are still many challenges to overcome.

Notably, due to the considerable challenges in image acquisition

and processing for fetal and infant populations, the corresponding

datasets are scarce compared with adults, which also leads to

the current research remaining in a nascent stage. Besides, most

present studies are based on group-level SCN, which could not

describe the individual information for further deep analysis

of individual development. Compounding this, the development

patterns from diverse studies are not very consistent, attributable to

the heterogeneity in SCN construction methodologies and distinct

morphological features employed (Alexander-Bloch et al., 2013;

Nie et al., 2014). Furthermore, the relationship between cortical

morphological development and cognitive function development is

still unknown. More work needs to be done to further understand

the early brain development.

2.5. Future direction of morphological SCN
in early brain development

Morphological SCNs hold great potential for exploring

the neural mechanism of early brain development as well as

neurodevelopment disorders. Many directions in the future require

more attention. For example, (1) Propose better segmentation and

registration methods to accurately analyze the fetal images with

low SNR to construct SCNs to reveal the network properties, such

as small-worldness, modularity, and hub distributions, during the

fetal stage. (2) Appropriately combine the worldwide human brain

development datasets, such as the Developing Human Connectome

Project (dHCP, http://www.developingconnectome.org/project/),

Baby Connectome Project (BCP, https://babyconnectomeproject.

org/), Adolescent Brain Cognitive Development (ABCD, https://

abcdstudy.org/) study, and upcoming datasets from the China

Brain Project, to comprehensively explore the brain development

patterns over a wide range of age durations. (3) Evaluate the

influences of various factors and analysis methodologies in network

construction, and explore reliable early brain developmental

patterns. (4) Apply new individual-level SCN methods (Li et al.,

2021; Sebenius et al., 2023) to early brain development studies that

estimate the structural connectivity between cortical regions based

on the similarity of feature distributions, thereby further analyzing

the individual brain development of brain maturation. (5)

Explore the relationships of developmental patterns among SCNs,

functional networks, and white matter connectivity networks, as

well as the relationships between the development of individual

SCNs and cognitive functions. These studies will benefit the

understanding of the neural mechanism of early brain development

in both healthy individuals and individuals with neurodevelopment

disorders; and combined with the brain-computer interface (BCI)

control technology, which may contribute to the evaluation and

rehabilitation of children with conditions such as developmental

delays and movement disorders.

3. Conclusions

In conclusion, this study reviewed the recent literature on early

brain development based on morphological SCNs. Specifically,

the morphology of cerebral cortex develops dramatically during

the first few years of life, with various morphological features,

e.g., GMV, CT, and SA, significantly multiplying in this period.

In addition, the SCN of full-term newborns exhibits small-

world topology and ordered modular organization, showing

dynamic changes in network separation and integration, suggesting

that the brain is moving toward an organization with higher

information integration and transmission capacity during early

brain development. However, this field is still in a nascent stage,

more work needs to be done. Our opinion is that it is necessary

to apply new individual-level SCNs instead of traditional group-

level SCNs and utilize databases spanning multiple age groups, to

facilitate extensive analyses on a large sample level to explore early

brain development patterns and individual differences; to reveal

the relationship between developmental patterns among SCN,

functional networks, and white matter connectivity networks; and

to investigate the relationship between individual morphological

development and cognition development. These studies based on

SCN will deepen our understanding of the neural mechanism

underlying early brain development as well as neurodevelopment

disorders. This will contribute to optimizing the design of effective

BCI systems, which could ultimately provide substantial help for

children with neurodevelopmental disorders, e.g., developmental

delays and movement disorders, to restart normal life in the

near future.
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