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Depression is a global disease that is harmful to people. Traditional identification 
methods based on various scales are not objective and accurate enough. 
Electroencephalogram (EEG) contains abundant physiological information, 
which makes it a new research direction to identify depression state. However, 
most EEG-based algorithms only extract the original EEG features and ignore 
the complex spatiotemporal information interactions, which will reduce 
performance. Thus, a more accurate and objective method for depression 
identification is urgently needed. In this work, we propose a novel depression 
identification model: W-GCN-GRU. In our proposed method, we  censored 
six sensitive features based on Spearman’s rank correlation coefficient and 
assigned different weight coefficients to each sensitive feature by AUC for 
the weighted fusion of sensitive features. In particular, we  use the GCN and 
GRU cascade networks based on weighted sensitive features as depression 
recognition models. For the GCN, we creatively took the brain function network 
based on the correlation coefficient matrix as the adjacency matrix input and 
the weighted fused sensitive features were used as the node feature matrix 
input. Our proposed model performed well on our self-collected dataset and 
the MODMA datasets with a accuracy of 94.72%, outperforming other methods. 
Our findings showed that feature dimensionality reduction, weighted fusion, 
and EEG spatial information all had great effects on depression recognition.
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1 Introduction

In contemporary society, people face more and more pressure from life and work, and 
various mental diseases appear one after another. Depression is currently the most common 
and high-incidence mental disorder, fundamentally affecting people’s normal lives (World 
Federation for Mental Health, 2012). Symptoms exhibited by depression are usually low mood 
lasting for more than two weeks, increasingly slow thinking, lower and lower self-appraisal, 
impairment of cognitive function, etc. Patients with major depressive disorder even show self-
harming and life-threatening behaviours. More than 350 million people worldwide suffer from 
varying degrees of depressive states. By 2030, depression is expected to be the number one 
burden disease in the world. The number of pan-depressed people in China is currently about 
95 million, and about 16% of people will suffer depression at some point in their lives (World 
Health Organization, 2017). The global crisis of depression is still very serious, and concerted 
efforts are needed from all sectors of society to arouse a wider concern about depression.
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The term “depression” is a more rigorous term. A medically accurate 
diagnosis is required for a person to be diagnosed with depression. While 
most people may just have a tendency to be depressed or suffer from 
depressed mood for a short period of time, it is a short-term disorder of 
the mind that can be called a depressive state. Rates of consultation and 
diagnosis are low, both for people with diagnosed depression and for 
those in a depressed state. The first reason is that the symptoms of people 
in a state of depression are not obvious and last for a short period of time, 
so it is difficult to draw attention to them; the second reason is that in our 
country, there are a large number of people with mental illnesses, but 
there is not yet a sound medical system and professional psychiatrists. 
Recognition of depressive states goes through different stages of 
development. 

Traditional depression identification is based on a variety of scales 
that doctors use to give diagnosis and treatment results. This has the 
problem of strong objectivity and low accuracy. With the development 
of brain–computer interface (BCI) and deep learning, depression 
recognition by electroencephalogram (EEG) has become popular. 
However, the current EEG-based depression recognition has two 
limitations. Firstly, researchers have not processed the features too much 
and send the original features directly into the classifier, which prevents 
obtaining the optimal feature information; secondly, researchers have 
overlooked the topological relationship between the electrodes, 
neglecting the complex spatiotemporal information among brain 
regions. All these problems can degrade the performance of depression 
state recognition. Therefore, how to find an objective and efficient 
method to identify depressive states is a challenge for current research.

EEG, known for its obvious advantages such as high temporal 
resolution, high sensitivity, relatively low cost, easy operation, and 
non-invasiveness, is now effective and frequently used for depressive 
state recognition. Many new papers have demonstrated that using 
linear characteristics of EEG to identify depressed patients is a feasible 
approach. Based on the EEG data of 34 depressed patients and 30 
healthy people, Mahato and Paul (2019) achieved the highest accuracy 
of 91.67% with the classifier by using the linear features of band power 
and interhemispheric asymmetry. Zhaoyan and Xiaoyan (2022) used 
support vector machines to identify depression binary classification 
based on resting state EEG signal, achieving the best classification 
results of 94.24% accuracy, 92.35% recall rate, and 96.23% accuracy. In 
2019, Ay et  al. (2019) proposed a deep mixing model that used 
Convolutional Neural Network (CNN) and Long Short Term Memory 
(LSTM) structure to detect EEG signals of depression, and the 
classification accuracy of EEG in both left and right hemispheres 
reached more than 85%. In 2022, Liu et al. (2022) explored an 
end-to-end depression recognition method based on EEGnet, and got 
90.98% accuracy rate by directly inputting EEG into neural network for 
recognition of patients with major depressive disorder. In addition, 
EEG also has the characteristics of nonlinear, irregular, and high 
complexity, so the feature extraction of EEG based on nonlinear 
dynamics is a further study on depression recognition. Shuting Sun et 
al. (2020) used L, NL, PLI, and NM features to achieve 75.8% accuracy 
in a sample of 24 severely depressed individuals and 29 normal 
subjects. Hosseinifard et al. (2013) used a combination of linear and 
nonlinear methods to identify depression, and the results showed that 
the nonlinear analysis method would achieve higher accuracy. 
Similarly, Akar et al. (2015) adopted a nonlinear method for depression 
binary recognition and concluded that the brain complexity of people 
with depression is higher. Puthankattil and Joseph (2014) used signal 
entropy as a feature of their study, and the experimental results showed 

that depressed patients have lower ApEn values than normal people 
and depression causes a decrease in both the complexity and 
predictability of EEG signals. Faust et al. (2014) found that depressed 
patients have lower sample entropy and approximate entropy values 
than healthy people, suggesting that depressed patients have reduced 
EEG complexity and increased predictability. Hajian et al. (2019) 
obtained 90% accuracy based on fuzzy entropy, KFD, and HFD 
characteristics in a sample of 60 subjects with varying degrees of 
depression. In particular, Zhang Lu (2022) studied feature selection 
algorithms in 2022. Based on different feature selection algorithms and 
oversampling techniques, the accuracy of 82.16% is obtained by taking 
the oversampling feature matrix as the network input. Currently, the 
latest research focuses on depression recognition in brain functional 
network and generates functional connection matrix through different 
coupling methods. In 2020, Rong (2020) constructed a convolutional 
neural network recognition model for mild depression based on a 
functional connection matrix and obtained a recognition rate of 
80.74%. In 2020, Chen (2020) found that the differences of brain 
functional networks examined by different functional connectivity 
approaches were different, and the final results showed that coherent 
brain functional networks combined with SVM had the best 
dichotomous recognition results with 90% accuracy. In 2021,  
Chang et al. (2022) obtained 87.67% accuracy for EEG-based 
Parkinson’s disease recognition based on sparse graph convolutional 
neural network with attention. In 2022, Zhu et al. (2022) introduced a 
learning weight matrix into the input layer of the graph convolutional 
neural (GCN) network to optimize the brain functional network, 
achieving a recognition accuracy rate of 96.50% among normal and 
depressed people. In particular, Chang et al. (2023) obtained 87.67% 
accuracy for EEG-based Parkinson’s disease recognition based on 
attention-based sparse graph convolutional neural network.

However, for the feature layer, no matter whether using linear 
features, nonlinear features, or the combination of two types of 
features, the original features are only sent into the neural network 
without further optimization processing, which is easy to produce 
redundant features and affect the recognition performance. In 
addition, for the construction of the adjacency matrix of the brain 
functional network, most studies define the connection relationship 
by the spatial distance between nodes, and direct connection exists 
only when the spatial distance is very close. However, there are some 
long-distance connections in the brain. Simply defining a connection 
in terms of distance can lead to the loss of important information. In 
response to the above problem, we proposed our model W-GCN-GRU 
based on weighted sensitive features for depression identification. In 
this model, the original features are firstly reduced and weighted, and 
then the weighted fused features are fed into the network cascaded by 
GCN and GRUs. The cascaded network extracts not only EEG 
temporal information but also EEG spatial information. In particular, 
Spearman’s rank correlation coefficient was introduced to construct 
an adjacency matrix to avoid the loss of important spatial information.

2 Materials and methods

2.1 Data sources

In this study, the data sources include open-source MODMA 
datasets and self-collected datasets. Each dataset is resting state and 
both include healthy people and depressed people.
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2.1.1 MODMA dataset
The MODMA dataset is a multimodal dataset released by Lanzhou 

University for the analysis of mental disorders. For EEG data, the 
experiment selected a 128-channel HydroCel geodesic sensor network 
and Net Station acquisition software to record continuous EEG signals. 
Participants were asked to remain awake and still, without unnecessary 
eye movements and blinking. One hundred and twenty-eight resting 
state EEG data were obtained from the experiment. The specific clinical 
information is shown in Table 1. For the sake of time performance and 
computational efficiency, this study selected data from 16 channels 
(Fp1/2, F3/4, C3/4, P3/4, O1/2, F7/8, T3/4, and T5/6). Previous studies 
have also demonstrated the feasibility of using these electrodes for 
depression state recognition (Zhang and He, 2018).

2.1.2 Self-collecting dataset
An 18-channel dry electrode cap was used to collect resting EEG 

data in this study. Sixteen active electrodes (Fp1/2, F3/4, C3/4, P3/4, 
O1/2, F7/8, T3/4, and T5/6) could collect EEG data of 16 channels. 
The electrode cap parameters are as follows: (1) DC offset voltage: ≤
180uV; (2) potential drift: ≤25 uV/h; (3) AC impedance: ≤0.15KΩcm2; 
and (4) resistance: ≤5 Ω. The specific signal acquisition process is 
shown in Figure 1. The basic metrics of the acquisition device during 
the acquisition process are shown in Table 2.

The experimental paradigm for EEG signal acquisition needs to be 
designed before data collection. The subjects were from the Mental 
Health Centre of Beijing Institute of Technology, and all acquisition 
experiments in this study were ethically certified. Before the experiment, 
all subjects signed an informed consent form. During the experiment, 
the subjects were first asked to fill out the Self-Depression Scale (SDS) 
and record the scores, and then they were put in a quiet room, sat in a 
chair, closed their eyes, relaxed and did not move, and a single 3-minute 
resting-state EEG signal was collected and stored locally. The study was 
based on the scale scores as well as the initial diagnosis made by the 
doctors at the partner hospital and labelled the data.

2.2 Data preprocessing

EEG signals are very weak, easy to be interfered, and often doped 
with a variety of endogenous and exogenous artifacts. The exogenous 
artifact is mainly power frequency interference. Endogenous artifacts 
are mainly electrocardiogram (ECG), electromyography (EMG), and 
electrooculography (EOG) interferences that overlap with EEG in the 
frequency band (Walczak and Chokroverty, 1994). Therefore, 
preprocessing is necessary to obtain a relatively pure EEG.

The resting EEG was further processed with the MATLAB 
EEGLAB toolbox and several plugins. First, a 50 Hz notch filter is used 
to remove severe power frequency interference. Second, a band pass 
filter of 0.5–50 Hz was used to remove some endogenous artifacts. 
Third, use baseline correction to remove baseline differences between 
data segments caused by low frequency drift or other artifacts. 
Specifically, the average baseline value is removed from each time 
period to eliminate any bias. Fourth, there are still many endogenous 
artifacts overlapping with EEG in the frequency band, which are 
removed by independent principal component analysis (ICA) in this 
paper. Figure 2 compares the signals before and after processing, and 
it can be seen that the preprocessed signals are obviously more pure. 
Finally, EEG was cut every second to increase the sample size and 
make the experiment more convincing.

2.3 Feature extraction and processing

2.3.1 Feature extraction
After reading a large number of literatures, in order to obtain more 

abundant EEG information, this study extracted 23-dimensional 
primitive EEG features: 7 time domain features, 10 frequency domain 
features, and 6 nonlinear features. Time domain features are Max, Min, 
Mean, Var, ppMean, Kurtosis, and Skewness. Frequency domain features 
are E (δ), E (θ), E (α), E (β), Eall ( ) ( ) ( ) ( )E E E Eδ + θ + α + β  _ relaEδ  
( ) allE / Eδ  _ relaEθ  ( ) allE / Eθ  _ relaEα  ( ) allE / Eα  _ relaEβ  

Recruit suitable subjects

Sign informed consent

Fill out the depression scale and record the score

Collect 3-minute resting EEG

Save the data locally

Doctors make a preliminary diagnosis based on 

scores and data

Label to get the data

FIGURE 1

Process of self-collecting data.

TABLE 1 Clinical information for MODMA.

Depressed 
patients

Healthy control 
subjects

Number of people 24 29

Gender (male/female) 13/11 20/9

Age (years) 16–56 18–55

Sampling frequency 250 Hz

Reference electrode Cz

Single acquisition time 5 minutes

TABLE 2 Collects device indicators

Basic indicators

Channel number 16

Sampling frequency 250Hz

Operating voltage 6V

Bias current (electronics) 200pA

Baud rate 115200

Resolution 0.01μV, 24bit

Impedance <50KΩ

Single collection duration 3 minutes
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( ) allE / Eβ  and PSD. Nonlinear features are HFD (Higuchi fractal 
dimension), Hjorth parameter (activity, mobility, and complexity), 
SampEn, and DFAs (detrended fluctuation analysis).

2.3.2 Feature dimension reduction
Although the original feature contains more comprehensive 

information, with the deepening of the calculation, the model 
parameters will increase significantly and there will be redundant 
features, which will greatly increase the computational complexity of 
the network. Therefore, the feature dimension must be reduced.

Common correlation coefficients include Pearson’s correlation 
coefficient (PCC) (Xia et al., 2017) and Spearman’s rank correlation 
coefficient (SCC) (Stephanou and Varughses, 2021). Spearman’s rank 
correlation coefficient is more robust to abnormal data and measures 
trend correlation rather than nonlinear correlation among variables. 
In summary, it is more applicable than Pearson’s correlation coefficient 
(Yuan et al., 2023). Therefore, Spearman’s correlation coefficient is 
introduced in this paper to measure the correlation among features. 
The equation (1) is shown as follows.
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The Spearman’s correlation coefficient is between −1 and 1, where 
−1 represents complete inverse correlation, 0 represents no 
correlation, and 1 represents complete positive correlation. Generally, 
the absolute values of coefficient and correlation are shown in Table 3.

The colormap is drawn using colormap function and jet parameter 
in MATLAB. The correlation coefficient matrix is visualized between 
23 dimensional original features. The results are shown in Figure 3.

The abscissa in the above figure is the number of feature values, 
and the ordinate is the name of the feature values. It is obvious that the 
correlation coefficients between Higuchi and SampEn features and 
other features are all NaN (not a number), which is caused by the zero 
corresponding standard deviation in the calculation process. These 
two features will not be considered in the following analysis. In order 
to directly know the number of different correlations between each 
feature and other features, Table 4 is obtained.

The last column in Table 4 shows the percentage of correlation 
between each feature and other features in the range of 0–0.4, and the 
selection ratio is greater than or equal to 67%. Therefore, E (δ), Eall, 
Kurtosis, Skewness, Hjorth mobility, and DFAs are the six features 
after feature dimension reduction, which are called sensitive features 
in this paper. To verify the validity of the sensitive feature, a differential 
distribution experiment was conducted. Before the experiment, 
mapminmax function of MATLAB was used to normalize the 
eigenvalues to [−1,1]. Figure  4 shows the distribution difference 
between the 6 sensitive features between normal and depression, with 
H representing normal and D representing depression. The results 
show that the sensitivity of six sensitive features to depression 
identification and their selection as sensitive features in this study 
is feasible.

2.3.3 Weighted fusion of sensitive features
Six sensitive features have been able to fully represent the 

EEG information. Nonetheless, the contribution of different 
sensitive features to depression identification is not necessarily 
the same. Therefore, in order to improve the high performance 
of depression identification, this study assigns different weights 
to each sensitive feature. Inspired by Peng et al. (2023), the weight 
coefficient of sensitive features in this paper requires the use of 
parameter AUC (area under the curve), that is, the area under 
receiver operating characteristic curve (ROC). AUC is often used 
as a measure of model evaluation. The horizontal axis of the ROC 
curve is the false positive rate FPR and the vertical axis is the true 
rate TPR. The FPR calculation is shown in equation (2)

FIGURE 2

ICA before and after artifact elimination comparison.

TABLE 3 Spearman’s correlation.

|SCC| Correlation

(0–0.2] Extremely weak or irrelevant

(0.2–0.4] Weak

(0.4–0.6] Moderate strength

(0.6–0.8] Strong

(0.8–1.0] Extremely strong
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=

+
FP

FPR
FP TN
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The TPR is calculated using the same formula as the recall rate, 
i.e., equation (14). According to the meaning of the ROC curve, it can 
be seen that the AUC takes the value of [0,1].The closer the AUC value 
is to 1, the better the separability measure of the model is; when the 
AUC value is equal to 0.5, the model function is the same as the 
random guessing, just like flipping a coin, and at this time the model 
loses its predictive value; the closer the AUC value is to 0, the worse 
the separability measure of the model is. Six sensitive feature vectors 
form the sensitive feature matrix M. Starting from the first feature 
vector, M is traversed. First, obtain the feature matrix ′M  without the 
first feature vector, and then calculate the classification accuracy AUC 
of the model corresponding to ′M . The classification effect of the 
sensitive feature matrix M is regarded as 1, 1-AUC as the weight of the 
first feature. After traversing all the features, a set of weight values is 
obtained and stored in the weight matrix W. Multiply the sensitive 
feature matrix M and weight matrix W for weighted fusion of feature 
layers. The weighted fusion flowchart is shown in Figure 5.

For AUC, GRU network is used in this paper. The six ROC curves 
obtained from the six experiments are shown in Figure 6.

To meet the sum of six weight coefficients of 1, the initial weight 
coefficient is normalized. Table 5 presents the experimental results in 
detail. Finally, this study obtained the weighted fused feature as input 
to the model:0.08* ( )E δ  + 0.31*Eall+0.12* Kurtosis + 0.22* Skewness 
+ 0.15* Hjorth mobility + 0.12* DFAS.

2.4 The architecture of our model

EEG is a time series and the data have a backward and forward 
dependence in time. In deep learning algorithms, GRU is able to 
fully extract the temporal features of the data based on solving the 
gradient explosion and gradient disappearance caused by long time 
sequences. In addition, EEG signals are collected on channels with 
spatial position relationship. GCN can take node features and brain 
network structure information as input at the same time, 
considering all its neighbors and its own contained feature 
information, fully extracting the spatial features between data. 
Hence, in order to extract features with spatial and temporal 
correlation from a given EEG signal, this chapter proposes a hybrid 
neural network W-GCN-GRU depressive state recognition method 
based on weighted sensitive features to achieve high-performance 
recognition and classification of depressive states.

FIGURE 3

Original feature correlation coefficient color diagram.
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2.4.1 GRU network structure
Gate Recurrent Unit (GRU) (Chung et al., 2014) is a type of Recurrent 

Neural Network (RNN) (Schmidhuber, 2015). Like long short-term 
memory (LSTM) (Hochreiter and Schmidhuber, 1997), it is also proposed 
to solve the problem of gradient explosion and gradient disappearance. 
But GRU has a simpler structure and better training effect compared to 
LSTM networks. In this study, a GRU layer is added to reflect the temporal 
correlation of EEG. The GRU’s special “gate” structure can delete or add 
information to the neuron state, allowing information to pass through 
selectively. The gate consists of a sigmoid neural network layer and a 
point-by-point multiplicator. Sigmoid outputs a number between 0 and 1 
that determines how much information each neuron can transmit 
(Olimov et al., 2021). 0 indicates that all information cannot pass, and 1 
indicates that all information can pass. The improvement of GRU is that 
it only has two door structures. One is the update gate zt, which is used to 
control the update of hidden unit status. The update gate determines how 
much information was retained in the current time step from the previous 
moment. Another is the reset gate rt, which defines how to combine the 
current input information with the previously saved memory. The GRU 
network is shown in Figure 7.

The great advantage of these two gates is that they can retain 
information in long-term sequences and do not delete it because it is 
not relevant to the prediction task.

The output of the update gate is shown in equation (3):

 z W x W h bt z t z t z� � �� ��� 1  (3)

The output of the reset door is calculated in equation (4):

 r W x h bt r t t r� � �� ��� 1  (4)

The new memory contents are defined as equation (5):

 h W x W h r bt x t h t t� � � �� � �� ��tanh 1  (5)

The memory content of the current time is defined as equation (6):

 h Z h Z h t Tt t t t t� �� � � � � � ���1 1 21
� , , ,  (6)

where WZ , Wr , Wx, and Wh represent weight matrix; bz, br, and b 
represent bias vector; subscripts z, r and h represent update gate, reset 
gate and hidden unit, respectively; σ  represents sigmoid activation 
function; x t� � is the input vector at the t  time step; h (t-1) is the output 
of the previous neuron.

2.4.2 GCN network structure
The channels that collect EEG are distributed in different spatial 

positions, and the state of each channel and the relationship between 

TABLE 4 Correlation statistics.

Feature name (0.0–0.2] (0.2–0.4] (0.4–0.6] (0.6–0.8] (0.8–1.0] the ratio between 
0 and 0.4

E ±� � 6 1 12 1 1 33%

E ²� � 6 2 4 8 1 38%

E ´� � 14 0 0 5 2 67%

E ¸� � 7 8 5 0 1 71%

Eall 14 0 0 5 2 67%

E±relative
3 1 11 2 4 19%

E² relative
3 1 11 2 4 19%

E´ relative
3 1 11 2 4 19%

E¸ relative
3 1 11 2 4 19%

PSD 4 3 5 2 7 33%

max_ 4 3 5 2 7 33%

min_ 4 3 5 2 7 33%

means 4 3 5 2 7 33%

var 5 2 5 2 7 33%

ppMean 5 7 1 7 1 57%

Kurtosis 15 4 1 0 1 90%

Skewness 20 0 0 0 1 95%

Hjorth activity 5 2 5 2 7 33%

Hjorth complexity 5 2 5 2 7 33%

Hjorth mobility 14 0 4 2 1 67%

DFAs 12 8 0 0 1 95%

The bold values is the correlation value (Quantitative indicators).
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channels are important factors for depression recognition. Such a 
relationship is analogous to an irregular graph structure, also called a 
topology. In graph data, there are not only nodal features (data of 
nodes) but also graph structure (how nodes are connected to each 
other). In addition, the structure around each node may be unique. 
Such flexible and complex data structure makes traditional 
convolutional neural networks no longer have their original advantages, 
so consider moving convolution operations from dealing with 

traditional Euclidean structured data to topologically structured graph 
data. Graph convolutional network (GCN) is a convolutional neural 
network that acts directly on the graph and uses its structural 
information for feature extraction. Like convolutional neural networks, 
it is usually composed of a convolutional layer, a pooling layer, an 
activation function, a fully connected layer, and so on.

There is a graph with N nodes. The input feature dimension of 
each node is D, and the features of all nodes will form an N × D feature 
matrix H; at the same time, an N × N Adjacency Matrix (A) is formed 
by analyzing the functional connection relationships among nodes. 
The inputs to the GCN model are the feature matrix H and the 
adjacency matrix A. The mode of propagation between layers of GCN 
is shown in equation (7).

 
H D AD H Wl l l�� � � � � � � ��

�

�

�
�

�

�

�
�

1

1

2

1

2�   

 
(7)

σ  is a nonlinear activation function, such as Sigmoid, ReLU, and 
Softmax. D is the degree matrix of A. A� = A + I, where I is the identity 
matrix. A is an adjacency matrix of one of the inputs to the model, and 
W is the weight matrix to be trained.

2.4.3 Construction of adjacency matrix and 
feature matrix

For the feature matrix H, this study uses a weighted fusion of six 
sensitive features as the feature matrix for each node. The EEG has 16 
channels, so the 16 × 6 feature matrix is then one of the inputs to the 

FIGURE 4

Differences in the distribution of sensitive features.

FIGURE 5

Weighted fusion flowchart.
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network model. For the adjacency matrix A representing the brain 
functional network, most studies define it by the spatial distance 
between nodes or certain calculation methods, which only results in 
direct connections when the spatial distance is very close. This can result 
in loss of information on long-distance connections. In addition, most 
GCN now binarize all the connection relations when constructing the 
adjacency matrix, which seriously ignores the influence of important 

edges. To solve the above problems, this study uses the Spearman’s rank 
correlation coefficient to obtain the continuity value to measure the 
connection relationship among nodes rather than the spatial distance 
or binarization value. In conclusion, the Spearman’s rank correlation 
coefficient (SCC) matrix between relatively pure EEG signals needs to 
be  calculated first. When the value of Spearman’s rank correlation 
coefficient is between [−1,1], a negative value will appear. In order to 
calculate the degree matrix D, the criterion of the analysis graph must 
not consider the polarity of the correlation, that is, whether the 
correlation is positive or negative. Therefore, the Spearman’s rank 
correlation coefficient absolute value matrix |SCC| is introduced. In this 
paper, the adjacency matrix A representing the brain functional network 
is redefined by the equation (8).

 
| |A SCC I= −

 (8)

A is 16 by 16, and I is the identity matrix. In this case, the ith 
diagonal element of the degree matrix D can be  calculated by 
equation (9).

 
D Aii

j
ij�

�
�
1

16

 
(9)

The input matrices A and H are now obtained, but if the two 
matrices are multiplied directly at this point, the original distribution 
of the features will be changed. In the case of a multilayer network, the 
features will be increasingly different from the input features after 
several layers of changes, creating some unpredictable problems. 
Therefore, the adjacency matrix A is symmetrically normalized so that 
the sum of each row and column is 1. The equation (10) is shown 
as follows.

 A D AD�
� �
1

2

1

2  (10)

A is the final adjacency matrix. The whole calculation process is 
visualized in Figure 8, where Figure 8A shows the Spearman’s rank 
correlation coefficient matrix obtained in the first step, Figure 8B 
shows the Spearman’s rank correlation coefficient absolute value 
matrix, Figure 8C shows the degree matrix which is a diagonal matrix, 
and Figure 8D shows the final adjacency matrix whose main diagonal 
is 0 and symmetric about the main diagonal. The adjacency matrix 
contains the spatial information of EEG, unlike traditional neural 
network inputs that only have temporal information, which will 
improve the accuracy of depression recognition.

2.4.4 W-GCN-GRU
The input layer to the model is a symmetric normalized A first 

left multiplied by H and then left multiplied by the weight matrix 
W. A nonlinear smoothed rectified linear unit (Softplus) activation 
function is applied to the graph convolution layer, which prevents 
gradient vanishing. The GRU acts as a secondary network to the 
GCN. This is followed by a dense layer that unites all relevant 
features assigned weights. To reduce the risk of overfitting, this 
study uses a dropout layer with a probability of 0.2 between the 
dense layer and the output layer. The final layer is a classifier 

FIGURE 6

Sensitive feature weighted AUC curve.

TABLE 5 Weight coefficient analysis.

Experiment Sensitive 
features

AUC Initial 
weight

Final 
weight

E1 E �� � 0.92 0.08 0.08

E2 Eall
0.71 0.29 0.31

E3 Kurtosis 0.89 0.11 0.12

E4 Skewness 0.79 0.21 0.22

E5
Hjorth 

mobility
0.86 0.14 0.15

E6 DFAS 0.89 0.11 0.12

FIGURE 7

GRU network structure.
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function, Softmax, which maps the output values of the neurons in 
the previous layer to the (0, 1) interval. This probability value, 
which is greater than 0 and less than 1, is the probability of a 
category, enabling binary classification for depression recognition. 
The specific network parameters were determined by the grid 
search method. Ultimately, the detailed design of the W-GCN-GRU 
network is shown in Figure 9, and the specific structural hierarchy 
is shown in Table 6.

Some of the other technical details included in the W-GCN-GRU 
network model are listed below:

 (1) Activation function
In this study, we use the nonlinear smooth rectified linear unit 

(Softplus) as the activation function in our proposed method. Softplus 
has the advantage of more efficient gradient descent and 

backpropagation than other activation functions and avoids the 
gradient explosion and gradient disappearance problems to a certain 
extent. The expression for Softplus is given in equation (11).

 
Softplus x ex� � � �� �log 1

 
(11)

 (2) Loss function
When using neural networks for classification tasks, a loss 

function is generally required to evaluate the model performance and 
measure the classification accuracy. In this study, we use the binary_
crossentropy loss function as the loss function for hybrid networks, 
which is also a loss function often used in binary classification tasks. 
The binary cross entropy function is given in equation (12).

SCC                           | SCC |

   Degree matrix                    Adjacency matrix

A B

C D

FIGURE 8

Correlation matrix visualization. (A) SCC. (B) |SCC|. (C) Degree matrix. (D) Adjacency matrix.
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(12)

where N denotes the number of samples, yi denotes the true label 
0 or 1, and yi�  denotes the probability of the label predicted by 
the model.

 (3) Optimizer
In order to find the most optimal parameter that makes the value 

of the loss function as small as possible, this paper conducts a 
comparative experiment on the MODMA dataset for depression 
recognition. The accuracy and loss rates of the four optimizers were 
compared for different epochs, and the results are shown in Tables 7, 
8, where it can be seen that the Adam optimizer performed the best.

TABLE 7 Classification accuracy of different optimizers under different epochs (Accuracy).

Optimizer

Epoch=20 Epoch=50 Epoch=100

Training set 
accuracy

Test set 
accuracy

Training set 
accuracy

Test set 
accuracy

Training set 
accuracy

Test set 
accuracy

SGD 76.2% 74.6% 81.46% 80.02% 87.37% 86.21%

Momentum 81.8% 80.1% 86.24% 84.78% 90.21% 89.29%

RMSProp 85.9% 84.6% 89.5% 89.99% 91.67% 91.14%

Adam 87.8% 86.5% 91.3% 90.88% 92.680% 92.30%

TABLE 8 Cross entropy loss of different optimizers under different epochs (Loss).

Optimizer
Epoch=20 Epoch=50 Epoch=100

Training set loss Test set loss Training set loss Test set loss Training set loss Test set loss

SGD 42.6% 49.8% 40.92% 47.76% 38.30% 42.45%

Momentum 33.8% 42.9% 27.34% 37.72% 25.21% 32.72%

RMSProp 30.3% 34.1% 24.90% 27.44% 23.75% 24.23%

Adam 26.7% 28.5% 19.42% 21.35% 18.52% 20.20%

……

Dense

GCN

GRU cell

GRU cell

……

Softplus

GRU cell

Softmax

Dropout

GRU

D

GRU cell

Predicted 

value

FIGURE 9

W-GCN-GRU network structure.

TABLE 6 W-GCN-GRU network layers.

Layer Structure

1st Input layer ( A:16*16, H:16*6, W:6*6)

2nd GCN (H:16*6, W:6*6)

3rd GRU

4th Dense (dropout: 0.2)

5th Softmax
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Adam (Kingma and Ba, 2014) was ultimately chosen as the 
optimizer for the model in this study, with its learning rate lr set to 
0.001, primary momentum coefficient β1 set to 0.9, and secondary 
momentum coefficient β2 set to 0.999.

2.5 W-GCN-GRU network parameters

In this study, the scikit-learn-based grid search method (Cong 
et  al., 2021) was chosen to tune the network parameters and 
hyperparameters to determine the best combination of parameters for 

the model. The grid search method has higher efficiency and faster 
efficiency than the random search and Bayesian optimization methods.

 (1) Network parameter tuning
When tuning the network parameters, it is sufficient to select a 

portion of the data. In this study, one-tenth of the data volume, i.e., 
1,590 samples, were randomly selected from the MODMA dataset for 
the experiment. Firstly, epoch and batch size were set to 10 and 128, 
respectively. Then the number of graph filters in the graph convolution 
layer and the number of neurons in the GRU were defined as GFN and 
GNN, respectively, for tuning. The grid search results are shown in 
Figure 10, and it can be seen that the model numbered M15 has the 
best performance with an accuracy rate of 0.91 and a loss rate of 0.21.

 (2) Hyperparameter tuning
Hyperparameter tuning is the process of determining the correct 

combination of hyperparameters to maximize the performance of a 
model. Currently the main hyperparameter tuning methods are 
random search, grid search and Bayesian optimization. In the random 
search method, random combinations of hyperparameters are tried 
from the network at each iteration, the performance is recorded and 

FIGURE 10

Optimization of network parameters.

FIGURE 11

Hyperparameter tuning.

TABLE 9 Else hyperparameter.

Hyperparameter Value

Learning rate 0.001

Decay rate 0.98

Decay steps Total sample/batch size
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finally the best performing combination of hyperparameters is 
obtained. In the grid search method, a grid of possible values is created 
for the hyperparameters, combinations of hyperparameters are tried 
in a particular order at each iteration and the model performance is 
recorded and finally, the best model with the best hyperparameters is 
returned. Bayesian optimization finds the smallest point in the least 
number of steps, and it uses an Acquisition Function (Acquisition 
Funtion) that directs the sampling to the region that has the potential 
to be better than the current best observation. Among them, the grid 
search method has higher efficiency and faster efficiency. scikit-learn 
is commonly used tool for grid search. In this study, scikit-learn based 
grid search method is chosen to tune the network parameters and 
hyperparameters and find the best combination of parameters for the 
model. Epoch and batch size are very important hyperparameters in 
neural network models. In this paper, epoch and batch size are tuned 
by the grid search method based on the optimal combination obtained 

by tuning the network parameters. As shown in Figure 11, the model 
performs best when epoch and batch size are 100 and 256, respectively, 
achieving an accuracy of 0.9411.

 (3) Other core hyperparameters
Other related core hyperparameters are set in Table 9 according to 

common conclusions. The learning rate was 0.001. It represents the step 
size by which the gradient moves towards the optimal solution of the loss 
function in each iteration, and its size determines how fast the network 
learns. A suitable learning rate allows the loss function to converge to a 
minimum at a suitable rate. Decay rate and learning rate are inextricably 
linked. Typically, a larger learning rate will cause the model to learn 
quickly but may skip the optimal solution, while a smaller learning rate 
may slow down the learning process but allow for a more accurate 
finding of the optimal solution. Decay rate is a strategy that adjusts the 
learning rate, decreasing it as training progresses, to help the model find 
the optimal solution more accurately. Decay steps is a metric that decays 

FIGURE 12

W-GCN-GRU algorithm flow.
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every how many rounds of iteration, and can be called the decay rate. In 
this paper, the decay rate and decay steps are 0.98 and Total sample/
Batchsize, respectively, which represent that the learning rate is 
multiplied by 0.98 once for every Total sample/Batchsize iteration.

3 Results

3.1 The process of identifying depressive 
states

Based on the parameter-tuned network model for depressive state 
identification, the specific algorithm flow is shown in Figure 12.

The specific steps are as follows:
Step 1: For self-collected EEG, the dataset is labeled according to 

the scale score. The MODMA dataset has been divided into depression 
and health, i.e., labels already exist.

Step 2: The raw EEG data was preprocessed to remove various 
artefacts with the help of MATLAB and EEGLAB.

Step 3: A total of 23 dimensional raw features in the time domain, 
frequency domain, and nonlinearity are extracted from the relatively 
pure EEG signal.

Step 4: The Spearman’s rank correlation coefficient was introduced 
for feature dimension reduction to obtain 6-dimensional sensitive features.

Step  5: The AUC assigns different weight coefficients to each 
sensitive feature to complete the weighted fusion of features.

Step 6: Divide the dataset into a training set and a test set. The 
training set trains the W-GCN-GRU network model, the verification 

set updates the weights and biases in reverse, and saves the 
trained model.

Step 7: The test set verifies the effectiveness and sensitivity of the 
algorithm. The performance of the depression state recognition model 
was evaluated based on predictions and real labels.

3.2 Evaluation metrics

In the classification task, we select the following index to evaluate 
the performance of the model.

 1. Accuracy is defined as the ratio of the number of correctly 
classified samples to the total sample for a given test dataset. Its 
formula is given in equation (13).

TABLE 10 Sample distribution in dataset.

Dataset H D Total Subjects 
(H/D)

MODMA 

dataset

8,700 7,200 15,900 29/24

Self-collected 

dataset

4,500 3,600 8,100 25/20

FIGURE 13

Iterative curve of training process.

FIGURE 14

Confusion matrix of the test set.

TABLE 12 Feature dimension reduction comparison.

No feature 
dimension 
reduction

Performing feature 
dimension 
reduction

Running time/s 920 234

Speed boost 0% 75%

TABLE 13 Feature weighted fusion comparison.

No feature 
weighting fusion

Perform feature 
weighted fusion

Average accuracy 90% 92%

Average accuracy 

improvement
0% 2.2%

TABLE 11 Classification report.

Description Label Precision Recall F1

Depressive state 0 0.95 0.94 0.94

Health 1 0.94 0.95 0.94
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However, in the case of unbalanced positive and negative samples, 
this indicator has major flaws. For example, there are 1,000 samples 
with 900 positive samples and only 100 negative samples. Even if the 

classification model predicts all samples as positive, the accuracy is 
90%. Clearly, this metric is not convincing, so other metrics must 
be used to evaluate the model’s performance in combination.

 2. Precision, which is the ratio of the number of correctly classified 
positive samples to the number of classified positive samples, 
measures the accuracy of the check. Its formula is given in 
equation (14).

 
Precision

TP
TP FP

�
�  

(14)

 3. Recall, which is the ratio of the number of correctly classified 
positive samples to the number of actual positive samples, 
measured as the rate of complete. Its formula is given in 
equation (15).

 
| |

=
+
TP

Recall
TP FN

 
(15)

 4. F1 score is to evaluate the pros and cons of different algorithms. 
The concept of F1 value is proposed based on Precision and 
Recall. Its formula is given in equation (16).

 
F score

Precision Recall

Precision Recall
1

2
� �

� �
�  

(16)

where TP, FP, TN, and FN represent true positive, false positive, true 
negative, and false negative, respectively. Taking depression recognition 

FIGURE 15

Comparative experimental results on MODMA dataset.

FIGURE 16

Average accuracy, loss, and training time of different network models.
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as an example, true positive represents the number of samples predicted 
to be  depressed and actually depressed; false positive represents the 
number of samples predicted to be depressed and actually healthy; true 
negative represents the number of samples predicted to be healthy and 
actually healthy; and false negative represents the number of samples 
predicted to be healthy and actually depressed.

 (5) Confusion matrix
Confusion matrix is also an effective model evaluation index, 

which can more intuitively show the classification accuracy of the 
dataset. The horizontal axis is the predicted value, and the vertical axis 
is the true value.

3.3 Results and analysis

Experiments were conducted on the public dataset and the self-
collected dataset, respectively, to verify the efficiency of the proposed 
hybrid network. H and D represent the healthy and depressed 
populations, respectively, and the distribution of samples in the two 
datasets is shown in Table 10.

3.3.1 Classification results on MODMA
The samples in the public dataset are divided into a training set 

and a test set in the ratio of 9:1, and then one-tenth of the training set 

A

Iterative curve of training process         

B

Confusion matrix of the test set

FIGURE 17

Experimental results of self-collected dataset. (A) Iterative curve of training process. (B) Confusion matrix of the test set.

FIGURE 18

Average accuracy, loss, and training time of different network models.
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is selected as the validation set. Figure 13 shows the iteration curves 
of the training process of the W-GCN-GRU model. The red dashed 
line indicates the accuracy of the training data, the red solid line 
indicates the accuracy of the validation data, the blue dashed line 
indicates the loss rate of the training data, and the blue solid line 
indicates the loss rate of the validation data. From the experimental 
results, we know that the accuracy of the training set is 94.72%, the 
loss rate is 15.48%, the accuracy of the validation set is 93.68%, and 
the loss rate is 17.96%. The training processes all performed well on 
the models, converged quickly, and no overfitting occurred. This 
demonstrates that the method proposed in this study is not only 
effective for depression recognition, but also has high classification 
accuracy. Figure 14 shows the confusion matrix classification results 
of the W-GCN-GRU model on the test set. The calculation shows that 
the classification accuracy on the test set is 94.5%.

Table  11 lists the classification reports of depression status 
identification on the W-GCN-GRU model in the public dataset. The 
precision, recall, and F1 values are all above 0.94, which proves that 
the method proposed in this study can effectively identify depression.

To verify the improvement of model speed by feature dimension 
reduction and the improvement of model average accuracy by 
sensitive feature weighting, this study conducted comparative 
experiments based on the W-GCN-GRU network. The experimental 
results are shown in Tables 12, 13. From the two tables, it can be seen 
that feature dimensionality reduction improved the model speed by 
75% and feature weighting fusion improved the average accuracy of 
the model by 2.2%, both of which improved the performance of 
the model.

To further evaluate the performance of the proposed method, four 
sets of cross-sectional comparison experiments were conducted in this 
study, i.e., W-GCN-GRU was compared with RNN, LSTM, GRU, and 
GCN networks on the MODMA dataset. Figure 15 shows the training 
curves for the five models, where the solid line represents accuracy 
and the dashed line represents loss. The iterative curves show that the 
GCN-fused GRU network of this study outperforms the other neural 
networks in recognition, with the highest accuracy rate for depression 
recognition and the smallest value of the loss function. In order to 
verify the high performance of W-GCN-GRU model from multiple 

FIGURE 19

Comparison of evaluation indexes of each model.

TABLE 14 Comparison of accuracy and loss of different networks.

Author Year Normal/depressed Features Classifier Accuracy

Hajian et al. (2019) 2018 13/13 HFD, KFD Logistic regression 92%

Mahato and Paul 

(2019)
2019 30/34 Linearity and nonlinearity Machine learning 91.67%

Rong (2020) 2020 24/24 PSD CNN 85.62%

Sun et al. (2020) 2020 29/24 L + NL + PLI + NM C4.5, BFD, LR and so on 83.5%

Chen (2020) 2020 28/27 Microstates, brain networks SVM 90%

Zhang Lu (2022) 2022 29/24 54 features Soft voting 82.16%

This paper 2023 29/24 E ´ Eall� �, , Kurtosis, Skewness, HjorthMob, and 

DFAs
W-GCN-GRU 94.72%

The bold values is the subject number of Normal / depression.
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aspects, Figure 16 compares the average accuracy, average loss, and 
training time of these five deep learning algorithms during training. 
As can be seen in Figure 16, the W-GCN-GRU model has the highest 
average accuracy of 89% and the lowest average loss rate of 23%. 
Although the average training time of this model is slightly longer, the 
performance is still optimal when taken together. The reason for the 
long average training time may be related to the complex structure of 
the model.

3.3.2 Classification results on self-collecting 
dataset

The subjects of the experiment were all in the age group of 17-28. 
there were 25 healthy controls with a male to female ratio of 13:12 and 
20 patients with depressive states with a male to female ratio of 14:6. 
The sampling frequency of the experiment was 250 Hz. Like the open 
dataset, the real dataset is divided into the training set and the test set 
in a 9:1 ratio, and one-tenth of the training set is used as the 
verification set. Figure  17 shows the experimental results of 
W-GCN-GRU model on the self-collecting dataset. In diagram a, the 
red dashed line represents the accuracy of training data 91.58%, the 
red solid line represents the accuracy of verification data 93.76%, the 
blue dashed line represents the loss rate of training data 22.34%, and 
the blue solid line represents the loss rate of verification data 21.02%. 
Diagram b shows the confusion matrix of the test set, which further 
indicates that the model performs well and has good 
generalization ability.

Figure 18 compares the average accuracy, loss, and time of the 
proposed method in this study with RNN, LSTM, GRU, and GCN, 
and it can be seen that the W-GCN-GRU model proposed in this 
study has the highest accuracy and the lowest loss. Although it takes 
a little longer, overall, it has the highest performance.

The average precision, recall, and F1 values of each model are 
shown in Figure 19.

Through the experimental evaluation of effectiveness and 
sensitivity on the two types of datasets, there is no doubt that 
W-GCN-GRU neural network has the most efficient depression 
recognition performance in health and depression, and the 
classification accuracy is up to 94.72%.

4 Discussion

For comparison, we select 6 existing model in the field of 
depression state recognition. These methods mainly use nonlinear 
features and brain functional network. Table 14 demonstrates the 
specific comparisons. (Sun et al. 2020; Zhang Lu, 2022) used the same 
public dataset in their paper. Sun used phase lag index (PLI) to study 
the brain functional connectivity network, selected four different types 
of brain electrical features including PLI, and used multiple classifiers 
to identify depression, reaching the highest accuracy of 83.5%. Zhang 
Lu, (2022) selected a total of 54 features. Compared with different 
feature selection algorithms and experimental results of classifiers, the 
classifier based on Soft Voting algorithm has the best result. Rong, 
(2020) investigated a functional connectivity matrix-based 
convolutional neural network model for mild depression recognition. 
Different graph-theoretic approaches were used to construct the 
functional brain network and the classification results showed that the 
coherence approach had the best recognition performance, obtaining 
an accuracy of 85.62%.

For our study, we conducted experiments on the public dataset 
MODMA and self-collected dataset with the aim of exploring methods 
and models that can recognize depressive states with high 
performance. We investigated sensitive feature selection and weighted 
fusion methods, while obtaining the adjacency matrix representing 
the functional brain network thus constructing the depression state 
recognition model W-GCN-GRU. The study has the following 
key observations.

Firstly, based on the original 23-dimensional feature set extracted 
from time, frequency and nonlinear domains, this study proposes a 
high-quality feature downscaling method. The method combines 
Spearman’s rank correlation coefficient and thresholding to perform 
feature dimensionality reduction on the original 23-dimensional 
features, which yields six sensitive features, removes redundant 
features, reduces algorithmic complexity, and improves the 
experimental speed by 75% after feature dimensionality reduction. 

Secondly, in order to focus the network on more representative 
features, this paper uses AUC to assign different weight factors to 
sensitive features. Iterating over the sensitive features matrix yields 
weight coefficients for the six sensitive features, which are normalized 
to be 0.08, 0.31, 0.12, 0.22, 0.15, and 0.12, respectively. Ultimately, the 
accuracy of the network model using weighted features was improved 
by 2.2%.

Thirdly, the continuity values measuring the functional connectivity 
between nodes are obtained based on the Spearman rank correlation 
coefficient, based on which an adjacency matrix representing the 
functional brain network was obtained. Adjacency matrix mines the 
topological structure information of brain regions, fully extracts the 
spatial features between EEG data, which improves the accuracy of 
depression recognition from a spatial perspective. At last, the depression 
recognition model W-GCN-GRU fully considers the spatiotemporal 
information interaction of EEG and achieves 94.72% accuracy, which is 
better and more efficient than other deep learning model.

Although this paper has carried out innovative research in feature 
processing and network model construction to improve the accuracy 
of depression state recognition, there is still problems to be further 
studied and explored as follows. Firstly, for GCN networks, increasing 
the number of electrodes in the electrode cap will result in richer 
spatial information, and it is unknown whether it will improve the 
accuracy of depression recognition. Future research could start by 
increasing the number of electrode channels. Secondly, when 
constructing the feature matrix of the nodes, the same 6-dimensional 
features are all chosen. However, the spatial locations of the nodes are 
different and the feature information may be different. Therefore, the 
next study can start from each node to get the most representative 
feature information. Zong et al. (2023) used the random search 
method to select the discriminative features for each channel. Maybe 
we can receive inspiration from it. Thirdly, it is expected that attempts 
will be made to synchronize the acquisition of multiple physiological 
signals from the subjects and to take advantage of the complementarity 
between multimodal data to improve depression recognition accuracy.

5 Conclusion

This article examines key issues in high-performance recognition of 
depressive states based on EEG. It makes sense to perform feature 
downscaling and sensitive feature-weighted fusion, improving the training 
speed and accuracy by 75% and 2.2%, respectively. In addition, we 
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creatively propose a W-GCN-GRU depressive state recognition neural 
network based on weighted sensitive features. In particular, an adjacency 
matrix representing the functional brain network was constructed based 
on the Spearman rank correlation coefficient as one of the inputs to the 
GCN network. Compared to RNN, LSTM, GRU, and GCN networks, Our 
proposed method has the highest recognition performance, achieving 
94.72% accuracy and 15.48% loss rate.
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