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Background: The causal associations between infections with human herpes viruses 
(HHVs) and amyotrophic lateral sclerosis (ALS) has been disputed. This study investigated 
the causal associations between herpes simplex virus (HSV), varicella-zoster virus (VZV), 
Epstein–Barr virus (EBV), cytomegalovirus (CMV), HHV-6, and HHV-7 infections and 
ALS through a bidirectional Mendelian randomization (MR) method.

Methods: The genome-wide association studies (GWAS) database were analyzed 
by inverse variance weighted (IVW), MR-Egger, weighted median, simple mode, 
and weighted mode methods. MR-Egger intercept test, MR-PRESSO test, 
Cochran’s Q test, funnel plots, and leaveone-out analysis were used to verify the 
validity and robustness of the MR results.

Results: In the forward MR analysis of the IVW, genetically predicted HSV infections 
[odds ratio (OR) = 0.9917; 95% confidence interval (CI): 0.9685–1.0154; p = 0.4886], 
HSV keratitis and keratoconjunctivitis (OR = 0.9897; 95% CI: 0.9739–1.0059; p = 0.2107), 
anogenital HSV infection (OR = 1.0062; 95% CI: 0.9826–1.0304; p = 0.6081), VZV IgG 
(OR = 1.0003; 95% CI: 0.9849–1.0160; p = 0.9659), EBV IgG (OR = 0.9509; 95% CI: 
0.8879–1.0183; p = 0.1497), CMV (OR = 0.9481; 95% CI: 0.8680–1.0357; p = 0.2374), 
HHV-6 IgG (OR = 0.9884; 95% CI: 0.9486–1.0298; p = 0.5765) and HHV-7 IgG 
(OR = 0.9991; 95% CI: 0.9693–1.0299; p = 0.9557) were not causally associated with 
ALS. The reverse MR analysis of the IVW revealed comparable findings, indicating no 
link between HHVs infections and ALS. The reliability and validity of the findings were 
verified by the sensitivity analysis.

Conclusion: According to the MR study, there is no evidence of causal associations 
between genetically predicted HHVs (HSV, VZV, EBV, CMV, HHV-6, and HHV-7) 
and ALS.
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1 Introduction

Amyotrophic lateral sclerosis is a rapidly progressive and fatal neuronal disease characterized 
by progressive degeneration of motor neurons in the brain and spinal cord, ultimately leading 
to almost total skeletal muscle paralysis (van Es et al., 2017). Patients with ALS often present 
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with progressive weakness and atrophy of the extremities, gradually 
leading to an inability to walk, talk, swallow, and breathe (Taylor et al., 
2016). ALS is a rare disease with an incidence of 3.1 per 100,000 
person-years (Vasta et al., 2022), with familial ALS (fALS) accounting 
for 10% of cases and sporadic ALS (sALS) accounting for 90% of cases 
(Pham et al., 2020) and the average survival after diagnosis is in the 
range of 3–5 years (Brown and Al-Chalabi, 2017). The number of ALS 
cases is expected to increase by 69% from 2015 to 2040 due to global 
aging (Arthur et al., 2016). However, little is known despite the time 
and money spent investigating ALS’s pathogenic mechanisms. ALS is 
believed to be  caused by genetic and environmental interactions 
(Celeste and Miller, 2018; Schram et  al., 2020; Julian et  al., 2021; 
Motataianu et al., 2022; Goutman et al., 2023), with some investigators 
suggesting that viruses are an important environmental factor in ALS 
(Celeste and Miller, 2018; Castanedo-Vazquez et al., 2019).

Human herpes viruses are one of the largest families of double-
stranded DNA viruses, comprising three main subfamilies: α, β, and 
γ-herpesviruses. α-herpesviruses include HSV-1, HSV-2, and VZV 
(HSV-3), β-herpesviruses include CMV (HHV-5), HHV-6, and 
HHV-7, and γ-herpesviruses include EBV (HHV-4) and HHV-8 
(Sehrawat et al., 2018). Epidemiological data showed that billions of 
people were infected with HSV-1, and 500 million had HSV-1/HSV-2 
genital infections in 2016 (James et al., 2020). A global disease burden 
on VZV reported that new cases surpassed 80 million in 2019 alone 
and continue to rise (Huang et al., 2022). More than 90% of adults 
worldwide are chronically infected with EBV (Huang et al., 2021). 
Moreover, the general population has a seropositivity rate of 83% for 
CMV IgG antibodies (Zuhair et al., 2019). Approximately 80–90% of 
adults worldwide have herpesviruses (Khalesi et al., 2023).

Studies have shown that enteroviruses and herpesviruses are the two 
most common viruses infecting hospitalized patients’ central nervous 
system (CNS) (Roshdy et  al., 2023). The α/β/γ-herpesviruses are 
neurotoxic and neurotropic viruses and are often considered important 
risk factors for neurodegenerative disease (NDD) (Osorio et al., 2022). 
However, the relationship between HHVs and ALS is unknown. A study 
reported that herpesvirus infection and ALS can flare up simultaneously. 
Nevertheless, there is no way to determine if it is accidental or intentional 
(Ferri-de-Barros and Moreira, 2010). Some investigators have suggested 
that HSV-1 can latently infect the trigeminal ganglion and may be a 
causative factor in ALS (Feng et al., 2022). In addition, the pathogenic 
risk of ALS was slightly associated with HHV-6 seropositivity in a case–
control study (Cermelli et al., 2003). In contrast, no significant correlation 
was found between ALS and IgG antibodies to HSV and CMV in an 
immunological evaluation of early ALS (Provinciali et al., 1988). These 
studies with conflicting conclusions may be due to methodological flaws, 
including confounders and reverse causality in observational studies. 
We  have no method of determining the association, let alone the 
causality, between HHVs and ALS.

Random control trials (RCTs) are a type of experimental research 
methodology that evaluates the effect of a causative factor or a treatment 
regimen on a disease by randomizing study subjects into groups, 
implementing different interventions for different groups, and finally 
comparing the results. RCTs are the gold standard for clinical diagnosis 
and can determine the causal association between exposure and 
outcome. There are no reported RCTs on the association between 
HHVs and ALS, mainly due to the strict constraints of the design 
process and medical ethics and few reports of observational studies and 
their mixed conclusions, which makes it important to carry out MR 
analyses in this context. MR is an epidemiological investigation method 

based on instrumental variables (IVs) to analyze summary-level data 
from GWAS, which can greatly reduce confounding bias and 
consistently and reliably infer causality between exposures and 
outcomes due to the stochastic nature of the genetic variants and the fact 
that alleles are not affected by disease (Emdin et al., 2017). Two-sample 
Mendelian randomization (TSMR) refers to using genetic variants as 
IVs in both exposure and outcome samples to investigate the effects of 
modifiable risk factors for disease. Although lower than RCTs, the 
strength of evidence from MR analyses is stronger than observational 
studies (Davies et  al., 2018). Particularly in rare diseases, MR can 
achieve more reliable results by analyzing and evaluating much larger 
sample sizes than in conventional clinical trials. Therefore, our study 
investigated whether there is a causal association between HHVs and 
ALS using a bidirectional TSMR method based on GWAS data.

2 Materials and methods

2.1 Study design

This study strengthened epidemiological observational studies using 
Mendelian randomization (STROBE-MR) (Skrivankova et al., 2021). All 
data were obtained from the publicly available GWAS database without 
re-ethical approval. In MR, SNPs as IVs must fulfill the following three 
assumptions. (1) The relevance assumption: IVs are closely related to 
exposure; (2) the independence assumption: the IVs are not associated 
with the potential confounders; (3) the exclusion restriction assumption: 
IVs affect outcomes only through the exposure pathway (no directional 
pleiotropy) (Supplementary Figure S1).

2.2 GWAS data sources

The summary-level statistics for all cases and controls in this study 
are of European ancestry, and the study subjects were residents 
recruited from multiple research centers in Europe to minimize bias 
due to race-related confounding factors. GWAS data for HHV-8 of 
suitable European ancestry could not be found and were therefore 
not analyzed.

2.2.1 Exposure
The exposure factors and the dataset for this study were as follows. 

HSV: the finn-b-AB1_HERPES_SIMPLEX (1,595 cases, 211,856 controls 
and 16,380,457 SNPs), finn-b-H7_HERPESKERATITIS (573 cases, 
209,287 controls and 16,380,429 SNPs) and finn-b-AB1_ANOGENITAL_
HERPES_SIMPLEX (10,118,743 SNPs) datasets were searched in the 
latest FinnGen.1 VZV IgG: The GCST90006928 (25,472,218 SNPs) dataset 
was searched in GWAS.2 EBV: the finn-b-AB1_EBV (1,238 cases, 213,666 
controls, and 16,380,461 SNPs) dataset was searched for in FinnGen (r9). 
CMV IgG: The ieu-b-4900 (7,002,835 SNPs) dataset was searched in the 
Integrative Epidemiology Unit (IEU, https://gwas.mrcieu.ac.uk/). HHV-6 
IgG: The GCST90006902 (25,472,218 SNPs) dataset was searched in the 
GWAS database. HHV-7 IgG: The GCST900069028 (25,472,218 SNPs) 
dataset was searched in the GWAS database.

1 https://r9.finngen.fi/

2 https://www.ebi.ac.uk/gwas/home
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2.2.2 Outcome
The ALS dataset for GCST90027164 (27,205 cases, 110,881 

controls, and 10,461,755 SNPs) was searched in the GWAS database. 
After cleaning and conversion, we saved the data downloaded from 
the FinnGen database in GWAS database format. After comparing the 
sources of participants in the eight datasets for HHVs with the one 
dataset for ALS, we  consider the samples for HHVs and ALS to 
be independent. We list these data in Supplementary Table S1.

2.3 Selection of instrumental variables

A critical step in MR analysis is to obtain valid IVs. We extracted 
SNPs (p < 5 × 10−5) with significant correlation with HSV, VZV, EBV, 
CMV, HHV-6, and HHV-7 from the eight exposure datasets. 
Subsequently, we performed linkage disequilibrium (LD) analysis on 
the obtained SNPs with “r 2 < 0.001, 10,000 = kb” by using the “clump_
data” function to exclude the mutual linkage SNPs and to discard 
non-biallelic SNPs. We used the F-statistic to assess the strength of the 
association between the selected IVs and exposure. F-statistic is 
calculated as F = (β/se(β)) 2 (Zhang et al., 2023) when F > 10 indicates 
that IVs are strong instrumental variables, which avoids the bias 
caused by weak IVs. In addition, the summary set may produce errors 
if the effect alleles for the SNP effects are different in the GWAS data 
for exposure and outcome. Therefore, we used the “harmonise_data” 
function to test the causal direction of the screened SNPs in exposure 
and outcome, excluded palindromic alleles, and selected the SNPs 
with “TRUE” results for MR analysis.

2.4 TSMR analysis

The data in this study were analyzed based on the 
“TwoSampleMR” package of R version 4.2.3 software. Analyses 
included Forward MR with HHVs infection or IgG as the exposure 
and ALS as the outcome and reverse MR with ALS as the exposure 
and HHVs infection or IgG as the outcome. We chose MR Egger, 
weighted median, IVW, simple mode, and weighted mode methods 
to calculate the causal relationship between exposure and outcome, 
and IVW was the most valid and reliable of these methods. We then 
perform sensitivity analyses. Cochran’s Q-statistic was used to test 
for heterogeneity (p < 0.05) between SNPs in MR-Egger and IVW 
analyses to assess the robustness of IVs (Bowden et  al., 2019). 
Heterogeneity was additionally visualized by constructing a funnel 
plot of the IVs. MR-PRESSO can detect outliers that may bias the 
results and give a causal change in exposure and outcome after 
removing the outlier (Verbanck et  al., 2018). Therefore, when 
MR-PRESSO detects an outlier, we exclude the SNPs and re-perform 
the MR analysis and evaluation. Pleiotropy refers to the fact that 
some IVs affect outcomes through pathways other than exposure, 
which would seriously affect the reliability of the causal association 
between exposure and outcome (Davey Smith and Hemani, 2014). 
We  used the MR-Egger intercept for bias detection and effect 
estimation. When the “MR_pleiotropy_test” function calculates 
p < 0.05, it means that there is directional pleiotropy (Bowden et al., 
2015). Leave-one-out analysis estimates the effect of the remaining 
SNPs on the outcome by sequentially removing individual SNPs and 
then performing the IVW analysis again, which can determine 
whether any single SNPs drive causality.

3 Results

3.1 Screening of instrumental variables

In forward MR, we ended up with 69, 55, 56, 65, 6, 7, 5, and 6 
SNPs that were closely associated with HSV infections, HSV keratitis 
and keratoconjunctivitis, anogenital HSV infection, VZV IgG, EBV, 
CMV IgG, HHV-6 IgG, and HHV-7 IgG, respectively. In reverse MR, 
9, 9, 8, 10, 9, 8, 10, and 9 SNPs were obtained when ALS was used as 
the exposure corresponding to HSV infections, HSV keratitis and 
keratoconjunctivitis, anogenital HSV infection, VZV IgG, EBV, CMV 
IgG, HHV-6 IgG, HHV-7 IgG, respectively. These SNPs were all strong 
instrumental variables (F-statistic >10). A total of sixteen MR analyses 
were performed in this study, and details of the screened IVs can 
be found in Supplementary Tables S2–S17.

3.2 Forward MR

We list the TSMR and the sensitivity analysis results of HHVs and 
ALS in Table 1. Using IVW as the primary method, it can be seen that 
genetically predicted HSV infections (OR = 0.9917; 95% CI: 0.9685–
1.0154; p = 0.4886), HSV keratitis and keratoconjunctivitis (OR = 0.9897; 
95% CI: 0.9739–1.0059; p = 0.2107), anogenital HSV infection 
(OR = 1.0062; 95% CI: 0.9826–1.0304; p = 0.6081), VZV IgG 
(OR = 1.0003; 95% CI: 0.9849–1.0160; p = 0.9659), EBV IgG (OR = 0.9509; 
95% CI: 0.8879–1.0183; p = 0.1497), CMV (OR = 0.9481; 95% CI: 0.8680–
1.0357; p = 0.2374), HHV-6 IgG (OR = 0.9884; 95% CI: 0.9486–1.0298; 
p = 0.5765) and HHV-7 IgG (OR = 0.9991; 95% CI: 0.9693–1.0299; 
p = 0.9557) were not causally associated with ALS, which completely 
agrees with the conclusions reached by the four methods: MR-Egger, 
weighted median, simple mode, and weighted mode (Figure 1). Notably, 
57 SNPs obtained from the dataset associated with anogenital HSV 
infection were tested by MR-PRESSO for p = 0.004. The p-value for 
MR-PRESSO is 0.0273 after excluding the outlier SNP (rs16832436), 
suggesting no remaining outlier SNPs. At this point, MR Egger’s P 
(Q-statistic) = 0.0410, and IVW’s P (Q-statistic) = 0.0283. However, the 
MR Egger intercept test (p = 0.1229) showed no directional pleiotropy, 
indicating that heterogeneity is unlikely to affect the main estimates. The 
remaining MR analyses had P (Q-statistic) > 0.05, and the funnel plots of 
SNPs in IVW had a symmetrical distribution, indicating no significant 
heterogeneity (Supplementary Figure S2). The p-value of all MR Egger 
intercept tests was greater than 0.05, suggesting no directional pleiotropy 
of SNPs, indicating the high validity and robustness of the results of the 
MR analyses in this study. In addition, no significant individual SNPs 
were found to influence the association from leave-one-out analyses 
(Supplementary Figure S3). In conclusion, the forest plot shows that 
HSV, VZV, EBV, CMV, HHV-6, and HHV-7 were not causally associated 
with ALS (Figure 2).

3.3 Reverse MR

We further explored the causal association of ALS with HHVs and 
enumerated the results in Table 2. There was also no causal effect of ALS 
with HSV infections (OR = 1.4497; 95% CI: 0.8429–2.4933; p = 0.1796), 
HSV keratitis and keratoconjunctivitis (OR = 0.7593; 95% CI: 0.4193–
1.3750; p = 0.3634), anogenital HSV infection (OR = 1.1641; 95% CI: 
0.6906–1.9623; p = 0.5683), VZV IgG (OR = 0.8480; 95% CI: 
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TABLE 1 The causal effect of human herpes viruses (HHVs) and amyotrophic lateral sclerosis (ALS) by two-sample Mendelian Randomization (TSMR) 
and the sensitivity analysis results.

Forward MR

Exposure SNP F
Mendelian randomization Heterogeneity

Method OR 95% confidence interval p Q Q_P

HSV infections 69 >10

MR Egger 0.9761 0.9320–1.0221 0.3069 60.0225 0.7146

Weighted median 0.9971 0.9620–1.0335 0.8739

IVW 0.9917 0.9685–1.0154 0.4886 60.6399 0.7250

Simple mode 1.0402 0.9636–1.1228 0.3161

Weighted mode 0.9979 0.9401–1.0592 0.9443

MR-PRESSO 0.7357

Pleiotropy 0.4348

HSV keratitis and 

keratoconjunctivitis
55 >10

MR Egger 0.9820 0.9539–1.0109 0.2248 61.9019 0.1882

Weighted median 0.9847 0.9623–1.0077 0.1901

IVW 0.9897 0.9739–1.0059 0.2107 62.3818 0.2028

Simple mode 1.0099 0.9578–1.0649 0.7167

Weighted mode 0.9836 0.9453–1.02340 0.4180

MR-PRESSO 0.2157

Pleiotropy 0.5243

Anogenital HSV 

infection
56 >10

MR Egger 1.0419 0.9916–1.0947 0.1097 73.3438 0.0410

Weighted median 1.0080 0.9767–1.0403 0.6206

IVW 1.0062 0.9826–1.0304 0.6081 76.6802 0.0283

Simple mode 0.9611 0.8859–1.0427 0.3443

Weighted mode 0.9684 0.9071–1.0339 0.3402

MR-PRESSO
0.0273(Outlier: 

rs16832436)

Pleiotropy 0.1229

VZV lgG 65 >10

MR Egger 1.0110 0.9809–1.0420 0.4820 71.9553 0.2056

Weighted median 0.9994 0.9776–1.0217 0.9603

IVW 1.0003 0.9849–1.0160 0.9659 72.6867 0.2136

Simple mode 0.9988 0.9475–1.0530 0.9657

Weighted mode 1.0024 0.9552–1.0519 0.9230

MR-PRESSO 0.2187

Pleiotropy 0.4266

EBV 6 >10

MR Egger 0.8207 0.6170–1.0917 0.2463 3.0553 0.5486

Weighted median 0.9753 0.8930–1.0653 0.5788

IVW 0.9509 0.8879–1.0183 0.1497 4.1400 0.5294

Simple mode 0.8870 0.7663–1.0268 0.1692

Weighted mode 1.0097 0.8865–1.1499 0.8906

MR-PRESSO 0.5577

Pleiotropy 0.3565

CMV lgG 7 >10

MR Egger 0.8688 0.7344–1.0279 0.1621 3.6783 0.5966

Weighted median 0.9603 0.8553–1.0784 0.4938

IVW 0.9481 0.8680–1.0357 0.2374 5.1108 0.5297

Simple mode 0.9595 0.8133–1.1321 0.6419

Weighted mode 0.9618 0.8194–1.1289 0.6505

MR-PRESSO 0.5770

Pleiotropy 0.2850

(Continued)
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0.5017–1.4332; p = 0.5380), EBV (OR = 0.9153; 95% CI: 0.6104–1.3727; 
p = 0.6688), CMV (OR = 0.8332; 95% CI: 0.5996–1.1578; p = 0.2770), 
HHV-6 IgG (OR = 1.0292; 95% CI: 0.5298–1.9994; p = 0.9323) and 
HHV-7 IgG (OR = 0.5408; 95% CI: 0.2023–1.4457; p = 0.2205) in the 
IVW analysis, which generally agreed with the results obtained from the 
remaining four MR analyses (Figure 3). Notably, the MR-PRESSO of the 
HSV infections dataset was tested for a p-value of 0.0130, but no outlier 
SNPs. At this point, MR Egger’s P (Q-statistic) = 0.0404, and IVW’s P 
(Q-statistic) = 0.0076. However, the MR Egger intercept test with a 
p-value of 0.1229 did not show directional pleiotropy, suggesting that 
heterogeneity is unlikely to affect the main estimates. MR-PRESSO test 
on the anogenital HSV infection dataset found a p-value of 0.0270, 
suggesting heterogeneity, and a p-value of 0.3623 for MR-PRESSO after 
excluding outlier SNPs (rs17524886), and did not identify other outlier 
SNPs. At this point, MR Egger’s P (Q-statistic) = 0.2497, and IVW’s P 
(Q-statistic) = 0.3346, indicating no heterogeneity. The MR-PRESSO test 
of the HHV-7 IgG dataset found a p-value of 0.0467, a p-value of 0.3500 
after excluding outlier SNPs (rs4669231) and suggesting no other outlier 
SNPs, and a P (Q-statistic) = 0.2704 for MR Egger and P 
(Q-statistic) = 0.3289, indicating no heterogeneity. The p-value of the 
Q-statistic for the rest of the dataset was greater than 0.05, and the SNPs 
in the funnel plot of IVW were symmetrically distributed, indicating no 
significant heterogeneity (Supplementary Figure S4). All MR Egger 
intercept tests had p-values greater than 0.05, suggesting that the SNPs 
were free of directional pleiotropy, which suggests good validity and 
robustness of the MR analysis. In addition, no individual SNPs capable 
of driving causality between exposure and outcome were identified from 
leave-one-out analyses (Supplementary Figure S5). In conclusion, the 
forest plot shows that ALS was not causally associated with HSV, VZV, 
EBV, CMV, HHV-6, and HHV-7 (Figure 4).

4 Discussion

Neurodegenerative diseases can damage and degenerate neurons 
in the CNS and peripheral nervous system, resulting in severe loss of 

memory, behavior, and sensory and motor functions due to the 
inability of the neurons to renew and regenerate. Classic NDDs 
include Parkinson’s disease, Alzheimer’s disease, and ALS, which 
impose an enormous global burden (Wilson et al., 2023). Although 
the pathogenic mechanism of ALS is unclear, it is believed that it may 
be  due to oxidative stress, apoptosis, mitochondrial dysfunction, 
axonal degeneration, neuroinflammation, and viruses (Sever 
et al., 2022).

Among HHVs, the most well-known HSV can infect neurons and 
reach the CNS through retrograde axonal transport, ultimately leading 
to diseases such as encephalomyelitis, and several studies have shown 
that HSV is closely related to NDDs (Carneiro et al., 2022). Primary 
infection with VZV causes varicella and can latently infect neurons. 
When the body is immunocompromised or aged, VZV is reactivated 
and causes a zoster. In addition, VZV can cause neurological 
syndromes such as myelitis and segmental motor paralysis (Gershon 
et  al., 2015). EBV is most commonly associated with infectious 
mononucleosis, while primary or latent infections are mostly 
associated with neurological disorders, such as encephalomyelitis 
(Andersen et al., 2023). CMV can exhibit tropism for neural stem cells 
and cause multiple spinal cord radiculitis (Kleinschmidt-DeMasters 
and Gilden, 2001; Kamte et al., 2021). The viral load of HHV-6 is 
associated with increased central nervous system demyelination 
(Lucas et al., 2023). The damage to the CNS system by HHV-7 has also 
been reported (Li et al., 2022).

However, do these HHVs increase the risk of ALS? Earlier studies 
reported that chronic viral infections play an important role in the 
pathogenesis of ALS, and antibody titers to HSV-1 were significantly 
increased in the sera of ALS patients (Irkeç et al., 1989). In contrast, 
studies have reported that significant elevations of HSV-1, HSV-2, and 
VZV antibodies were not detected in the sera of ALS patients 
(Catalano, 1972). In a mouse model of latent HSV-2 infection, it was 
found that HSV-2-induced spinal cord inflammation, although similar 
to that of ALS patients, was insufficient to induce the characteristic 
changes in the pathology of ALS (Cabrera et al., 2020). In addition, it 
has been reported that HSV-1, EBV, CMV, and HHV-6 can cause 

TABLE 1 (Continued)

Forward MR

Exposure SNP F
Mendelian randomization Heterogeneity

Method OR 95% confidence interval p Q Q_P

HHV-6 lgG 5 >10 MR Egger 0.9718 0.8714–1.0838 0.6424 1.8228 0.6100

Weighted median 0.9737 0.9262–1.0237 0.2976

IVW 0.9884 0.9486–1.0298 0.5765 1.9307 0.7485

Simple mode 0.9688 0.9038–1.0385 0.4214

Weighted mode 0.9647 0.9003–1.0338 0.3663

MR-PRESSO 0.7317

Pleiotropy 0.7641

HHV-7 lgG 6 >10 MR Egger 0.9906 0.8696–1.1284 0.8938 5.2634 0.2613

Weighted median 1.0156 0.9777–1.0550 0.4242

IVW 0.9991 0.9693–1.0299 0.9557 5.2870 0.3819

Simple mode 1.0232 0.9609–1.0897 0.5059

Weighted mode 1.0232 0.9644–1.0857 0.4810

MR-PRESSO 0.4127

Pleiotropy 0.8999
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motor neuron degeneration by activating endogenous retroviruses, 
thereby inducing the expression of the envelope glycoprotein HERV-K 
in ALS (Medina et al., 2017; Mayer et al., 2018). However, a subsequent 
study questioned this view due to their failure to detect highly 
expressed HERV-K RNA in ALS (Garson et al., 2019). Therefore, a 
causal association between HHVs and ALS cannot be stated based on 

the available evidence, and our systematic MR analyses can contribute 
to related studies.

Thus, studies on the relationship between human herpesviruses 
and ALS are conflicting, and there are few reports of a causal 
association between them. We concluded that there is no evidence to 
support a causal association between HHVs (HSV, VZV, EBV, CMV, 

FIGURE 1

The forward MR effect of HHVs and ALS. Scatter plots for MR-Egger, weighted median, IVW, simple mode and weighted mode methods highlighting 
the effect of HSV infections (A), HSV keratitis and keratoconjunctivitis (B), anogenital HSV infection (C), VZV IgG (D), EBV (E), CMV IgG (F), HHV-6 IgG 
(G), HHV-7 IgG (H), on ALS.

https://doi.org/10.3389/fnins.2023.1299122
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zheng et al. 10.3389/fnins.2023.1299122

Frontiers in Neuroscience 07 frontiersin.org

HHV-6, and HHV-7) and ALS using bidirectional TSMR based on a 
sizable sample of GWAS data, implying that observational studies in 
which HHVs and ALS are associated may be due to confounding 
factors such as environment or shared genetic structure.

Our bidirectional TSMR study focused on the causal relationship 
between HHVs and ALS for the first time. This study has several 
strengths. Firstly, we are not limited to studying HSV and ALS but 
have expanded to study the causal relationship between multiple 
HHVs and ALS. Secondly, a bidirectional TSMR analysis reduces bias 
from confounding factors and excludes the effects caused by reverse 

causality. Of course, this study has some limitations. First, the 
significance threshold was relaxed from 5 × 10 −8 to 5 × 10 −5 because 
the number of IVs was so small. Distortion caused by weak 
instruments is possible, even though the resulting IVs were all defined 
as strong instrumental variables after calculating the F statistic 
(F > 10). Second, although sensitivity analyses of MR indicate 
robustness among SNPs, there is still the possibility of residual 
heterogeneity. Finally, we only analyzed GWAS data using European 
ancestry, and results should be interpreted with caution when applied 
to other populations.

FIGURE 2

Forest plots of causal effect estimates in the forward MR analysis. SNP, single-nucleotide polymorphism; ALS, amyotrophic lateral sclerosis; IVW, 
inverse variance weighted; OR, odds ratio; 95% CI, 95% confidence interval.
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TABLE 2 The causal effect of amyotrophic lateral sclerosis (ALS) and human herpes viruses (HHVs) by two-sample Mendelian Randomization (TSMR) 
and the sensitivity analysis results.

Reverse MR

Outcome SNP F
Mendelian randomization Heterogeneity

Method OR 95% confidence interval P Q Q_P

HSV infections 9 >10

MR Egger 0.5250 0.1491–1.8485 0.3491 14.6775 0.0404

Weighted median 1.2276 0.7147–2.1087 0.4574

IVW 1.4497 0.8429–2.4933 0.1796 20.8434 0.0076

Simple mode 0.6305 0.1781–2.2314 0.4947

Weighted mode 0.7290 0.2189–2.4282 0.6206

MR-PRESSO 0.0130 (No outlier)

pleiotropy 0.1301

HSV keratitis and 

keratoconjunctivitis
9 >10

MR Egger 0.5082 0.1019–2.5350 0.4363 8.1388 0.3205

Weighted median 0.7295 0.3192–1.6669 0.4544

IVW 0.7593 0.4193–1.3750 0.3634 8.4668 0.3893

Simple mode 0.3840 0.0887–1.6618 0.2363

Weighted mode 0.3613 0.0732–1.7820 0.2465

MR-PRESSO 0.3510

pleiotropy 0.6118

Anogenital HSV 

infection
8 >10

MR Egger 1.4447 0.3428–6.0888 0.6340 7.8441 0.2497

Weighted median 1.2291 0.6313–2.3927 0.5440

IVW 1.1641 0.6906–1.9623 0.5683 7.9774 0.3346

Simple mode 0.6670 0.2166–2.0540 0.5032

Weighted mode 1.8232 0.7162–4.6413 0.2481

MR-PRESSO
0.3623 (Outlier: 

rs17524886)

pleiotropy 0.7603

VZV lgG 10 >10

MR Egger 1.2778 0.3419–4.7762 0.7249 7.0744 0.5286

Weighted median 0.9059 0.4514–1.8181 0.7811

IVW 0.8480 0.5017–1.4332 0.5380 7.5159 0.5836

Simple mode 0.9145 0.3016–2.7723 0.8779

Weighted mode 0.9060 0.3246–2.5289 0.8547

MR-PRESSO 0.5907

pleiotropy 0.5251

EBV 9 >10

MR Egger 1.0159 0.3567–2.8939 0.9772 5.1470 0.6420

Weighted median 0.8890 0.5164–1.5303 0.6711

IVW 0.9153 0.6104–1.3727 0.6688 5.1919 0.7369

Simple mode 0.7376 0.3254–1.6721 0.4869

Weighted mode 0.7529 0.3255–1.7413 0.5257

MR-PRESSO 0.7260

pleiotropy 0.8383

CMV lgG 8 >10

MR Egger 0.4826 0.2376–0.9802 0.0905 5.0916 0.5321

Weighted median 0.8155 0.5416–1.2280 0.3288

IVW 0.8332 0.5996–1.1578 0.2770 7.9111 0.3405

Simple mode 0.7831 0.3949–1.5528 0.5065

Weighted mode 0.7740 0.3978–1.5061 0.4753

MR-PRESSO 0.3553

pleiotropy 0.1441

(Continued)
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5 Conclusion

We have shown no causal association between genetically 
predicted human herpes viruses (HSV, VZV, EBV, CMV, HHV-6, and 
HHV-7) and ALS based on Mendelian randomization analysis of 
currently relevant GWAS data. The associations observed in 
epidemiological studies may be partly attributable to shared genetic 
structure or environmental confounders, and we could devote more 
time and money to studies of other environmental factors associated 
with ALS and genetic structure.
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TABLE 2 (Continued)

Reverse MR

Outcome SNP F
Mendelian randomization Heterogeneity

Method OR 95% confidence interval P Q Q_P

HHV-6 lgG 10 >10 MR Egger 1.0570 0.1994–5.6030 0.9497 4.3357 0.8256

Weighted median 1.1747 0.4958–2.7834 0.7144

IVW 1.0292 0.5298–1.9994 0.9323 4.3369 0.8879

Simple mode 1.3468 0.3474–5.2215 0.6769

Weighted mode 1.4103 0.3754–5.2987 0.6229

MR-PRESSO 0.8853

pleiotropy 0.9736

HHV-7 lgG 9 >10 MR Egger 0.2620 0.0174–3.9373 0.3650 8.7596 0.2704

Weighted median 0.2803 0.0792–0.9912 0.0484

IVW 0.5408 0.2023–1.4457 0.2205 9.1611 0.3289

Simple mode 0.2053 0.0275–1.5347 0.1615

Weighted mode 0.2324 0.0316–1.7070 0.1894

MR-PRESSO 0.3500 (Outlier: 

rs4669231)

pleiotropy 0.5888

https://doi.org/10.3389/fnins.2023.1299122
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnins.2023.1299122/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2023.1299122/full#supplementary-material


Zheng et al. 10.3389/fnins.2023.1299122

Frontiers in Neuroscience 10 frontiersin.org

FIGURE 3

The reverse MR effect of ALS and HHVs. Scatter plots for highlighting the effect of ALS on HSV infections(A), HSV keratitis and keratoconjunctivitis (B), 
anogenital HSV infection (C), VZV IgG (D), EBV (E), CMV IgG (F), HHV-6 IgG (G), HHV-7 IgG (H) using the MR-Egger, weighted median, IVW, simple 
mode and weighted mode methods.
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