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Alzheimer’s disease (AD) is the most common form of dementia. AD is a progressive 
neurodegenerative disorder characterized by cognitive dysfunction, including 
learning and memory deficits, and behavioral changes. Neuropathology hallmarks 
of AD such as amyloid beta (Aβ) plaques and neurofibrillary tangles containing 
the neuron-specific protein tau is associated with changes in fluid biomarkers 
including Aβ, phosphorylated tau (p-tau)-181, p-tau 231, p-tau 217, glial fibrillary 
acidic protein (GFAP), and neurofilament light (NFL). Another pathological 
feature of AD is neural damage and hyperactivation of astrocytes, that can cause 
increased pro-inflammatory mediators and oxidative stress. In addition, reduced 
brain glucose metabolism and mitochondrial dysfunction appears up to 15  years 
before the onset of clinical AD symptoms. As glucose utilization is compromised 
in the brain of patients with AD, ketone bodies (KBs) may serve as an alternative 
source of energy. KBs are generated from the β-oxidation of fatty acids, which 
are enhanced following consumption of ketogenic diets with high fat, moderate 
protein, and low carbohydrate. KBs have been shown to cross the blood brain 
barrier to improve brain energy metabolism. This review comprehensively 
summarizes the current literature on how increasing KBs support brain energy 
metabolism. In addition, for the first time, this review discusses the effects of 
ketogenic diet on the putative AD biomarkers such as Aβ, tau (mainly p-tau 181), 
GFAP, and NFL, and discusses the role of KBs on neuroinflammation, oxidative 
stress, and mitochondrial metabolism.
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1. Introduction

Alzheimer’s disease (AD) has emerged as one of the most severe health-threatening 
conditions in the 21st century (Rolandi et al., 2020). The incidence rate of AD is expected to rise 
with a disproportionate increase in low- and middle-income societies (Zhang et al., 2021). From 
1990 to 2019, the prevalence and mortality rates of disease have doubled (Javaid et al., 2021). 
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Currently, more than 50 million people worldwide are living with 
dementia, particularly AD accounting for an estimated 50–70% of all 
dementia cases (Zhang et  al., 2021). This number is estimated to 
increase to 150 million by the end of 2050 (Patterson, 2018). As AD 
prevalence and mortality rates are increasing worldwide, it is crucial 
to advance our understanding of the disease (Patterson, 2018), which 
will considerably support the development of therapies (Cunnane 
et al., 2011).

Aging is the most prominent risk factor for developing AD with 
predominantly diagnosed as late-onset Alzheimer’s disease in people 
above 65 years old (Hoogmartens et al., 2021). More than 90% of AD 
is sporadic predominantly with a late onset, due to a combination of 
genetic variants (70%) such as APOE4 and environmental factors 
(30%), such as hormonal and molecular changes, diet and toxicological 
exposure (Dorszewska et al., 2016). However, early onset of AD can 
predominantly be  diagnosed in patients with familial AD, due to 
mutations in the Amyloid Precursor Protein (APP), presenilin 1 
(PSEN1) and presenilin 2 (PSEN2) genes (Piaceri et  al., 2013; 
Hoogmartens et al., 2021).

Neuropathology of AD starts approximately 15–20 years prior to 
its clinical symptoms (Ashton et al., 2019). This preclinical phase in 
AD is a “symptom free” stage, and individuals are cognitively 
unimpaired with amyloid aggregation (Vermunt et al., 2022). The 
more progressive Aβ aggregation would be found in prodromal phase 
of AD referring to the mild cognitive impairment (MCI) with an 
impairment in at least one cognitive domain (Douglas and Scharre, 
2019; Vermunt et al., 2022), and severe AD dementia or symptomatic 
AD is the late-stage AD characterized by a progressive functional 
impairments, and more definitive clinical symptoms (Douglas and 
Scharre, 2019).

Classical neuropathological hallmarks of AD, such as amyloid 
beta (Aβ) plaques and neurofibrillary tangles containing the neuron-
specific protein tau has been reported in the preclinical phase of AD 
(Gunes et al., 2022). The most advanced AD biomarkers with a greater 
prognostic and diagnostic value that are changed in cerebrospinal 
fluid (CSF), and plasma include amyloid beta (Aβ), phosphorylated 
tau (p-tau), neurofilament light (NFL) and glial fibrillary acidic 
protein (GFAP) (Benedet et al., 2021; Chatterjee et al., 2023). Any 
neuropathological changes such as reactive astrogliosis (Salvadó et al., 
2022) and disruption of the neural axonal cytoskeletal structure (Poff 
et al., 2021; Alberti et al., 2022) can change the level of these circulating 
biomarkers (Poff et al., 2021; Alberti et al., 2022), thereby making 
these biomarkers as the promising indicators for the early diagnosis 
of AD (Khoury and Ghossoub, 2019; Ausó et al., 2020; Klyucherev 
et al., 2022). Understanding these changes will proceed early diagnosis 
and therefore more effective disease-modifying approaches 
(Arvanitakis et al., 2019).

Furthermore, AD-affected brain shows glucose hypometabolism 
due to alleviated glucose uptake and utilization through different types 
of glucose transporters (GLUTs) (Szablewski, 2021). Predominantly, 
glucose uptake into the brain occurs using transporters GLUT1 and 
GLUT3 (Kyrtata et al., 2021). In AD brain, a reduced expression of 
GLUT1 carriers localized in brain microvasculature and astrocytes 
(Jurcovicova, 2014) as well as a decline in GLUT3 expressed in 
neurons have been indicated (Szablewski, 2021). In contrast, GLUT2 
as an insulin-sensitive glucose transporter is highly expressed in AD 
pathology assumed to be due to astrogliosis (Kyrtata et al., 2021). 
These subsequently result in reduced ATP production from glucose 

metabolism by 50% that continues to decrease further with disease 
progression (Szablewski, 2021). Brain energy deficits arising from the 
aforementioned processes are further attributed to AD-related 
neuropathological changes (Poff et  al., 2021; Alberti et  al., 2022; 
Salvadó et al., 2022).

In the brain neurons produce the majority of ATP through the 
oxidative phosphorylation of ADP. However, glia cells are also 
responsible for ATP synthesis (Beard et  al., 2022). Preferentially, 
astrocytes undergo glycolysis to synthesize lactate and pyruvate from 
glucose (Chamberlain and Sheng, 2019; Beard et al., 2022). Astrocytes 
due to having glycolytic enzymes are capable of using 80% of the 
glucose via glycolysis, while glycolytic enzymes are inhibited in the 
neurons (Chamberlain and Sheng, 2019). Albeit decreased glycolysis 
is associated with early cognitive impairment, contributing to AD 
progression (Goyal et al., 2023).

These abnormal glucose homeostasis in the brain (An et al., 2018) 
such as reduced uptake and utilization of brain glucose, perturbed 
glucose metabolism, reduced glycolysis and insulin and insulin-like 
growth factor-1 (IGF-1) resistance can cause a deficit in brain energy 
metabolism reported in AD brain (De La Monte, 2012; Szablewski, 
2021). Glucose deficiency can subsequently result in reduced ATP 
production by 50% that continues to decrease further with disease 
progression (Hoyer, 1992; Szablewski, 2021). Brain energy deficits 
arising from the aforementioned processes are further attributed to 
AD-related neuropathological changes (Poff et al., 2021; Alberti et al., 
2022; Salvadó et  al., 2022). Glucose deficiency not only cause an 
energy crisis which affect ATP and the NAD+/NADH ratio, but also 
it can detrimentally affect the biosynthesis of different components 
such as neurotransmitters (Dienel, 2019) and hepatic sialic acid (Peng 
et al., 2023). Moreover, 2 NADH shuttles (pentose phosphate shunt, 
malate–aspartate) contributing to glycolysis and glycogen turnover 
would be affected by glucose deficiency (Dienel, 2019).

Impaired brain energy metabolism can be  compensated by 
selected dietary approaches which result in an increase in plasma 
ketone bodies (KBs) from the catabolism of fatty acids (Phillips et al., 
2021). Ketogenic diets, which have been effective in treating pediatric 
epilepsy (Barañano and Hartman, 2008), can facilitate brain energy 
function by inducing nutritional ketosis (Ota et al., 2016; Jensen et al., 
2020; Ashton et  al., 2021). Several studies have shown a positive 
association between various ketogenic diets and a better cognitive 
performance (Krikorian et al., 2012; Xu et al., 2020; Ferraris et al., 
2021; Roy et al., 2021). For instance, it has been reported that 3 months 
medium chain triglycerides (MCT) intervention (17.3 g/day) can 
improve cognitive performance in mild to moderate AD patients (Xu 
et al., 2020). In another study, an average dosage of 25.2 g of MCT 
containing 99.3% caprylic acids, 0.6% capric acids, and 0.1% lauric 
acid for 4 months significantly improved the cognitive performance in 
AD patients (Juby et al., 2022). However, relatively few studies have 
reported the effects of this diet on AD-putative CSF and blood 
biomarkers such as Aβ, p-tau, GFAP, and NFL (Table 1). Moreover, 
there has been no human studies to date that have been conducted on 
the effects of ketogenic diet on these blood biomarkers. While recent 
studies indicate that ketogenic diet may impact AD biomarkers, it has 
not yet been determined whether increased KBs per se causes such 
changes or that KBs acts indirectly by increasing brain energy 
metabolism. Therefore, we aim to discuss how a ketogenic diet could 
provide an alternative energy source when glucose is not accessible. 
Furthermore, the influence of this diet on AD-associated biomarkers 
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TABLE 1 Human, in vitro and animal studies on the association between ketogenic intervention and AD biomarkers.

Human studies

Ketogenic 
Intervention

Dose, duration Subjects AD biomarker Outcomes Reference

MMKD (<10% carbohydrate, 

60–65% fat, and 30–35% 

protein)

Daily MMKD for 

6 weeks

11 MCI participants,

(Age: 64.6 ± 6.4 yr)

CSF Aβ42, Aβ40, tau, and 

p-tau181

Aβ42, Aβ-42/40,

total tau,

p-tau181

Nagpal et al. (2019)

MMKD (5–10% 

carbohydrate, 60–65% fat, 

and 30% protein)

Daily MMKD for 

6 weeks

20 participants; MCI 

(n = 11) and SMC 

(n = 9),

(Age: 64.6 ± 6.4 yr)

CSF Aβ42, Aβ40, t-tau, 

p-tau181, NFL

Aβ42, t-tau (only 

MCI),

NFL,

no changes in p-tau 181, 

Aβ40 or Aβ42/40

Neth et al. (2020)

kMCT (60% caprylic acid, 

40% capric acid)

30 g/day kMCT for 

6 months

MCI (n = 19),

Aged ≥55 yr

IL-8, IL-6,

IL-10, IL-17
Circulating IL-8,

No changes in IL-6, IL-10, 

IL-17

Myette-Côté et al. (2021)

In vitro studies

Ketogenic Intervention Dose, duration AD biomarker Outcomes Reference

VCO 2 g of VCO for 24-48 h Aβ40, Aβ42
Aβ neurotoxicity,

Neural survival

Nafar and Mearow (2014)

AcAc & βHB
Combination of 20 mM 

AcAc/20 mM βHB for 48 h
Aβ40

Aβ peptide efflux
Versele et al. (2020)

Animal studies

Ketogenic 
intervention

Dose, 
duration

Pathology stage 
and age

Type of 
animal 
model

AD biomarker Outcomes References

βHB and AcAc

βHB: 600 mg/kg/

day,

AcAc: 150 mg/kg/

day for 2 months

Early stage of AD at 

4 months old APP mouse 

model

(n = 12–14)

Aβ42, Aβ40 and 

Aβ38

Accumulation of 

intracellular Aβ42.

No changes in Aβ40 and 

Aβ38

Yin et al. (2016)

βHB
1.5 mmol/kg/d 

βHB for 28 days

Mid-stage of AD with 

cognitive deficit at 

3.5 months old

APP/PS1 mice

Aβ oligomer, APP, 

IL-1β, TNF-α, and 

IL-6

Aβ42 accumulation,

Senile plaques,

APP expression,

IL-1β, TNF-α, IL-6

Wu et al. (2019)

βHB
1.5 mmol/kg/day 

of βHB for 4 weeks

_
ApoE− 

C57BL/6 J mice
Aβ, Tau tau tangles, Aβ 

plaques

Krishnan et al. (2020)

(Continued)
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and other related risk factors is discussed. To the best of our 
knowledge, this is the first review article discussing recent studies on 
how different ketogenic diets or supplementations can affect these 
putative AD biomarkers and other AD related risk factors.

2. Ketogenic diet

Dietary approaches, with their holistic properties, have gained 
much attention over the last 4 decades (Mazzucca et  al., 2021). 
Evidence has shown that dietary approaches can prevent or treat 
chronic diseases such as cardiovascular diseases, cancer, chronic 
respiratory diseases, and diabetes (Ojo, 2019). A ketogenic diet is a 
high-fat, moderate protein and low-carbohydrate diet primarily used 
for the treatment of drug-resistant epilepsy (Jiang et al., 2022). In this 
diet, the total calories are largely obtained from fat with protein and 
carbohydrates making a relatively lower contribution (D’Andrea Meira 
et al., 2019).

Based on the percentage of fat, carbohydrate and protein, 
ketogenic diets are categorized into different groups which include the 
following: Classic Ketogenic Diet (CKD), traditional MCT diet, 
modified MCT diet (Schwartz et  al., 1989) and Modified 
Mediterranean Ketogenic Diet (MMKD) (Nagpal et al., 2019). CKD 
is typically comprised of 90% fat, 7% protein and 3% carbohydrate and 
is the most stringent ketogenic diet. Due to its anticonvulsant 
properties, CKD was used for treating epilepsy (Bough and Rho, 2007; 
Ferraris et al., 2021; Pietrzak et al., 2022). Two alternative forms of 
CKD are traditional MCT (60% MCT oil, 21% proteins and 19% 
carbohydrates) and modified MCT (30% MCT oils, 40% long chain 
saturated fat, 11% proteins and 19% carbohydrates) diets which 
consist of ketogenic kMCT (Schwartz et al., 1989; Neal et al., 2009). 
MMKD encompasses 60–65% fat, less than 10% carbohydrate, and 
30–35% protein (Nagpal et al., 2019).

kMCT was first recognized by Huttenlocher in 1971 as a more 
tolerant and palatable form of CKD (Huttenlocher et al., 1971). MCT 
is a 6- to 12-chain-length carbon atom found abundant in coconut, 

TABLE 1 (Continued)

Animal studies

Ketogenic 
intervention

Dose, 
duration

Pathology stage 
and age

Type of 
animal 
model

AD biomarker Outcomes References

KET (D-β-

hydroxybutyrate and 

(R)-1,3-butanediol)

152 mg/dL for 

300 days

Advanced stage of AD at 

8.5 months old
3xTgAD mouse 

model
Aβ, pTau Aβ aggregation, 

tau phosphorylation

Kashiwaya et al. 

(2013)

MCT diet (84% kcal fat, 

13% kcal protein and 

2% kcal carbohydrates)

MCT diet for 

8 weeks.

High fat diet-induced 

cognitive impairment 

from 8 weeks old Male C57BL/6 

mice (n = 16)

NF-κB, TNF-α, APP 

and p-tau

pTau/Tau ratio,

APP expression,

TNF-α, NF-κB,

Lin et al. (2022)

Ketogenic TD.96355 

containing 90.5% fat, 

0.3% carbohydrate, and 

9.2% protein

KD for 30 days

TBI-induced neuronal 

loss at 6–7 weeks old Male ICR mice 

(n = 26)
GFAP

GFAP in dentate 

gyrus, Reactive 

astrocytes.

Har-Even et al. (2021)

3-hydroxybutyl-3-

hydroxybutyrate

0.5 mL/kg/day KE 

for 30 days

TBI-induced 

morphological and 

functional deficits at 

8 weeks old

Male Sprague 

Dawley rats 

(n = 32)

GFAP

GFAP, Brain 

astrogliosis,

Neuroinflammation

Almeida-Suhett et al. 

(2022)

Ketogenic TD 96355 Daily for 30 days

Kainic acid-induced-

hippocampal 

neuroinflammation

Male ICR mice 

(n = 30)

TNF-α, NF-κB, 

PPARγ

TNF-α levels,

NF-κB, PPARγ

Jeong et al. (2011)

βHB
1.5 mmol/kg/d for 

8 weeks

Chronic cerebral 

hypoperfusion-induced-

neuroinflammation with 

cognitive impairment in 

adult rats

Male Sprague–

Dawley rats 

(n = 25)

NF-κB,

TNF-α,

IL-1β

NF-κB, IL-1β,

TNF-α

Wang et al. (2023)

MMKD, Modified Mediterranean Ketogenic Diet; MCI, Mild Cognitive Impairment; CSF, Cerebrospinal Fluid; Aβ, Amyloid Beta; p-tau, phosphorylated tau; SMC, Subjective memory 
complaints; NFL, Neurofilament Light; kMCT, ketogenic Medium Chain Triglycerides; IL, Interleukin; VCO, Virgin coconut oil; AcAc, Acetoacetate; βHB, βeta Hydroxybutyrate; APP, amyloid 
precursor protein; TNFα, Tumor Necrosis Factor alpha; ApoE, Apolipoprotein E; KET, Ketone esters; NF-κB, Nuclear factor kappa B; GFAP, Glial fibrillary acidic protein; PPARy, Peroxisome 
Proliferator-Activated Receptor y; PS1, Presenilin 1; TBI, Traumatic Brain Injury.
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palm kernel, and mammalian milk (Taylor et  al., 2019; Mett and 
Müller, 2021). Based on their chain length, MCT is classified into 
hexanoic acid (caproic acid; C6), octanoic acid (caprylic acid; C8), 
decanoic acid (capric acid; C10), and dodecanoic acid (lauric acid; 
C12) (Nimbkar et al., 2022). Due to the higher capric/caprylic content 
with a higher potential to produce KBs, MMKD and kMCT have been 
suggested to have greater ketogenic properties than CKD 
(Huttenlocher, 1976; St-Pierre et al., 2019). Unlike longer chain fatty 
acids which require specific transporters such as CD36, fatty acid 
transport proteins (FATPs) and carnitine shuttle (Heidt et al., 2023), 
medium chain fatty acid (MCFA) arising from MCT do not rely on 
specific transporters to pass through the mitochondrial membrane 
(Miyagawa et al., 2018; Heidt et al., 2023). Through passive diffusion, 
MCFA can be easily and directly transported into the mitochondrial 
matrix (Heidt et al., 2023), and enhances beta-oxidation (β-oxidation) 
rate in hepatocytes, which ultimately increases the serum KB 
concentration (Ameen et al., 2022). In response to the increased levels 
of KBs, brain energy metabolism and cognitive functions are improved 
significantly (Ameen et al., 2022). Increased levels of KB and brain 
energy might be important especially for the treatment of patients 
with AD, impaired brain energy metabolism and cognitive 
dysfunction (Krikorian et al., 2012).

3. Ketogenic intervention: metabolic 
pathways from oxidation to ketolysis

Although glucose is a primary energy source for the brain, KBs 
provide up to 60% of brain energy during glucose restrictions 
(Pietrzak et al., 2022). MCT ketogenic diet mimics fasting-associated 
metabolisms, during which glucose is replaced with fatty acids 
(Augustin et al., 2018; Włodarek, 2019). Similar to fasting, MCT- and 
any kind of ketone-rich diet induce nutritional ketosis (Włodarek, 
2019). This is generally characterized by elevated concentration of KBs 
from a normal range (~0.5 mM) to higher levels (3 mM) which 
considers an optimal range of KBs in serum (Harvey et al., 2019). This 
increased level of serum KBs is achieved via shortage of carbohydrates 
(Harvey et al., 2019). The metabolic pathway of ketone bodies from 
synthesis in liver and astrocytes to energy generation in the brain is 
shown in Figure 1. Shortly after the consumption of a ketogenic meal, 
MCT is hydrolyzed into MCFA. Via portal circulation, MCFAs are 
transported into the liver and in the hepatocytes, they undergo 
β-oxidation, which are converted to acetyl-CoA, thereby initiating 
ketogenesis to yield KBs. Three types of KBs, including beta-
hydroxybutyrate (βHB), acetoacetate (AcAc), and acetone, are 
generated from the hydrolyzation of fatty acids (Watanabe et  al., 
2020). These KBs are produced in the liver as the primary site of 
ketone synthesis, albeit they cannot be utilized by hepatocytes as the 
liver does not have ketolysis-related enzymes (enzyme Oxct1/SCOT1) 
to metabolize Acetoacetyl-CoA (AcAc-CoA) (Bendridi et al., 2022). 
The newly synthesized KBs flow to the extra-hepatic tissues, including 
brain (Bendridi et  al., 2022). As their levels increase in the 
bloodstream, KBs enter the brain via monocarboxylate transporters 
located in Blood Brain Barriers (BBB) (Jensen et al., 2020). KBs are 
delivered to neurons via different types of monocarboxylate 
transporters localized in astrocytes and neurons. Monocarboxylate 
transporters 1, 3 and 4 expressed in astrocytes and monocarboxylate 
transporter 2 expressed in neurons are responsible for KB 

transportations (Ardanaz et al., 2022). However, the expression of 
these fundamental transporters, as the brain bioenergetic carriers, is 
reduced in AD pathology (Ding et  al., 2020). In the healthy 
individuals, after KBs were transported into the neurons, inside the 
mitochondria, they induce ketolysis. KBs are then converted to 
Acetyl-CoA, which enters the tricarboxylic acid cycle to produce 
energy for the neurons (Jensen et al., 2020).

Although hepatocytes are the primary site of KBs production, to 
a lesser extent, other extrahepatic tissues, such as astrocytes, have the 
capacity to produce KBs from some fatty acids (long-chain; >12 
carbons) (Takahashi, 2020). Both in vitro and animal studies have 
demonstrated that astrocytes can synthesize KBs due to their ability 
to oxidize fatty acids (Yudkoff et al., 1997; Yoon and Jo, 2012). It has 
been found that some fatty acids can bypass liver metabolism and 
undergo ketogenesis in astrocytes (Yudkoff et al., 1997; Yoon and Jo, 
2012; Nonaka et  al., 2016). Astrocytes are the main site of 
mitochondrial β-oxidation and are the only source of KB generation 
in the brain (Yang et  al., 2022). Fatty acids, transported to the 
astrocytes, can initiate β-oxidation to produce acetyl-CoA. The 
produced acetyl-CoA undergoes ketogenesis to provide surplus KBs 
(Nonaka et  al., 2016; Silva et  al., 2022), which then moves to the 
neighboring neurons via monocarboxylate transporters. In the 
neurons, KBs undergo ketolysis to produce Acetyl-CoA to make 
further energy fuels for the brain (Nonaka et al., 2016; Jensen et al., 
2020; Takahashi, 2020). This can ameliorate the energy crisis in the 
brain when glucose is not accessible (Poff et al., 2021). Therefore, an 
adequate and continuous brain energy supply provided by KBs can 
repair the brain metabolism (Jensen et  al., 2020). In addition to 
improved brain energy metabolism, ketogenic diets are associated 
with alteration in AD CSF biomarkers (Neth et al., 2020). However, 
the mechanism of action of ketogenic diets in altering AD biomarker 
levels remains to be elucidated.

4. Effects of the ketogenic diet on 
multiple AD biomarkers

The beneficial effects of ketogenic diets on cognitive performance 
have been reported widely in healthy individuals as well as those with 
mild, moderate, and severe AD (Fortier et al., 2019, 2021; Xu et al., 
2020; Yomogida et al., 2021; Juby et al., 2022). In two human studies, 
30 g/day of kMCT containing 12% Captex 355 (60% caprylic acid, 40% 
capric acid) mixed with lactose-free skim milk improved executive 
function (Fortier et al., 2019, 2021). An improvement in episodic 
memory, processing speed and language has been reported in 
participants with MCI after a 6-month treatment with kMCT (Fortier 
et al., 2019, 2021). An average dosage of 25.2 g of MCT containing 
99.3% caprylic acids, 0.6% capric acids, and 0.1% lauric acid for 
4 months significantly improved the cognitive performance in AD 
patients (Juby et al., 2022).

Daily consumption of a jelly preparation containing 17.3 g MCT 
within 3 months showed improved cognitive ability in mild to 
moderate AD patients (Xu et al., 2020). Meiji817-B is a MCT meal 
containing ketogenic milk with 30.3 g caprylic acid and 9.8 g capric 
acid per 100 g total fat (Yomogida et al., 2021). Meiji817-B exhibited 
improved executive function, including working memory or 
inhibitory control in healthy elderly subjects (Yomogida et al., 2021). 
These cognitive benefits were positively associated across various 
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ketogenic diets including MCT oil, MCT powder and MCT jelly 
(Fortier et al., 2019, 2021; Xu et al., 2020; Yomogida et al., 2021; Juby 
et al., 2022). However, there is a paucity of information on the effects 
of this diet on AD CSF or plasma biomarkers (Table 1). Therefore, 
herein, we aim to review the novel studies on the effects of ketogenic 
diet on several AD fluid biomarkers such as Aβ, tau, GFAP, and NFL 
as well as to explore their involvement in other AD related risk factors.

4.1. Effect of ketogenic diet on Aβ 
biomarkers

Amyloid plaque, which is the extracellular abnormal deposition 
of Aβ, is a major neuropathological hallmark of AD (Murpy and 
LeVine III, 2010; Qiu et al., 2015; Moore et al., 2018; Tarawneh, 2020). 
Increased brain Aβ load along with reduced concentration of Aβ in 
the CSF and plasma have been widely reported (Hansson et al., 2019; 
Zaretsky et al., 2022; Chatterjee et al., 2023).

BBB is essential in maintaining Aβ metabolism, and any 
abnormalities in BBB might impair Aβ normal transport, thereby 
causing Aβ accumulation and deposition (Wang et al., 2021). It has 
been demonstrated that the expression of different Aβ transporters in 
BBB is decreased in the AD brain (Wang et al., 2021). Three major 
proteins, including low-density lipoprotein receptor-related protein 1 
(LRP1), AΒCB1 as P-glycoprotein (P-gp), and phosphatidylinositol-
binding clathrin assembly protein (PICALM) have a pivotal role in the 
efflux of Aβ peptides across BBB (Storck et al., 2018). Reduced LRP1 

and P-gp, as the major Aβ transporters across the BBB, further 
contributes to the poor clearance of brain Aβ (Figure 2). In contrast, 
increased KBs can facilitate the efflux of Aβ peptides across a human 
in vitro BBB model by enhancing LRP1, PICALM, and p-gp (Figure 3). 
This improves the Aβ transportation and clearance resulting in less Aβ 
plaque deposition and slower release of soluble Aβ (Versele et al., 2020).

Increased Aβ efflux reduces Aβ plaque deposition and mitigates 
soluble Aβ (Wang et al., 2021). Reduced levels of soluble oligomer 
Aβ42 was reported followed by the combined treatment of AcAc and 
βHB (Yin et al., 2016). An in vitro study showed a significant decline 
in neurotoxicity due to lowered Aβ plaque deposition and reduced 
soluble Aβ after consuming coconut oil (CoOil) (Nafar and Mearow, 
2014). βHB therapy (1.5 mmol/kg/d) in AD model of mice for 28 days 
suppressed APP expression, enhanced the expression levels of 
neprilysin, as a degradation enzyme for Aβ, reduced number of senile 
amyloid plaques, and mitigated soluble and insoluble Aβ42 and Aβ40 
(Wu et al., 2019).

Increased oxidative stress and changes in brain energy availability 
are associated with impaired ATP-sensitive potassium (KATP) channels, 
found in both glia and neurons. KATP channels known as metabolic 
sensors are changed across the AD continuum (Grizzanti et al., 2022). 
Activation of Kir6.2, one of the main subunits of KATP channels, is 
increased as Aβ pathology is elevated (Grizzanti et al., 2022). In an 
animal study, APP/PSE1 mice knocking out Kir6.2, showed no 
significant increase in Aβ pathology, while activation of KATP channel 
showed Aβ deposition (Grizzanti et al., 2023). On the other hand, in 
an in vitro study, a ketone cocktail (BHB and AcAc; each 1 mM) 

FIGURE 1

Schematic figure of Ketone Body Synthesis and Metabolism. Dietary MCT is hydrolysed into MCFA, which undergoes β-oxidation to produce acetyl-
CoA. In the liver mitochondria, excessive acetyl-CoA induces ketogenesis and produces KBs (βHB and AcAc). Via circulation, KBs enter the brain and 
inside the neural mitochondria, they induce ketolysis to produce acetyl-CoA. LCFAs that bypass liver metabolism goes to the astrocytes and initiate 
β-oxidation, generating acetyl-CoA that undergoes ketogenesis to provide surplus KBs, which go to the neurons to furnish further energy. KD, 
Ketogenic Diet; MCFA, Medium Chain Fatty Acid; KBs, Ketone Bodies; βHB, βeta Hydroxybutyrate; AcAc, Acetoacetate; TCA, Tricarboxylic Acid. Adapted 
from Biorender.com.
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treatment through their interactions with KATP channels guaranteed 
neural survival, increase ATP production (Kim et al., 2015; Pietrzak 
et al., 2022) and decrease Aβ aggregations (Pietrzak et al., 2022).

In a human trial, a 6-week MMKD intervention containing 
60–65% fat, 30% protein and 5–10% carbohydrate potentially 
increased CSF Aβ42 and Aβ42/tau ratio in the at-risk adults compared 
to control groups who consumed 55–65% carbohydrate, 15–20% fat, 
and 20–30% protein (Neth et al., 2020). Likewise, in another human 
study, compared to cognitively unimpaired participants, MCT-treated 
participants showed a significantly increase CSF Aβ40 and Aβ42 over 
a six-week MMKD therapy containing >10% carbohydrate, 60–65% 
fat, and 30–35% (Nagpal et al., 2019). Accordingly, it is suggested that 
KBs arising from various types of ketogenic interventions can decrease 
Aβ neurotoxicity, reduce Aβ aggregation and modulate Aβ peptides 
in the circulation. Ketone molecules are also able to increase Aβ efflux 
and mitigate soluble Aβ.

4.2. Effect of ketogenic diet on tau 
biomarkers

Tau protein, a core hallmark of AD, is the main constituent of the 
paired helical filaments (PHF), which forms neurofibrillary tangles 

(NFTs) in the AD brain (Serrano-Pozo et al., 2011). Increased CSF and 
plasma phosphorylated tau, commences decades before the clinical 
presentation of the disease (Rajmohan and Reddy, 2017; Chatterjee 
et al., 2022). However, the neuroprotective antioxidant properties of 
compounds present in some ketogenic diets can ameliorate abnormal 
tau aggregation and induce neural survival (Guo et al., 2013; Baek 
et al., 2020; Krishnan et al., 2020).

There are few evidence supporting neuroprotective features 
induced by ketogenic diet on tau biomarkers, though some animal 
studies and only 2 human studies were conducted to show their 
association. For example, 4 weeks βHB therapy, in the C57BL/6 mice 
models of ApoE-deficient AD, which causes progressive p-tau Ser202/
Thr205 accumulation, significantly ameliorated tau tangles colocalized 
in the hippocampal region of ApoE4 transgenic mice (Krishnan et al., 
2020). This significantly reduced the risk of AD progression in these 
mice (Krishnan et al., 2020). Increased number of intracellular p-tau 
in the amygdala, subiculum, CA1 and CA3 of the hippocampus in AD 
male 3xTgAD mice models has been modified followed by taking a 
ketone ester diet comprising of D-β-hydroxybutyrate and (R)-1,3-
butanediol (Kashiwaya et  al., 2013). Prolonged consumption 
(16 weeks) of a high-fat-high cholesterol diet in C57BL/6 mice model 
of AD showed hyperphosphorylation of p-tau S396 and increased 
neuroinflammation in cortex and hippocampus (Lin et al., 2022). 

FIGURE 2

The Schematic Figure of Various Pathological Status of AD Biomarkers in the Fluid. Increased Aβ plaques inside the brain suppress the Aβ clearance and 
reduce Aβ efflux. This mitigates 3 Aβ transporters including LRP1, RAGE and P-gp within the BBB. Aβ deposition in the brain leads to reduced CSF and 
plasma Aβ. Injured neurons increase the levels of CSF and blood p-tau. Reactive astrogliosis increases GFAP levels in both CSF and blood. Axonal 
neural damage also releases higher NFL. Although disruption of these biomarkers can be found in both CSF and blood, their concentrations are 
significantly higher in the CSF ( ) rather than on blood ( ). In addition, Mitochondrial deficits, neuroinflammation and apoptosis are all closely linked to 
the AD pathology. Aβ, Amyloid Beta; GFAP, Glial fibrillary acidic protein; NFL, Neurofilament Light; ROS, Reactive Oxygen Species; NF-κB, Nuclear 
factor kappa B; TNFα, Tumor Necrosis Factor alpha; IL, Interleukin; TGF, Transforming Growth Factor; BAX, Bcl-2-associated X; PPAR, Peroxisome 
Proliferator-Activated Receptor; P-gp, P-glycoprotein; LRP1, lipoprotein receptor-related protein-1; PICALM, Phosphatidylinositol-binding clathrin 
assembly protein; BBB, Blood Brain Barrier. Adapted from Biorender.com.
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Albeit, an eight-week treatment of MCT diet composed of 84% fat, 2% 
carbohydrates and 13% protein significantly reduced the ratio of p-tau 
S396 /total-tau (t-tau) in these regions (Lin et  al., 2022). MCT 
mitigated the hyperphosphorylation of p-tau S396 and reduced 
neuroinflammation (Lin et al., 2022).

A decline in CSF t-tau concentration was found in the MCI 
subjects after a 6-week consumption of MMKD (Neth et al., 2020). 
However, the same study showed no significant changes in the levels 
of p-tau181 in the subjective memory complainer (SMC) group (Neth 
et al., 2020). Compared to American Heart Association Diet (AHAD), 
a low-fat and higher-carbohydrate diet, MMKD over a 6-week therapy 
significantly impeded CSF t-tau in MCI or SMC patients (Nagpal 
et al., 2019). Therefore, it can be suggested that the levels of tau in 
some isoforms is reduced followed by increased levels of KBs in 
the circulation.

4.3. Effect of ketogenic diet on astroglial 
biomarkers with a focus on GFAP

AD pathogenesis is not exclusively limited to the formation of Aβ 
plaque and tau phosphorylation. It includes some other factors that 
contribute to neuropathological processes (Pereira et  al., 2021). 
Astroglial-dependent toxicity plays a leading role in the development 
of AD pathology. Astrogliopathy refers to hyperactivation, astroglial 
atrophy and loss of function due to the destruction of adjacent 
neurons (Verkhratsky et al., 2019). In AD, reactive astrocytes acquire 
neurotoxicity arising from astrocyte hypertrophy (Perez-Nievas and 

Serrano-Pozo, 2018), which can provide an anatomical substrate for 
the aberrant growth of newborn dentate granule cells (Robinson et al., 
2016). Intermediate filament (IF) cytoskeleton changes lead to the 
overexpression of IF proteins such as GFAP, an index for astroglia 
activation, which gradually increases followed by any 
neurodegenerative injuries (Smit et  al., 2021). Astrogliopathy can 
affect the level of biomarkers and can be found in the early stages of 
AD (Verkhratsky et  al., 2019; Pereira et  al., 2021). Astrocytic 
phagocytosis also mediates the Aβ clearance in the brain through the 
influx and degeneration of soluble form of Aβ (Frost and Li, 2017). It 
has been reported that even with a slight deficiency or decline in Aβ 
clearance, neurotoxicity occurs, which is correlated to a higher risk of 
AD (Yoon and Jo, 2012). In astrogliosis, the levels of some biomarkers 
such as GFAP (Chatterjee et al., 2021) and vimentin (Dai et al., 2023) 
are elevated significantly.

Higher levels of GFAP in the hippocampus and cortex have been 
reported caused by neural loss, cognitive and memory deficits in a TBI 
mouse model (Har-Even et al., 2021). However, a 30-day treatment of 
ketogenic diet (90.5% fat, 9.2% protein, and 0.3% carbohydrate) 
attenuated neural loss, and improve memory function through 
mitigating reactive astrocytes. GFAP concentration in the dentate 
gyrus but not in the cortex was significantly reduced, followed by an 
increase in blood KBs levels (Har-Even et al., 2021).

Increased levels of βHB significantly reduced the hyperactivation 
of astrocytes and three other hyperactivated microglial markers, 
including ionized calcium-binding adaptor molecule 1 (Iba-1), a M1 
microglial marker (CD16/32), and a marker of macroglia (CD68) 
(Zhang et al., 2020). Higher levels of GFAP in response to regional 

FIGURE 3

Proposed Schematic Figure for the Effects of Ketogenic Intervention on Different AD Related Markers in the CSF and Blood. KBs in the neural 
mitochondrial go to the TCA cycle, which increases energy metabolism. This increases Aβ efflux and facilitates Aβ clearance in the brain. Higher Aβ 
clearance across the BBB leads to the elevation of LRP-1, P-gp, and PICALM proteins, which altogether result in the increased concentration of Aβ in 
the CSF. Increased energy metabolism might reduce tau hyperphosphorylation, GFAP expression, and NFL release in the brain. However, the 
mechanism by which KBs can eliminate their levels in the CSF and blood has not yet been discovered. In addition, increased energy metabolism might 
actively impact mitochondrial function and reduce neuroinflammation and apoptosis markers. Aβ, Amyloid Beta; GFAP, Glial fibrillary acidic protein; 
NFL, Neurofilament Light; ROS, Reactive Oxygen Species; NF-κB, Nuclear factor kappa B; TNFα, Tumor Necrosis Factor alpha; IL, Interleukin; TGF, 
Transforming Growth Factor; BAX, Bcl-2-associated X; PPAR, Peroxisome Proliferator-Activated Receptor; P-gp, P-glycoprotein; LRP1, lipoprotein 
receptor-related protein-1; PICALM, Phosphatidylinositol-binding clathrin assembly protein; BBB, Blood Brain Barrier. Adapted from Biorender.com.
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astrogliosis in the mouse hypothalamus and the hippocampal network 
is associated with memory decline and further neural damage 
(Bondan et al., 2019). However, by producing KBs, ketone monoester 
and 3-hydroxy butyl-3-hydroxybutyrate provides an alternative brain 
fuel, which compensates for the reduction in glucose utilization, and 
combats astrogliosis, and microgliosis in the prefrontal cortex, cortex, 
amygdala, and hippocampus (Le Foll and Levin, 2016; Morris et al., 
2020; Almeida-Suhett et  al., 2022). Thirty days treatment with 
3-hydroxybutyl-3-hydroxybutyrate (0.5 mL/kg/day) were able to 
reduce prominent GFAP positive reactive astrocytes in the 
TBI-induced behavioral and neuropathological alterations (Almeida-
Suhett et  al., 2022). The neuroprotective mechanism of KBs is a 
possible mechanism that ultimately changes the levels of GFAP 
(Figure 3).

It has been shown that 8 weeks intervention therapy with MCT 
composed of 84% fat, 2% carbohydrates, and 13% protein could 
significantly decrease GFAP expression in the cortical and 
hippocampal regions of the C57BL/6 mice brain (Lin et al., 2022). This 
effect was ascribed to the presence of caprylic acid and capric acid in 
the MCT diet, which significantly elevated βHB in the circulation (Lin 
et al., 2022). Therefore, it is suggested that βHB or combined KBs 
arising from different types of KDs mitigate reactive astrogliosis and 
reduce the levels of GFAP in circulation.

4.4. Effect of ketogenic diet on NFL

NFL, a neuronal cytoplasmic biomarker, has emerged as one of 
the most promising candidates for the diagnosis and progression of 
neurodegenerative disorder (Dhiman et al., 2020). In neurological 
disorders including inflammatory, neurodegenerative, traumatic, and 
vascular diseases, the release of this biomarker is highly increased in 
response to severe axonal damage (Gaetani et al., 2019). Elevated NFL 
levels correlate with poorer cognitive performance, brain 
hypometabolism, and atrophy, making this biomarker a promising 
candidate for detecting neurodegeneration and AD (Mattsson 
et al., 2017).

Little is known about the association between ketogenic 
intervention and changes in NFL concentrations. The modified 
ketogenic diet may impact axonal neural injuries (Neth et al., 2020). 
Six-week treatment with MMKD could significantly reduce CSF NFL 
biomarkers in the older populations with MCI, suggesting ketogenic 
intervention by inducing ketosis can constructively impact 
neurodegeneration-related injuries. While only one human study has 
been conducted on the impact of KDs on NFL levels (Neth et al., 
2020), it is proposed that KBs can mitigate NFL levels in 
the circulation.

4.5. Effect of ketogenic diet on 
neurotrophic, neuroinflammation, 
apoptotic and oxidative stress factors

In addition to aforementioned biomarkers with prognostic and 
diagnostic value, AD is characterized by increased multiple metabolic 
interactions and comorbidities that promote its progression (Karikari 
et  al., 2020; Verberk et  al., 2022). As the disease progresses, AD 

patients exhibit further abnormalities, such as down regulation of 
neurotrophic factors including brain-derived neurotrophic factor 
(BDNF) through dysregulation of the glutamatergic N-methyl-D-
aspartate receptor (NMDAR) which can cause Aβ-induced neuronal 
loss and dendritic atrophy (Meng et al., 2013). Downregulation of 
BDNF as a potential diagnostic biomarker is manifested during 
prodromal stage to severe AD (Bessi et al., 2020). On the contrary, 
14 days injection of 100 mg/kg AcAc showed a higher expression of 
hippocampal BDNF in the mice model of familial AD (Wu et al., 
2022), which is assumed to be  due to neuroprotective properties 
induced by AcAc (Murugan and Boison, 2020; Zhang et al., 2023). 
Expression of BDNF increased followed by 2 weeks intermittent 
fasting in the mouse models of Parkinson disease (Ojha et al., 2023). 
In addition, in a human study on 15 healthy subjects, combined 
caprylic acid (20 g) and coconut oil (30 g) after 4 h significantly 
increased serum levels of precursor BDNF, but not mature BDNF 
(Norgren et al., 2021).

In 2004, the mitochondrial cascade hypothesis was reported, 
describing it as a prerequisite that leads to disease progression in AD 
(Swerdlow and Khan, 2004). The percentage of mitochondrial 
dysfunction and depolarization is increased with age which ultimately 
increases the level of free radicals and insoluble Aβ from APP 
(Swerdlow and Khan, 2004). Increased levels of free radicals, such as 
Reactive Oxygen Species (ROS) and hydrogen peroxide (H2O2) are 
associated with cellular oxidative damage and disruption of cellular 
integrity (Agrawal and Jha, 2020). One of the main events after 
increased oxidative stress is DNA damage and consequently cell death 
which is considered to be one of the main events in neurodegeneration 
(Shadfar et al., 2022, 2023). However, the effects of ketogenic diet on 
oxidative stress and DNA damage in AD models have not yet 
been investigated.

It has been revealed that through reducing excessive levels of 
H2O2-induced neural injuries, MCFA capric acid can significantly 
suppress intracellular oxidative stress in the neuroblastoma cell line 
(Mett and Müller, 2021). Capric acid significantly inhibits the natural 
release of cellular H2O2 and reduces ROS levels (Mett and 
Müller, 2021).

In addition to mitochondrial dysfunction and surplus ROS 
production, several apoptosis-associated mediators such as p38, p21, 
mitogen-activated protein kinase (MAPK), and caspase 2, 3 and 9 can 
worsen the pathology of disease (Obulesu and Lakshmi, 2014; Misrani 
et al., 2021). Inversely, βHB can modulate neural apoptosis induced by 
low glucose accessibility due to mitochondrial dysfunction (Lin et al., 
2022). βHB not only provides an alternative energy fuel for the brain, 
but also modulates cellular signaling transduction related to apoptotic 
pathogenesis (Lin et  al., 2022). The antiapoptotic feature of βHB 
decreased apoptosis-related proteins, including p38 and caspase 3 and 
increase p-ERK (Lin et  al., 2022). Exogenous βHB can suppress 
overexpression of p53, caspase-3, caspase-9, and caspase-12  in 
Aβ-induced cell apoptosis in the hippocampal network (Xie 
et al., 2015).

Pro-inflammatory mediators are other major markers for AD 
progression (Rajesh and Kanneganti, 2022), tightly coupled with 
oxidative stress (Agrawal and Jha, 2020). Increased nuclear factor 
kappa-B (NF-κB), interleukin-1 (IL-1), IL-6, IL-12, transforming 
growth factor beta (TGFβ), and tumor necrosis factor alpha 
(TNFα) increase the risk of AD (Su et  al., 2016). However, 
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treatment with ketogenic Harlan Teklad TD 96355 diet containing 
90.5% fat, 0.3% carbohydrate, and 9.2% protein reduced 
hippocampal TNF-α and PPARγ activation and down regulate the 
expression of hippocampal COX-2. Reduced level of these markers 
results in the reduction of neurotoxicity and neuroinflammation 
(Jeong et al., 2011). Due to their anti-inflammatory properties, 
KBs can reduce the expression of pro-inflammatory factors IL-6 
(Platero et al., 2020), TNF-α and IL-1β (Wu et al., 2019; Wang 
et al., 2023). In a human study, 6 months of kMCT drink in MCI 
patients could significantly increase circulating IL-8 levels with 
minor side effects (Myette-Côté et  al., 2021). The nod-like 
receptor pyrin domain expression levels containing 3 (NLRP3) 
inflammasome and pro-inflammatory cytokines such as IL- 1β 
and TNF-α were significantly reduced after ketone therapy (Zhang 
et al., 2020). Reduced levels of NLRP3 could inhibit caspase-1 
activation and pro-inflammatory pathways and suppress NF-κB 
which lead to neural survival (Gough et al., 2021). According to 
these studies, KBs can modulate inflammatory cytokines, reduce 
free radicals and apoptosis.

5. Research gaps, limitations, and 
future directions

Ketone bodies are known to be the main energy source for the 
brain when glucose is restricted. To date, many studies have 
examined the effects of ketogenic diet on cognitive function and 
glucose metabolism from the early preclinical stages to severe 
AD. However, there are major gaps in the existing literature that 
need to be addressed. Since a wide variety of intervention dose and 
duration has been reported, it is crucial to find out the most optimal 
dose and duration for ketogenic intervention with no/few side 
effects and maximum tolerability. To improve cognitive outcomes 
in AD, long-term adherence to ketogenic diet is imperative, 
therefore identifying a tolerable ketogenic diet that causes limited 
or few side effects will reduce dropouts and allow for a longer-
term adherence.

Secondly, differing fatty acids stimulate differing levels of ketone 
body production. For instance, compared to LCFAs, MCFAs stimulate 
greater levels of ketone body production. It is hypothesized that brain 
energy resulting from increased ketone body response may delay AD 
progression and may subsequently result in a better outcome for AD 
biomarkers. So, as different ketogenic diets can provide differing ratios 
of fatty acids, it is important to consider the composition of fatty acids 
in the ketogenic diet in future studies.

While studies have shown improvements in cognition and 
brain energy metabolism following consumption of ketogenic 
intervention, few studies have reported the impact of ketogenic 
diets on AD biomarkers. Recent evidence has shown that AD 
biomarkers are capable of diagnosing disease 15 to 20 years prior 
to clinical onset. Therefore, more robust clinical studies are 
needed to investigate the effect of ketogenic diet on AD 
biomarkers to evaluate its effectiveness as a therapeutic approach 
to delay AD progression.

Lastly, the exact molecular mechanism on how KBs can make these 
changes has not yet been determined. As such, future studies are 

required to investigate whether KBs themselves directly alter the levels 
of biomarkers or whether it is mediated by its action to alter brain 
energy metabolism. Therefore, investigation of the mechanisms behind 
such possible changes should be  a research priority for future 
clinical trials.

6. Conclusion

The current review of the clinical trials undertaken to date 
indicates that the majority of ketogenic dietary interventions induce 
ketosis to produce KBs which ultimately lead to the improvements 
in cognition. The KBs generated as a result of these interventions 
provide essential energy for the brain and thereby help to retard 
neurodegeneration, though more convincing evidence is needed. In 
addition to changes in brain energy metabolism, KBs can modulate 
fluid biomarkers associated with AD pathology. Animal, in vitro 
and some human studies have demonstrated that ketogenic 
intervention not only modulates AD putative biomarkers, such as 
Aβ 42/40, p-tau, GFAP and NFL, but also plays an effective role in 
the improvement of oxidative stress, inflammation, and 
mitochondrial mechanism. However, blood biomarkers while 
having the potential as both diagnostic and prognostic markers 
need considerably more investigation before their significance and 
contribution to brain health can be determined.
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