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Introduction: Beneficial e�ects have been observed for mechanical vibration

stimulation (MVS), which are mainly attributed to tonic vibration reflex (TVR). TVR

is reported to elicit synchronized motor unit activation during locally applied

vibration. Similar e�ects are also observed in a novel vibration system referred to

as functional force stimulation (FFS). However, the manifestation of TVR in FFS is

doubted due to the use of global electromyography (EMG) features in previous

analysis. Our study aims to investigate the e�ects of FFS on motor unit discharge

patterns of the human biceps brachii by analyzing the motor unit spike trains

decoded from the high-density surface EMG.

Methods: Eighteen healthy subjects volunteered in FFS training with di�erent

amplitudes and frequencies. One hundred and twenty-eight channel surface

EMG was recorded from the biceps brachii and then decoded after motion-

artifact removal. The discharge timings were extracted and the coherence

between di�erent motor unit spike trains was calculated to quantify synchronized

activation.

Results and discussion: Significant synchronization within the vibration cycle

and/or its integer multiples is observed for all FFS trials, which increases with

increased FFS amplitude. Our results reveal the basic physiological mechanism

involved in FFS, providing a theoretical foundation for analyzing and introducing

FFS into clinical rehabilitation programs.

KEYWORDS

functional force stimulation, motor unit synchronization, high-density surface

electromyography, blind source separation, discharge timings

1 Introduction

Skeletal muscle atrophy and disfunction are common neuromuscular diseases in elderly

people and patients after long hospitalization or cancer treatment (Yin et al., 2018; Okun

et al., 2021), leading to a large amount of movement disability and accidental mortality.

Resistance training has been extensively employed for the recovery of skeletal muscles. It

is able to enhance the neural drive in the first few training weeks, and then change the

morphology, architecture, and size of themuscle tissue at a later stage (Sale, 1988; Karinkanta

et al., 2010). In order to improve the ability of force generation, resistance training is expected

to impose a moderate to high neuromuscular demand, e.g., > 60 − 70% of 1 repetition

maximum (Kraemer et al., 2002). This strategy is less suitable for elderly people or patients

due to their reduced ability of fully activation of the muscles.

Mechanical vibration stimulation (MVS) has been reported to produce beneficial effects

on muscle strength, power performance, bone density, and balance (Burke et al., 1970;

Rubin et al., 2001; Cochrane and Stannard, 2005; Karinkanta et al., 2010). MVS can

be directly applied to the muscle belly or tendon through a probe (Matthews, 1966;

Godaux and Desmedt, 1975), or indirectly applied to the entire body through a vibrating
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platform such as the whole body vibration (WBV)

platform (Cochrane and Stannard, 2005; Karinkanta et al.,

2010). The observed beneficial effects during local or whole body

MVS have been mainly attributed to a reflex contraction referred

to as tonic vibration reflex (TVR) (Eklund and Hagbarth, 1966;

Hagbarth and Eklund, 1966; Matthews, 1966). TVR originates

from vibration-induced deformation in the primary spindle

endings, resulting in reflex activation through the Ia-afferent and

the spinal cord to the α-motoneuron. It is well documented that

the outcomes of MVS depend strongly on the training parameters

such as the amplitude and frequency of the vibratory stimulation as

well as the initial contraction level of the muscle (Martin and Park,

1997; Karinkanta et al., 2010). These parameters are, unfortunately,

not freely adjustable in the existing MVS systems, limiting

their potential applications in fitness or clinical neuromuscular

rehabilitation programs.

As an alternative, a novel vibration system has been proposed

in recent decade (Xu et al., 2012). Different from MVS consisting

of local or whole body mechanical displacement, vibration

stimulation in the new system consists of sinusoidal force

modulation generated by a motor, which is applied to the muscle

via a dedicated bar-rope-handle interface (Xu et al., 2012). The

training parameters of this system are fully adjustable through the

software controlling the motor driver (Xu et al., 2012). In order

to distinguish from the MVS, this force-modulated vibration is

referred to as functional force stimulation (FFS) in the rest of this

paper. FFS is reported to produce similar effects as MVS (Mischi

and Cardinale, 2009; Xu et al., 2015a, 2016), which have also been,

at least partially, ascribed to the spinal reflex, i.e., TVR.

However, the physiological mechanisms of response to TVR are

in fact controversial. By the analysis of single motor unit (MU)

action potential under local MVS, many studies have reported

TVR to have a monosynaptic pathway, as evidenced by the

time-looked (synchronized) MU discharges within the vibration

cycle (Matthews, 1966; Homma et al., 1972; Godaux and Desmedt,

1975; Desmedt and Godaux, 1976). However, other studies have

observed that, with local MVS applied to the human, some MUs

are locked to the vibration cycle while others are not. These

findings have been taken as indicators of the occurrence of both

monosynaptic and polysynaptic activation of the motor neurons

during TVR (Hirayama et al., 1974; Matthews, 1994).

Furthermore, most of the proposed mechanisms for TVR are

based on the analysis of single MU action potential with locally

applied MVS. The manifestation of TVR in WBV and FFS is

in fact debatable. Some studies have associated the TVR-elicited

MU synchronization during WBV or FFS with the sharp peaks

at the vibration frequency and its harmonics in the amplitude

spectrum of the surface electromyography (sEMG) (Martin and

Park, 1997; Xu et al., 2015b). Other studies argue that these

sEMG spectral peaks may be primarily due to motion artifacts

generated by vibration-induced displacement in the electrode-skin

interface (Abercromby et al., 2007; Fratini et al., 2009; Romano

et al., 2018). These studies violate the manifestation of vibration-

induced MU synchronization, and thus hamper our understanding

of the physiological response of the muscles to WBV and FFS.

The debates in the manifestation of vibration-induced MU

synchronization in WBV and FFS arise mainly from the indirect

analysis of MU activation using global features extracted from

sEMG, such as the root mean square value, mean frequency,

and conduction velocity (Martin and Park, 1997; Abercromby

et al., 2007; Fratini et al., 2009; Xu et al., 2015b; Romano et al.,

2018). Needle EMG can directly measure the action potential

of a single MU, but is unsuitable for the investigation of MU

activation patterns duringWBV and FFS training due to its invasive

nature. Besides, needle EMG can only record local muscle activities

within a limited area. High-density electrode grid enables the

recording of multi-channel sEMG over the entire muscle, from

which the underlying neural drive sent to the muscle by the

motor neurons can be decoded using advanced decomposition

algorithms (Holobar and Zazula, 2007; Chen and Zhou, 2015;

Negro et al., 2016; Farina et al., 2017; Jiang et al., 2021).

The aim of the present study is therefore to investigate the

effect of FFS on MU synchronization by examining directly the

MU discharge timings decoded from high-density sEMG. Notch

filtering at the vibration frequency and its harmonics is employed

prior to sEMG decomposition irrespective of the nature of those

spectral components being vibration-induced motion artifacts or

muscle activity. Thus, the decoded MU discharge timings can

provide reliable interpretation on the activation patterns of the

motor neurons under different FFS conditions.

2 Methods

2.1 Subject

Eighteen healthy right-handed subjects (age = 28 ± 5 years, 12

males and six females) with no history of neurological diseases or

injuries volunteered in this study. The experimental protocol was

clearly explained to the participants before the experiment, and

written informed consents were received from all subjects. This

experiment was approved by the local Research Ethics Committee.

2.2 Experimental setup

2.2.1 Functional force stimulation
FFS was generated by a dedicated vibration system realized

in our previous study (Xu et al., 2012), as shown in Figure 1.

A three-phase permanent motor (MSK060C, Bosch Rexroth,

Boxtel, The Netherlands) was employed to generate FFS, which

consisted of a baseline force with superimposed sinusoidal force

modulation. The motor driver (IndraDrive HCS02, Bosch Rexroth,

Boxtel, The Netherlands) was controlled through a USB 6341

card by a dedicated software implemented in LabViewr (National

Instruments, Austin, TX, USA). An aluminum bar was utilized to

convert the rotary force to a vertical one, which was then applied to

the muscle through the handle and rope connected to the bar.

The angular position of the motor shaft was measured by a

rotary encoder embedded in the motor and the USB 6341 card

connected to the PC. Real-time visual feedback reflecting the wrist

position was therefore provided to the subjects through a LED

screen in order to instruct them to perform the desired (isometric)

contraction. Besides, a load-cell (LC62SP, OMEGA Engineering,

Norwalk, CT, USA) was embedded in the bar, enabling real-

time measurement of the generated force as well as the subject’s
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FIGURE 1

Scheme of the adopted FFS system: (A) A motor generates a sinusoidal force that is applied to the subject through a bar-rope- handle interface. A

visual feedback of the position of the motor shaft, measured by a rotary encoder embedded in the motor, is provided to the subject through a LED

screen; (B) The motor driver is controlled by a USB 6341 card, which is also employed to measure the encoder signal and the signal of a load-cell

embedded in the bar aiming at detecting the generated force. (C) Example of the generated force.

maximum voluntary contraction (MVC). However, real-time force

measurement was not performed in the present study but in a

previous study for dedicated system calibration (Xu et al., 2012).

2.2.2 EMG recording
Surface EMG signals were measured by two 8 × 8 electrode

grids (16 rows, eight columns) placed on the biceps brachii of the

subject’s right arm with the columns along with the direction of the

underlying muscle fibers (Figure 2). The diameter of each electrode

was 2 mm and the distance between two adjacent electrodes was

8 mm. A circle Ag/AgCl electrode with diameter of 1 cm was

placed on the right clavicle of the subject as patient ground. The

multi-channel sEMG signals were then amplified by a 128-channel

Rafa amplifier (TMS International, Enschede, The Netherlands)

and sampled simultaneously at 2,048 Hz with a 24-bit analog-to-

digital-conversion resolution.

2.3 Measurement protocol

The isometric MVC of each subject was first measured using

the adopted experimental setup. The subject sat comfortably on

the fitness bench keeping the back straight against the support

and the elbow angle at 90 degrees. He/she was then instructed to

use his/her maximum effort to keep pulling the handle for 3 s,

with the other side of the bar blocked. The force was measured

by the load-cell embedded in the bar. The maximum value over
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FIGURE 2

Framework of sEMG processing. Multichannel sEMG are recorded on the biceps brachii during FFS. After preprocessing and notch filtering at the FFS

frequency and its first subharmonic, the sEMG signals are decoded into series of MU spike trains. The coherence between di�erent MU spike trains is

estimated as a quantitative measure of synchronized activation in di�erent motor neurons.

the 3 s was considered for one measurement. This procedure was

repeated 3 times with a 1-min recovery between two consecutive

measurements. The maximum value among the three repeated

measurements was considered as the MVC of the subject.

After the MVC measurement, the subject maintained the same

position and performed 30-s isometric contractions under different

FFS conditions. For all contractions, the baseline force was set

to 30% of each subject’s MVC. The relatively low baseline level

was chosen to ensure reliable sEMG decomposition (Negro et al.,

2016). For each contraction, FFS with different amplitudes, i.e.,

12.5, 25, and 50% of the baseline, and frequencies, i.e., 20, 30,

40, and 55 Hz, was superimposed on the baseline force, resulting

in 12 different FFS trials. Besides, a contraction with the baseline

force only was also performed as control condition. Therefore, each

subject performed 13 30-s trials in a random order with a recovery

time of 2 min in between.

2.4 EMG processing and decoding

The 30-s sEMG signals were bandpass filtered between 15 and

450 Hz by a second-order Butterworth filter using the forward

and backward filtering method in order to prevent phase shift. A

second-order notch filter was applied to remove the power line

interference around (± 0.5 Hz) 50 Hz and its harmonics. Another

notch filter around (± 0.5 Hz) the FFS frequency and its first

harmonic was employed in experiment 1 to eliminate possible

motion artifacts generated by vibration-induced movement in the

recording electrode grid. After preprocessing, the sEMG signals

were decomposed into MU spike trains using the convolutive blind

source separation algorithm (Negro et al., 2016; Farina et al., 2017;

Jiang et al., 2021).

The basic working principles of the decomposition algorithm

are briefly described hereafter. At a discrete time instant k, the

sEMG signal recorded by electrode m, xm[k], can be modeled as

a convolutive mixture of MU spike trains, expressed as

xm[k] =

N
∑

n=1

L−1
∑

l=0

hmn[l]sn[k− l]+ ωm[k], m = 1, 2, . . . ,M, (1)

where M is the number of channels (electrodes), hmn[l] the action

potential of the nth motor unit recorded at channel m, L the

duration of the action potential, sn[k] the spike train (source) of the

nth motor unit,N the number of motor unit, andωm[k] the additive

noise at electrodem.
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A matrix form of Equation (1) that considers all the M channel

samples at discrete time instant k is given as

x[k] =

L−1
∑

l=0

H[l]s[k− l]+ ω[k], (2)

where

x[k] =
[

x1[k] x2[k] ... xM[k]
]T

,

s[k] =
[

s1[k] s2[k] ... sN[k]
]T

,

ω[k] =
[

ω1[k] ω2[k] ... ωM[k]
]T

,

andH[l] is anM × N matrix.

The aim of the decomposition algorithm is to identify, from the

observations x[k], the largest number of sources, i.e., spike trains

s[k], which are assumed to be either independent or sparse (Farina

and Holobar, 2015). To this end, s[k] is first extended to include the

original sources and their L−1 delayed versions in order to convert

the convolutive mixture in Equation (2) into a linear instantaneous

mixture. Accordingly, the observations are also extended by adding

R delayed versions of each observation in order to maintain a

sufficient ratio between the number of observations and that of the

sources. The extended model is then given by

x̃[k] = H̃s̃[k]+ ω̃[k], (3)

x̃[k] =
[

x̃1[k] x̃2[k] ... x̃M[k]
]T

s̃[k] =
[

s̃1[k] s̃2[k] ... s̃N[k]
]T

ω̃[k] =
[

ω̃1[k] ω̃2[k] ... ω̃M[k]
]T

and

H̃ =









h̃11 · · · h̃1N
...

. . .
...

h̃M1 · · · h̃MN









, (4)

with

x̃m[k] =
[

xm[k] xm[k− 1] · · · xm[k− R]
]T

, m = 1, ...,M

s̃n[k] =
[

sn[k] sn[k− 1] · · · sn[k− L− R+ 1]
]T

, n = 1, ...,N

ω̃m[k] =
[

ωm[k] ωm[k− 1] ... ωm[k− R]
]T

, m = 1, ...,M

and

h̃mn =















hmn[0] · · · hmn[L− 1] 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0 hmn[0] · · · hmn[L− 1]















(5)

an (R+ 1)× (L+ R) matrix.

Then, the extended sources s̃[k] (discharge timings of

individual motor neurons) are estimated by solving Equation (3)

using the two-step iteration algorithm proposed in Negro et al.

(2016). The first iteration estimates the extended sources by a fixed-

point fast ICA algorithm that maximizes the sparseness of the

extended sources (Negro et al., 2016; Farina et al., 2017). All the

peaks in the estimated source vector (ICA component) are then

identified by a peak detection algorithm and then classified into

two classes using K-means classification. The class with the highest

centroid is selected for the estimation of the discharge timings. The

second iteration consists of the convolution kernel compensation

(CKC) approach aiming at improving the estimation of the source

vector (Holobar and Zazula, 2007). It re-calculates each separation

vector in H̃
−1 from the estimated discharge timings until reaching

a minimum variability of discharge, favoring the assumption of

regular discharges of the motor neurons.

Besides, as defined in Equation (3), the extracted sources

contain the original sources as well as their delayed replicas. In all

analysis performed in the present study, the replicas were excluded

and only the original sources were considered. Furthermore, by

considering a refractory period of 10 ms (Farina et al., 2017), the

discharge timings with a interval <10 ms were excluded. Finally,

a silhouette measure (SIL), defined as the difference between the

within-cluster sums of point-to-centroid distances and the same

measure calculated between clusters, was calculated in order to

evaluate the quality of the decomposed results (Negro et al., 2016;

Dai and Hu, 2019).

2.5 Experiment design

Two main experiments are performed in the present study.

Experiment 1 presents the effects of FFS onMU activation patterns.

Experiment 2 is designed to evaluate the elimination of possible

motion artifacts from the decoded MU spike trains.

2.5.1 Experiment 1 (MU discharge pattern during
FFS)

All the 18 subjects participated in experiment 1. Each subject

performed 13 trials as described in Section 2.3. The decomposition

algorithm was applied to the sEMG signal recorded in each

trial in order to extract the spike trains (discharge timings) of

different MUs. Only spike trains with SIL ≥ 0.9 were considered

as reliable MU discharge timings. Any subjects with one or more

trials producing less than five reliable MU discharge timings were

excluded from further analysis. For each trial of the remaining

subjects, the discharge intervals of each MU were calculated from

the extracted spike trains. In addition, for each trial, the coherence

between each pair of spike trains was calculated in order to assess

the degree of synchronized discharge between two motor neurons,

as suggested in Dai et al. (2017). Figure 2 presents the schematic

diagram of the whole processing steps.

The discrete coherence Cxy[f ] between two spike trains was

calculated as the correlation between the two sequences in the

frequency domain, as given by

Cxy[f ] =
| Pxy[f ] |

2

Pxx[f ]Pyy[f ]
, (6)
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where Pxy[f ] is the cross-power spectral density between the two

spike trains, and Pxx[f ] and Pyy[f ] the auto-power spectral densities

of sequence x and y, respectively. The PSD was calculated using the

Welch’s approach with a sliding Hanning window of 0.5 s and an

overlap of 3/4 window length, in line with previous studies (Dai

et al., 2017). Besides, the number of Fourier transform was set to

2×fs in order to increase the frequency resolution. The adopted

parameters resulted in a 95% confidence limit of 0.027 for the

estimated coherence (Dai et al., 2017). The average coherence over

all pairs, Cm[f ], was considered for each trial. Furthermore, a

synchronization index (SCI) was calculated on Cm[f ] to evaluate

the degree of motor neuron synchronization around the FFS

frequency fv, given by

SCI =

∑fv+2

f=fv−2
Cm[f ]+

∑2fv+2

f=2fv−2
Cm[f ]

∑120
f=15 Cm[f ]

. (7)

Finally, a statistical analysis was performed on the SCIs

extracted from the spike trains under different FFS frequencies

and amplitudes. Data were normally distributed as suggested by

the one-sample Kolmogorov-Smirnov test. As a result, a two-

way ANOVA was adopted to access the global effects of FFS

frequency and amplitude on the SCI. In addition, a post-hoc test

with Bonferroni criterion was performed to examine the pairwise

difference in FFS frequency and amplitude. The significance level

was set to 0.05.

2.5.2 Experiment 2 (validation of motion-artifact
removal)

We hypothesized that by notch filtering at the vibration

frequency and its first harmonics, on one hand, possible vibration-

induced motion artifacts may be eliminated from the decoded

discharge timings. On the other hand, such notch filtering will

never influence the actual MU discharge timings. With this

strategy we could therefore perform reliable interpretation on MU

activation patterns under different FFS conditions. Experiment

2 was conducted to validate this hypothesis. To this end, two

synthetic datasets were generated based on a real high-density

sEMG recorded in experiment 1 without FFS (control condition).

This 128-channel sEMG signal was assumed to be motion-artifact

free and therefore employed as a baseline signal.

The first synthetic dataset consisted of the selected baseline

EMG and a stimulated motion artifacts (a sinusoidal), expressed as

S1rc[k] = xrc[k]+A1rc · sin[2π
fv

fs
(k− (r− 1)τr − (c− 1)τc)], (8)

where xrc is the baseline EMG with r = 1, · · · , 16 and c =

1, · · · , 8 the indicators of row and column, respectively, fs =

2, 048 is the sampling frequency, fv = 20 is the frequency

of possible vibration-induced motion artifacts, A1rc is a scaling

factor mimicking motion-artifact amplitude variation in different

channels, and τr and τc are time delays of motion artifacts between

adjacent rows and columns, respectively. Given the FFS pathway

(from the hand to the elbow joint and then the biceps) and the

positioning of the recording grids (Figure 2), the simulated motion

artifacts were assumed to prorogate through different rows with a

velocity of 100 m/s, in line with previous studies (Xu et al., 2015b),

resulting in a τr ≈ 0.16 sample. Propagation of motion artifacts

in different columns of the grid was set to zero. The scaling factor

A1rc is randomly picked between 0.8 and 1.2 of a fixed value that

was derived by averaging the amplitude spectrum of all the trials

under 20-Hz FFS in experiment 1.

The second synthetic dataset consisted of the same baseline

EMG and a simulated EMG with synchronized activation of

different motor neurons, as given by

S2rc[k] = xrc[k]+ A2rc · e[k− (r − 1)τr − (c− 1)τc]. (9)

The simulated EMG e[k] was generated using the convolutive

model described in (1), given as

e[k] =

N
∑

n=1

L−1
∑

l=0

hn[l]sn[k− l], (10)

where hn[l] and sn[k] are the action potential and spike train

of the nth motor unit, respectively, L the duration of the action

potential, and N the number of motor units. In the present study,

five MUs were considered (N = 5) since an exclusion criterion of

at least 5 MUs was adopted in experiment 1. Accordingly, for hn[l],

five action potentials with different morphologies were randomly

picked from the decomposition results of experiment 1. In order to

mimic synchronized activation, the discharge intervals of different

sn[k] were assumed to be different but were Gaussian distributed

with mean and standard deviation of 50 ± 5 ms, corresponding to

a frequency of 20 Hz (the same as the simulated motion artifacts

in S1). The simulated EMG was assumed to propagate in different

rows of the recording grid with a velocity of 4 m/s (Xu et al., 2015a),

resulted in a τr ≈ 4.1 samples. No time delay was considered

between different columns. Besides, the same approach used in S1

was adopted to determine the scaling factor A2rc.

Finally, both synthetic datasets were notch filtered around

20 and 40 Hz and then decoded into MU spike trains using

the algorithm described in Section 2.4. The PSDs of the

spike trains were estimated using the Welch’s periodogram and

compared. Figure 3 presents the schematic diagram of the whole

validation steps.

3 Results

3.1 Experiment 1 (MU discharge patterns
during FFS)

Four subjects are excluded from this study based on the quality

of the decoded MU spike trains, as described in Section 2.5.1. A

representative example of the MU spike trains decoded from the

sEMG recorded during one FFS trial is shown in Figure 4. In total,

12 MUs have been successfully decoded with an average accuracy,

indicated by the silhouette measure (SIL), of∼0.96. For all the trials

of the remaining 14 subjects, the number of MUs identified by the

decomposition algorithm ranges from 5 to 24. The accuracy of the

decomposition (SIL) is between 0.90 and 0.98. The average MU

number and SIL for different FFS trials over all subjects are reported

in Table 1. No significant difference is observed in the MU number

nor the SIL between different FFS conditions.

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1293017
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnins.2023.1293017

FIGURE 3

Framework and results of experiment 2. Two synthetic datasets are generated based on a baseline sEMG. For synthetic dataset 1 (consisting of the

baseline sEMG and simulated motion artifacts), clear peak presents in the PSD of the original signal but not in the PDS of the decoded MU spike

trains. For synthetic dataset 2 (consisting of the baseline sEMG and synchronized activation of 5 MUs), clear peak presents in both the PSD of the

original signal and that of the decoded MU spike trains.

FIGURE 4

Example of MU spike trains decoded from one FFS trial. Twelve MUs are reliably decoded with an average decoding accuracy of SIL ≈ 0.96.

Figure 5 shows the histogram of the discharge intervals for all

the FFS trials with the same frequency but different amplitudes,

calculated from the decodedMU spike trains over all the remaining

14 subjects. The discharge intervals of the control condition

(00 Hz) is approximately Gaussian distributed with a mean

around 65 ms and relatively large standard deviations, indicating

little or no synchronized MU activation at a specific frequency.

In contrast, a clear peak around 50 ms is observed in the

histogram of the discharge intervals for 20-Hz FFS trials, implying

a synchronized MU activation within the FFS cycle. Furthermore,

a dominant discharge interval around 66 ms is observed for the

FFS trials at 30 Hz. However, this peak corresponds not to the
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TABLE 1 Average MU number and SIL for di�erent FFS trials over all subjects.

CTc 12.5% baseline 25% baseline 50% baseline

20 30 40 55 20 30 40 55 20 30 40 55 (Hz)

MUmeana 9.5 11.1 10.5 10.2 11.3 10.4 10.1 10.6 10.5 12.0 9.8 10.3 9.9

MUstd 3.3 3.8 3.9 3.4 5.0 4.2 4.5 5.0 4.6 5.0 3.2 4.6 3.5

SILmeanb 0.96 0.96 0.95 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.96

SILstd 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01

aMUmean and MUstd are mean and standard deviation of the decoded MUs for each trial. bSILmean and SILstd are mean and standard deviation of SIL for each trial. cCT indicates the control

condition.

FIGURE 5

Histogram of MU discharge intervals. Each subfigure consists of the results of the FFS trials of all the subjects with the same frequency but di�erent

amplitudes. The control condition determines an approximately Gaussian distribution with mean around 65 ms (corresponds to a firing rate of

15 Hz). Clear peaks present in all FFS trials, indicating significant FFS-induced MU synchronization. Besides, subharmonic synchronization (integer

multiples of the duration of the FFS cycle) is observed in the FFS trials with frequency higher than 30 Hz, most probability due to the limited firing rate

of the biceps brachii, i.e., maximum 20 Hz on average.

duration of the FFS cycle but to its integer multiple. This can

be attributed to the limited firing rate of the biceps brachii, i.e.,

maximum average firing rate around 20 Hz, as reported in previous

studies (Clamann, 1970; De Luca, 1979). Similarly, synchronized

MU activation at the integer multiples of the duration of the FFS

cycle is observed for 40- and 55-Hz FFS trials, and the observed

integer-multiple synchronization seems to increase with increased

FFS frequency.

An example of the coherence calculated in the decoded MU

spike trains of one subject is shown in Figure 6. Sharp peaks are

observed at the FFS frequencies and/or their harmonics for all FFS

trials irrespective of the amplitude and frequency. However, no

predominant peak is observed for the control condition. Given the

fact that sEMG is notch filtered around the FFS frequency and its

harmonics before decoding, the observed peaks in the coherence

demonstrate strongly synchronized discharge in different motor

neurons. Similar results have been observed for all the subjects.

A synchronization index (SCI) is calculated as a quantitative

measure of the synchronized discharge. The average SCI results

(over all subjects) for different FFS conditions are shown in Figure 7

and Table 2. All FFS trials produce significantly (p < 0.01)

higher SCIs than the control condition, confirming FFS-induced

MU synchronization. Besides, the SCI increases with increased

FFS amplitude. Our two-way ANOVA analysis indicates such

an increase to be significant. Similar trend is observed for FFS

frequency. However, our statistical analysis reveals no globally

significant difference in SCI between different FFS frequencies.

3.2 Experiment 2 (validation of
motion-artifact removal)

As illustrated in Figure 3, no clear spectral peak can be observed

in the power spectral density (PSD) of the adopted baseline sEMG

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1293017
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Xu et al. 10.3389/fnins.2023.1293017

FIGURE 6

Coherence of the MU spike trains for one subject under di�erent FFS conditions: (A) 12.5% baseline force; (B) 25% baseline force; (C) 50% baseline

force. For each trial, the coherence is first calculated between paired MU spike trains, and the average result over all pairs is considered as indicator of

MU synchronization. No peak is observed in the control condition, while clear peaks are observed in all FFS trials at the FFS frequency and (or) its

harmonics.

FIGURE 7

Average SCI (over all subjects) for di�erent FFS trials. All FFS trials determine significantly larger SCI than the control condition: (A) No significant

e�ect of FFS frequency is observed for SCI; (B) SCI increases significantly with increased FFS amplitude. **p < 0.01; ***p < 0.001.

TABLE 2 Average SCI for di�erent FFS trials over all subjects.

CTb 12.5% baseline 25% baseline 50% baseline

20 30 40 55 20 30 40 55 20 30 40 55 20 30 40 55 (Hz)

SCImeana 8.57 8.95 8.1 8.42 11.97 14.57 17.43 16.69 16.89 17.92 19.91 20.55 24.93 28.83 21.74 28.99

SCIstd 1.1 1.21 0.69 0.88 4.76 6.23 11.35 8.4 7.01 7.77 8.81 9.31 13.24 14.84 10.52 13.15

aSCImean and SCIstd are mean and standard deviation of SCI for each trial. bCT indicates the control condition.

as it is recorded without FFS. A clear spectral peak is presented

at 20 Hz in the PSDs of both synthetic datasets, representing

the simulated motion artifacts and synchronized MU activation,

respectively. After notch filtering and decomposition, no peak

appears in the PSD of the MU spike trains decoded from the first

synthetic dataset, indicating effective motion-artifact removal by

the notch filter. However, a peak at 20 Hz remains in the PSD of

the MU spike trains decomposed from the second synthetic dataset

after notch filtering. These results indicate that the coherence

peaks observed in experiment 1 are caused by synchronized MU

activation rather than motion artifacts, confirming the reliability of

our results observed in experiment 1.

4 Discussion

In the present study, we investigate the effects of a

novel vibration exercise modality referred to as FFS on the
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activation patterns of the motor neurons by dedicated sEMG

decomposition. We consider that it is conceptually different from

any previous attempt for the analysis of vibration exercise. The

main breakthrough is that, instead of using global EMG features

that may result in controversial interpretations, we look directly

into the discharge timings of the motor neurons decoded from the

sEMG. Besides, the spectral components at the FFS frequency and

their harmonics are excluded from the decomposition. Our results

are therefore straightforward and reliable without any possible bias

caused by vibration-induced motion artifacts.

The results reveal significant MU synchronization for all FFS

trials, evidenced by the discharge intervals (Figure 5), the peaks

in the coherence of the MU spike trains (Figure 6), and the SCIs

of different FFS conditions (Figure 7). It is widely accepted that

an enhancement in MU synchronization contributes significantly

to training-induced increases in muscle strength (Milner-Brown

and Lee, 1975; Halliday et al., 1999). In fact, improvement in

muscle strength has been extensively reported as a main beneficial

effect of vibration training in many previous studies (Burke et al.,

1970; Rubin et al., 2001; Cardinale andWakeling, 2005; Karinkanta

et al., 2010). Yet the underlying physiological mechanism has long

been unclear. The reported MU synchronization during FFS in

the present study may be considered as a primary mechanism

contributing directly to the vibration-induced improvement in

muscle strength.

Moreover, the observed MU synchronization in the present

study seems to be significantly affected by FFS amplitude. For the

same baseline force, a higher synchronization is determined with a

larger FFS amplitude, as shown in Figure 7. This observation may

be ascribed to the spatial and temporal recruitment strategies of

the motor neurons. On one hand, according to Henniman’s size

principle (Henneman et al., 1965), an increase in FFS amplitude

may lead to the recruitment of larger and faster motor units,

increasing the opportunity for synchronized activation in different

motor neurons. Indeed, FFS-induced activation of larger and

faster MUs have been reported in previous studies (Xu et al.,

2018). On the other hand, an increase in FFS amplitude may also

accelerate the firing rate of previously activated MUs, leading to

an increase in MU synchronization. FFS may, therefore, produce

not only synchronized MU activation but also the activation

of more MUs, providing a suitable platform for fitness and

rehabilitation programs.

Subharmonic synchronization, i.e., at the integer multiples

of the duration of the vibration cycle, is observed for FFS

frequencies larger than 30 Hz. Although similar results have

been reported in the cat and the human masseter and triceps

muscles in previous studies during locally applied MVS (Homma

et al., 1972; Godaux and Desmedt, 1975; Burke and Schiller,

1976; Desmedt and Godaux, 1976), the occurrence of MU

(subharmonic) synchronization during WBV or FFS has long been

doubted (Abercromby et al., 2007; Fratini et al., 2009; Romano et al.,

2018; Thompson et al., 2022). The present study confirms, for the

first time, the presence of subharmonicMU synchronization during

FFS. These observations may be associated with the frequency

response of the FFS receptors (mainly the primary spindle endings)

as well as the firing rate of the α-motoneuron of the biceps brachii.

Although the primary spindle endings are reported responding

in 1:1 synchrony up to about 100–150 Hz (Burke et al., 1976;

Roll et al., 1989), the average firing rate of the biceps brachii is

reported to be ∼20 Hz at 100% maximum voluntary contraction

(MVC) (Clamann, 1970; De Luca, 1979). In the present study, an

average firing rate of around 15 Hz is observed for a sub-maximum

(30%) voluntary contraction (Figure 5, control condition), in the

range of the 20-Hz limitation. For FFS frequency beyond this

limitation, the motor neurons cannot fire with 1:1 synchrony but

at integer multiples of the duration of vibration cycle.

The observed subharmonic synchronization in the present

study provides a new insight to explain the effects of FFS

on muscle training programs. For instance, previous studies

have reported that the most effective FFS frequency is

around 30 Hz, which has partially been ascribed to possible

mechanical resonance of the adopted training system (Mischi

and Cardinale, 2009; Xu et al., 2015a). However, we consider

the subharmonic synchronization observed in the present study

as a more reasonable mechanism to explain this optimal FFS

frequency as the mechanical resonance of the system has already

been compensated by dedicated system calibration. Since a

FFS frequency larger than 30 Hz will lead to synchronized

activation of the motor neurons at the integer multiples of the

duration of the vibration cycle, it is therefore less effective for

training purposes.

Interesting to note that, although the motor neurons

synchronize at the subharmonics for FFS frequency higher than

30 Hz, the peaks in the coherence function of the MU spike

trains present still at the FFS frequency (and its harmonics) but

not the subharmonics, as shown in Figure 6. This is because the

coherence is calculated between different motor neurons, which

may activate at different, e.g., second or third, subharmonics.

Consequently, the peaks in the coherence function locate at the

common multiples of different subharmonics. This mechanism

may explain our results that the difference in SCI between different

FFS frequencies is insignificant, as the SCI is calculated at the FFS

frequency and its harmonics, which is not a direct measure of the

subharmonic synchronization.

Inspired by the subharmonic synchronization and the location

of the coherence peaks, it is reasonable to expect the peaks in

the PSD of sEMG to behave in a similar way, as sEMG is the

summation of the action potentials of different MUs. Indeed, in

the PSD of the sEMG signals recorded under 55-Hz FFS, we

do observe sharp peaks at 55 Hz and its harmonics but not

the subharmonics, which are in fact the results of subharmonic

activation of the motor neurons, as demonstrated in Figure 6.

These findings imply that previous studies analysing vibration-

induced MU synchronization based on the PSD peaks may

unable to identify possible subharmonic activation and therefore

overestimate the 1:1 synchrony frequency (100–150 Hz) (Martin

and Park, 1997). By decomposing the sEMG signals into MU spike

trains, in the present study we can look directly into the discharge

intervals of the motor neurons, and therefore provide reliable

analysis of the response of the motor neurons to different FFS. This

is in fact the main breakthrough of the present study.

Note that a previous study in a small cohort of five subjects

has also employed sEMG decomposition for the investigation of

the neural drive during FFS (Xu et al., 2019). However, despite the
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limited subjects, this study lacks the ability to distinguish between

real vibration-induce MU synchronization and motion artifacts

due to its inclusion of the spectral components at the vibration

frequency and its harmonics. And the same for previous PSD-peak

based studies, as the nature of these spectral peaks (muscle activity

or motion artifacts) has long been debated for decades (Martin and

Park, 1997; Abercromby et al., 2007; Fratini et al., 2009; Xu et al.,

2015b; Romano et al., 2018). Another breakthrough of the present

study lies therefore in motion-artifact removal by notch filtering at

the FFS frequency and its harmonics prior to sEMGdecomposition.

Consequently, possible motion artifacts are completely eliminated

from the decoded MU spike trains, permitting the reliability of the

present study.

In fact, notch filtering at the FFS frequency and its harmonics

cancels also possible muscle activity at those frequencies, whose

influence on the decoded MU spike trains is, however, negligible.

Intuitively, the discharge timings of each motor neuron are initially

extracted by locating the peaks in each ICA component derived

from the extended sEMG. Since ICA is a linear transformation,

notch filtering on sEMG is equivalent to that on the ICA

components. Given the wide spectral range of the ICA components

(sEMG), removal of a couple of frequency components may

produce little impact on its shape but no influence on the location

of the peaks. This interpretation has actually been convinced by our

preliminary test.

The original mechanism supporting our approach for motion-

artifact removal lies in the different nature of motion artifacts and

sEMG, i.e., pure sine waves (Xu et al., 2015b) and convolutive

mixture, respectively. Consequently, as demonstrated in our

simulation study in experiment 2, motion artifacts are removed

from the decoded MU spike trains while synchronized MU

activation remains in the PSD of the decoded MU spike trains even

with notch filtering prior to the decomposition. These results not

only confirm the reliability of our analysis in experiment 1 but also

indicate the sEMG PSD peaks observed during FFS to be primarily

generated by synchronized MU activation, in line with previous

studies (Martin and Park, 1997; Xu et al., 2015b).

The adopted decomposition algorithm is based on blind

source separation generally built on the independency of the

sources (MU spike trains). However, the extended spike trains

in Equation (1) are never independent. Nevertheless, the cost

function used in the present study measures also the sparseness

of the sources. Yet, some studies argue that synchronization

between MU spike trains (particularly evident in the present

study) may violate the foundational mathematical assumptions

of the blind source separation techniques (Nawab et al., 2008).

However, many other studies suggest this idea to not hold for

point processes, as the summation of sources with correlated

firings is always less sparse than individual sources (Farina and

Holobar, 2015; Negro et al., 2016). The linear instantaneous

mixture model in Equation (3), derived from the extension

of the convolutive mixture model, is therefore assumed to

maintain the characteristics required by the proposed blind source

separation algorithm (Farina and Holobar, 2015; Negro et al.,

2016). Besides, low-quality spike trains (SIL < 0.9) are excluded

from the analysis, permitting the accuracy of the decoding and

thus the reliability of our analysis on MU discharge patterns

during FFS.

Worthily also to note that the current decomposition algorithm

can only decompose a small portion of the activated motor units,

which is the main limitation of this algorithm. And the discharge

interval and the SCI results derived from the decomposed spike

trains may in fact be affected by the number of decomposed MUs.

However, given the fact that there is no statistically significant

difference in MU number across trials (Table 1), our results may

represent a general trend of the neuromuscular system in response

to different FFS stimulations.

The observed MU (subharmonic) synchronization in the

present study may be considered as a manifestation of TVR in FFS.

However, some studies have pointed out that the reflexmechanisms

responsible for the TVR should be regarded separately from

those responsible for vibration-induced timing of MU discharges,

as any rhythmical input may synchronize MU discharge to the

input (Burke and Schiller, 1976; Hagbarth et al., 1976). Besides,

the central nervous system has also been suggested to be involved

during vibratory stimulation. It is reported that vibration stimuli

applied to the hand or wrist tendons can activate the anterior

lobe of the cerebellum as well as many cortex areas, such as

the primary somatosensory cortex, the secondary somatosensory

cortex, the cortex of the insula, and the supplementary motor

area (Fox et al., 1987; Seitz and Roland, 1992; Burton et al.,

1993). Unfortunately, based on the results of the present study,

it is unable to distinguish the origin of the observed MU

synchronization between the spinal reflex and the central nervous

system. This may be considered as a main limitation of the present

study.

In conclusion, we investigate the effects of FFS on MU

discharge patterns by decoding the sEMG signals into MU spike

trains using a blind source separation algorithm. Together with

notch filtering, we can completely eliminate possible motion

artifacts, permitting the reliability of the present study. Our results

demonstrate, for the first time, significant MU synchronization

of the biceps brachii during FFS. We also find a significant

increase in MU synchronization with increased FFS amplitude.

Besides, the motor neurons tend to synchronize at integer multiples

of the vibration cycle for large FFS frequency (≥30 Hz). Our

results reveal the basic physiological mechanism of FFS, and

can be employed to explain many debating observations in

previous studies involving vibratory stimulation. Therefore, the

present study provides a theoretical foundation for introducing

FFS into clinical neuromuscular rehabilitation programs. Future

studies may focus on discriminating the origin of FFS-induced

MU synchronization between spinal reflex and the central

nervous systems.
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