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During tactile sensation in rodents, the whisker movements across surfaces give 
rise to intricate whisker motions that encompass discrete and transient stick–slip 
events, effectively conveying valuable information regarding surface properties. 
These surface characteristics are transformed into cortical neuronal responses. 
This study examined the coding strategies underlying these transformations in 
rat whiskers. We found that changes in surface coarseness modified the number 
and magnitude of stick–slip events, which in turn both modulated properties of 
neuronal responses. Global changes in the number of stick–slip events primarily 
affected neuronal discharge rates and the degree of neuronal synchronization. 
In contrast, local changes in the magnitude of stick–slip events affected the 
transformation of these kinematic and kinetic characteristics into neuronal 
discharges. Most cortical neurons exhibited surface coarseness selectivity through 
global and local stick–slip event properties. However, this selectivity varied across 
coding strategies in the same neurons, given that each coding strategy reflected 
different aspects of changes in whisker-surface interactions. The degree of spatial 
similarity in surface coarseness preference in adjacently recorded neurons differed 
among these coding strategies. Adjacently recorded neurons exhibited the same 
surface coarseness preference in their firing rates but not through other coding 
strategies. Through these results, we were able to show that local stick–slip event 
properties contribute to texture discrimination, complementing and surpassing 
global coding in this context. These findings suggest that the representation of 
surface coarseness in the cortex may rely on concurrent coding strategies that 
integrate tactile information across different spatiotemporal scales.
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Highlights

Our sensorimotor system processes enormous amounts of information when interacting 
with the world. We can construct an internal representation of the environment using these 
sensory inputs, enabling us to interact with a complex, changing environment accurately. The 
present results suggest that this process may be accomplished through the ability of neurons to 
convey multiple tactile parameters through coexisting coding strategies. Notably, different 
modes of sensory transmission revealed preferential selectivity for various stimulus features. 
These multi-layered coding schemes enable spike trains to convey information regarding a 
stimulus through multiple complementary channels, each corresponding to a different aspect 
of the sensory world and its variations.
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Introduction

Using their whiskers, rats can detect and discern various tactile 
features of their environment (Brecht et al., 1997; Kleinfeld et al., 
2006), including the shape and position of objects (Brecht et al., 1997; 
Harvey et al., 2001; Mehta et al., 2007; Knutsen and Ahissar, 2009; 
Kleinfeld and Deschenes, 2011), the width of apertures and gaps 
(Krupa et al., 2001), and surface texture (Carvell and Simons, 1990; 
Diamond et al., 2008b; Lottem and Azouz, 2009; Diamond, 2010; 
Jadhav and Feldman, 2010; Morita et al., 2011; Kuruppath et al., 2014). 
The active and receptive interactions between the whiskers, given their 
specific properties (Hartmann et al., 2003; Towal et al., 2011; Hires 
et al., 2013), and the environment result in frictional movement and 
induce whisker bending, vibrations, and brief, discrete micromotions 
referred to as stick–slip events (SSEs) (Diamond et al., 2008a; Wolfe 
et al., 2008; Lottem and Azouz, 2009; O'Connor et al., 2010; Zuo et al., 
2011; Chen et  al., 2015; Campagner et  al., 2018). The role of the 
somatosensory system is to decode this information in a manner that 
enables the accurate determination of the sensed object’s location, 
shape, and contours.

Several models have been proposed for the neuronal encoding of 
surface coarseness in the whisker somatosensory system. In one 
model, the representation of surface coarseness results from the 
temporal integration of whisker vibration signals within a relatively 
extended time range. Specifically, this representation is related to the 
mean speed of surface-induced whisker vibrations (Arabzadeh et al., 
2005, 2006; von Heimendahl et al., 2007) and is encoded in the mean 
firing rate of vibrissal somatosensory cortex (vS1) neurons (Arabzadeh 
et al., 2003; von Heimendahl et al., 2007; Wolfe et al., 2008; Jadhav 
et  al., 2009). This tactile transformation is termed global coding. 
However, given that SSEs represent significant determinants of overall 
mean whisker speed, they may still serve as the primary textural cue 
as they generate most vS1 spikes (Arabzadeh et al., 2005; Lottem and 
Azouz, 2008; Wolfe et al., 2008; Lottem and Azouz, 2009).

Another plausible coding strategy relies on precise spike timing 
through the spatiotemporal coordination and synchronization of 
neuronal assemblies. This synchronization enables neuronal 
ensembles to encode specific stimulus features better and may serve 
as an efficient and flexible coding mechanism for sensory and 
cognitive processing (Gray and Singer, 1989; Softky and Koch, 1993; 
Dan et al., 1998; Gray, 1999; Azouz and Gray, 2000; Azouz and Gray, 
2003; Brette, 2012; Harris and Gordon, 2015). Over the last several 
years, it has been shown that neuronal synchrony is prevalent in the 
barrel cortex and thalamus of anesthetized and awake rodents (Zhang 
and Alloway, 2004; Zhang and Alloway, 2006; Temereanca et al., 2008; 
Reyes-Puerta et  al., 2015; Isbister et  al., 2021). This synchrony is 
present in both thalamic spike timing and membrane potentials in 
cortical neurons, which were shown to be highly correlated during 
active touch, thus pointing to a specific synchronization of functional 
subnetworks (Ferezou et al., 2007; Poulet and Petersen, 2008; Crochet 
et  al., 2011). Our recent study provides strong evidence that the 
synchronization of barrel cortical neurons is primarily driven by 
external sensory stimuli (Sharma and Azouz, 2022). Consequently, 
SSE’s kinetic and kinematic characteristics significantly influence the 
level of synchrony observed among these cortical neurons.

Finally, recent findings indicated that due to the unique properties 
of whiskers (Hartmann et al., 2003; Towal et al., 2011; Hires et al., 
2013) and their interactions with the environment, they undergo 

frictional movements resulting in whisker bends, vibrations, and the 
occurrence of brief, high-velocity, high-acceleration micromotions 
known as stick–slip events (SSE) (Diamond et al., 2008a; Wolfe et al., 
2008; Lottem and Azouz, 2009; O'Connor et al., 2010; Zuo et al., 2011; 
Chen et al., 2015; Campagner et al., 2018). These SSEs are a significant 
aspect of interactions between whiskers and surfaces. Thus, the SSE 
hypothesis suggests tactile information is encoded as probabilistic 
stick–slip movements in whiskers. The kinematic profiles of SSEs 
carry information related to texture (Ritt et al., 2008; Wolfe et al., 
2008), and are effectively processed by neurons along the ascending 
tactile pathway (Pinto et al., 2000; Jones et al., 2004; Arabzadeh et al., 
2005; Jadhav et al., 2009; Jadhav and Feldman, 2010; Stuttgen and 
Schwarz, 2010; Waiblinger et al., 2013, 2015; Allitt et al., 2017). Hese 
SSEs trigger low-probability responses in the primary somatosensory 
cortex (S1) (Simons, 1978; Pinto et al., 2000; Kerr et al., 2007; Stuttgen 
and Schwarz, 2008; Crochet et  al., 2011). These SSE quantity and 
kinematic patterns change with surface roughness and are reflected in 
altered spike probabilities in S1 (Jadhav et al., 2009; Isett et al., 2018). 
This coding mode through SSEs differs notably from previous 
strategies due to its localized spatiotemporal nature (Schwarz, 2016).

The present study compared various cortical coding strategies for 
surface coarseness by analyzing whisker vibrations in response to 
different textures and recording vS1 neural activity in anesthetized 
rats. Beyond measuring neuronal discharge rates, we  identified 
temporal coding as a crucial aspect of sensory-evoked activity in the 
barrel cortex. This temporal coding is characterized by the 
synchronous occurrence of a subset of spikes within the neuronal 
population, forming a dynamically relevant subnetwork (Palm, 1990; 
Hebb et al., 1994; Singer, 1999; Lestienne, 2001; Womelsdorf and Fries, 
2007; Cohen and Kohn, 2011; Reyes-Puerta et al., 2015; Isbister et al., 
2021). Furthermore, our findings reveal that vS1 neurons encode the 
amplitude of surface-induced SSE through sparse, low-probability, 
precisely timed spikes during continuous contact with surfaces. This 
transformation of SSEs into response probabilities and the temporal 
dynamics of neuronal responses is a robust coding strategy for 
representing surface coarseness. Our results suggest multiple coding 
strategies capture the various facets of surfaces and objects.

Materials and methods

Animals and surgery

Male and female Sprague–Dawley rats weighing 250–320 grams 
were administered anesthesia for the experiment. The anesthesia 
protocol involved the administration of ketamine (100 mg/kg, i.p., 
Ketaset; Fort Dodge Animal Health, Fort Dodge, IA) and 
acepromazine maleate (1 mg/kg, i.p, PromAce, Fort Dodge Animal 
Health). After performing a tracheotomy, a metal cannula (1.5 cm in 
length) with an outer diameter (o.d.) of 2 mm and an inner diameter 
(i.d.) of 1.5 mm was inserted into the trachea. Subsequently, the rats 
were placed in a standard stereotaxic device, and their body 
temperature was maintained at 37.0 ± 0.1°C using a heating blanket 
and a rectal thermometer (TC-1000; CWE, Ardmore, PA). Anesthesia 
was sustained by delivering a mixture of halothane (0.5–1.5%) and air 
through artificial respiration at 100–115 breaths per minute. End-tidal 
CO2 levels and heart rate were monitored throughout the procedure 
to ensure proper anesthesia depth. The anesthesia level was evaluated 
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based on heart rate (250–450 bpm), eyelid reflex, pinch withdrawal, 
and vibrissal movements. Halothane concentrations were adjusted 
slightly above where the first noticeable signs of vibrissal movements 
appeared while maintaining the eyelid reflex.

In some cases, EEG recordings were conducted by inserting two 
wires beneath the skull at a distance of 10 mm anterocaudally. Based 
on these measurements, the anesthesia level during the recordings was 
classified between stages III-2 and III-3 (Friedberg et  al., 1999). 
Following placement of the subjects in a stereotactic apparatus (TSE, 
Bad Homburg, Germany), a small opening (1–2 mm in diameter) was 
created above the barrel cortex, precisely centered at 2.5 mm posterior 
and 5.2 mm lateral to the bregma, and the dura mater was 
cautiously removed.

We investigated the relationship between microdrive depth and 
laminar identity in a subset of animals. To determine the corresponding 
areas, we performed electrolytic lesions using the recording electrodes, 
applying a direct current (10–30 μA) for 4 s at a depth related to each 
specific recorded area. Additionally, in select rats, brain tissues underwent 
cytochrome oxidase histochemistry processing. The animals were 
transcardially perfused with 2.5% glutaraldehyde and 0.5% 
paraformaldehyde, followed by 5% sucrose, all in 0.1 M phosphate 
buffered saline (PBS). The brains of these rats were then transferred to a 
30% sucrose post-fixative solution and incubated overnight at 
4°C. Subsequently, microtome cryosections (120 μm) were prepared and 
incubated in a solution of PBS containing 0.0015% cytochrome C (Sigma) 
and 0.05% diaminobenzidine for 20 to 50 min at 37°C. The reaction was 
halted by rinsing with PBS. The cytochrome oxidase-stained sections were 
mounted on gelatin-coated slides, air-dried, and coverslipped. Laminar 
identification was based on specific recording depths: layers 2/3, 4, 5, and 
6 were characterized by depths of 150–550 μm, 550–850 μm, 
900–1,400 μm, and 1,400 μm and deeper, respectively.

All experiments were conducted in accordance with appropriate 
international standards and were approved by the Ben-Gurion 
University (BGU) Committee for the Ethical Care and Use of Animals 
in Research (project license: IL-71-11-2016). The BGU animal care 
and use program is supervised and fully assured by the Israeli Council 
for Animal Experimentation of the Ministry of Health. It is operated 
according to Israel’s Animal Welfare Act of 1994 and follows the Guide 
for Care and Use of Laboratory Animals (NRC 2011). In addition, 
BGU is approved by the Office of Laboratory Animal Welfare, 
United  States (OWLA) (#A5060-01). Sprague–Dawley rats 
(250–300 g) were used for all experiments described herein.

Recording technique

An implanted multi-contact silicone electrode (NeuroNexus, Ann 
Arbor, Michigan) was carefully inserted into the barrel cortex using a 
precise stereotactic micromanipulator (TSE-systems, Germany). 
Throughout the recording process, the signals were amplified 
(1,000×), digitized (25 kHz), and filtered (0.1–10,000 kHz), after which 
they were stored for offline spike sorting and analysis. The ME-16 
amplifier and MC-Rack software (MEA, Germany) were employed for 
this purpose. The recorded data was separated into local field 
potentials (LFP; 1–150 Hz) and isolated single-unit activity 
(0.5–10 kHz). All the neurons under study exhibited responsiveness 
to manual stimulation of at least one whisker. To extract and sort the 
spikes, we utilized the MClust MATLAB-based spike-sorting software 

developed by A.D. Redish.1 The resulting spikes were stored with a 
temporal resolution of 100 μs, and peri-stimulus time histograms 
(PSTHs) were subsequently computed (Supplementary Figure S1).

Whisker stimulation

To simulate different surface textures and study whisker 
movements during receptive sensing in awake-behaving rats, 
we  covered the face of a rotating cylinder with various grades of 
sandpaper, each offering a different level of coarseness. The cylinder 
was rotated against the whiskers of the subject rats, with the whiskers 
resting upon the cylinder face. This setup aimed to mimic the natural 
rostral-caudal movement of the whiskers during head motion. The 
head velocities associated with rat exploration were obtained from 
previous studies (Lottem and Azouz, 2009; Gugig et al., 2020) and used 
as a reference for controlling the velocity of the rotating cylinder. A DC 
motor was employed to drive the 30 mm diameter wheel, maintaining 
a speed of approximately 147 degrees per second to replicate median 
head velocity. For this study, we utilized sandpaper surfaces with five 
different coarseness grades: P120 (125 μ), P220 (68 μ), P400 (35 μ), 
P600 (25 μ), and P800 (21 μ). These grades were selected based on 
previous research (Arabzadeh et al., 2005; Hipp et al., 2006; Morita 
et al., 2011). Whisker displacements were captured using a Mikrotron 
CoaXPress 4CXP camera, recording at 1,600 frames per second with a 
resolution of 4 Megapixels. The camera was positioned above the arena, 
providing an overhead view of the whisker movements. All recorded 
videos were analyzed using the Janelia whisker tracker software (Clack 
et al., 2012). To estimate the curvature of the whisker and determine 
the forces exerted on the whisker follicle (Birdwell et al., 2007; Towal 
et al., 2011; Quist and Hartmann, 2012), we employed the methodology 
previously described by Birdwell et al. (2007). We measured curvature 
at ten locations along the whisker for this analysis and extracted the 
maximum local curvature from each image.

Data analysis

We established a trial structure to examine the influence of surface 
coarseness on whisker motion and resulting cortical neuronal 
responses. The cylinder rotated for 500 ms for each texture and 
remained still for 1,500 ms. This procedure was repeated 75–150 
times. We then aligned the whisker responses and the corresponding 
neuronal responses to the beginning of cylinder movement to generate 
PSTHs (Figures 1E,F).

The electrophysiological data was sampled at a frequency of 
25KHz. The resulting spikes were stored with a temporal resolution of 
100 μs. In parallel, whisker movements were recorded in a video 
format at a rate of 1,600 frames per second. To establish the 
correlations between these two data streams, the two signals were 
aligned. This was primarily accomplished by subsampling the spike 
timing information at 1 ms.

The significance of the differences between measured parameters 
was evaluated using a one-way analysis of variance (ANOVA). When 

1 http://redishlab.neuroscience.umn.edu/MClust/MClust.html
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significant differences were indicated in the F ratio test (p < 0.05), 
Tukey’s multiple comparisons method was used to determine those 
pairs of measured parameters that differed significantly from each 
other within a group of parameters (P < 0.01). The results are presented 
as the mean ± standard deviation (SD). Error bars in all the figures 
indicate the SD unless otherwise noted. To avoid cluttering some of 
these graphs, single-sided error bars were used.

Receiver operating characteristics analysis

We used signal detection theory (receiver operating characteristics 
[ROC] analysis; Green and Swets, 1974) to compute the probability that 
an ideal observer could accurately determine the differences among the 
different textures based on neuronal activity. For each measured texture 
pair neuronal responses, an ROC curve was constructed as a 
two-dimensional plot of hit probability (y-axis) and a false alarm 
(x-axis) probability. Green and Swets (1974) demonstrated that the area 

under the ROC curve (AUC) corresponds to the performance expected 
of an ideal observer in a two-alternative, forced-choice paradigm, such 
as the one used in the present analysis. The ROC curve was calculated 
for a single neuron’s firing rate as a texture function. We then averaged 
all AUC values of all neurons and all texture pairs.

To transform raw data into a measure of discriminability, 
we analyzed the distributions of neuronal firing rates across trials. The 
firing rate (Fr) in trial k is the spike count = Nspk divided by T, trial 
duration in ms.

 
Fr Nsp

T
k=

The length T for the texture signal was set to T = 500 ms.
To assess the significance level of the AUC values we  got 

from each neuron for all texture comparisons, we shuffled the 
firing rates of all trials among the various textures. We  then 
calculated the ROC curves and AUC values for the 

FIGURE 1

The influence of changes in surface coarseness on whisker vibrations, neuronal discharge rates, and SSE amplitude. (A) An overview of the 
experimental design, demonstrating that whiskers are placed in contact with a rotating cylinder covered with textured sandpaper. (B) An example of C3 
whisker movements in response to P400 and P800 textures. The vertical line on the whisker vibration scale bar indicates the image measurement and 
the horizontal line indicates the time in milliseconds. (C) The influence of texture coarseness on the SD of whisker vibration position (orange) and 
curvature (turquoise) for the whiskers in B. Asterisks indicate statistically significant differences between the groups (F (4, 37,495)  =  110.3, p  =  3×10−3). 
(D) The influence of texture coarseness on the SD of whisker vibration position (orange) and curvature (turquoise) for all recorded whiskers. All SD 
values were normalized to P120. Asterisks indicate statistically significant differences between groups (F (4, 19)  =  12, p  =  3×10−4). (E) PSTHs of two 
neurons were recorded simultaneously. The scale bar for the PSTH represents the probability of firing for a 1  msec bin. (F) The influence of texture grit 
size on neuronal firing rates of the neurons in E. (G) Normalized distribution of all SSEs that resulted in spikes of the neurons in E. (H) Ratio of the 
number of high-to low-acceleration events as a function of surface coarseness. Data shown in H are from all recorded whiskers; error bars represent 
the standard error calculated across all whiskers. (I) The influence of texture grit size on mean SSE resulted in spikes of the neurons in E.
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shuffled data. We then averaged all AUC values of all neurons and 
all texture pairs. This process was repeated 500 times. The 
significance level, set at mean + 2SD (95%), equated to 
AUC = 0.53.

Texture selectivity

A neuron responding to several textures shows a higher or 
lower firing rate for a particular texture, and this neuronal 
property is referred to as texture selectivity (Garion et al., 2014). 
An additional criterion for texture selectivity implemented was 
determining whether a specific texture had a significantly higher 
or lower firing rate (or any other parameter) than all 
other textures.

To calculate the texture selectivity of cortical neurons, we used the 
Selectivity Index (SI).

𝑆𝐼 = 𝑀𝑎𝑥(𝑃𝑖) − pj� �/𝑀𝑎𝑥(𝑃𝑖)

Where P is the firing rates; i = preferred texture; j = all texture 
excluding the preferred texture; Max(Pi) = maximal firing rate; 
pj� � = the average firing rates across all textures.

To quantify the statistical significance of texture selectivity, 
we first calculated the SI for several textures using the SI formula 
outlined above. Second, for each neuron, we  have n × 75 trials, 
where n represents the number of textures, and 75 signifies the 
number of trials conducted for each texture. We randomly shuffle 
all trials across different textures to compute the SI. We iterate this 
process 500 times, calculating the average surrogate SI and SD 
afterward. We calculated the ‘mean + 3SD’ from this 500 SI data 
distribution. If the original SI surpassed the surrogate SI 
(mean + 3SD), this provided confirmation that the texture selectivity 
was not merely a product of chance.

Surface coarseness impact on neuronal 
responses

Upon plotting the neuronal response characteristics 
corresponding to various textures, we  discern a complex and 
interconnected relationship between these parameters, as depicted in 
Figures 1–6. To quantify these complex relationships, we divided the 
neural responses as a function of surface coarseness into four 
categories (Figure 6C lower panels):

 1 Up - neurons presenting a significant monotonic increase.
 2 Down  - neurons presenting a significant monotonic  

decrease.
 3 Tuned - neurons exhibiting a preference for a specific texture 

(reduction and increase).
 4 No change  - neurons that did not show any 

significant changes.

In order to categorize the diverse dependencies observed, 
we  established specific empirical rules. These rules were 
strategically designed to classify these groups based on visually 
discernible characteristics distinctly. They were set to be both 

minimal and comprehensive enough to divide the dependencies 
into their respective visually inspected groups accurately. 
We discovered that, for categories 1 and 2, when at least 3 out of 
4 neuronal responses to different textures (4 textures) displayed 
consistent and statistically significant ascending (upward) or 
descending (downward) trends in various aspects of their 
neuronal responses, it corresponded to the visually 
inspected dependencies.

Spatial selectivity similarity

To examine the degree of spatial clustering of texture selectivity of 
neurons recorded from the same tetrode site (<150 μm). We devised 
a similarity measure between adjacent neurons, termed Spatial 
Selectivity Similarity, calculated as the number of neurons selective to 
the same texture divided by the total number of neurons in a particular 
cluster. A cluster refers to a group of neurons that have been recorded 
from a single tetrode site.

 
Similarity value

   
=
N same selectivity in cluster

N total

To gauge the significance level, we  meticulously computed a 
comprehensive array of potential scenarios encompassing various 
cluster sizes, explicitly focusing on clusters ranging from 3 to 5 neurons. 
This analysis was conducted across datasets involving 4 and 5 textures, 
enabling a thorough examination of the diverse combinations and their 
significance within the study. We calculated the expected probability 
for all possible variations in the different conditions.

 

The expected probability
N
N

N s

i texture

texturen
i

texture

  �

�
�

�
�

1

aame selectivity in cluster
N total

   

We found that for three neurons, the respective significance levels 
for 4 and 5 textures were 0.49 and 0.56. Figure  7E shows the 
significance level for three neurons and four textures.

Quantification of temporal synchronization

To compute the cross-correlation of a spike train, we used the 
method described previously by Maldonado et  al. (2000). 
We represented the spike train of each neuron as a binary time series 
with 1 ms resolution such that:

 

c t

if on trial i neuron j fired
an action potentional duri

j
i � � �

1, ,

   nng

the t ms
otherwise

th
;

,0

�

�
�
�

�

�
�

We then computed the cross-correlogram histogram (CCH) that 
represents how two neurons tend to fire in conjunction with 
one another:

CCH(τ )=
i

M

t

N
ic

� �
��

1 1
1 (t)c ti2 �� ��
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Where M represents the number of trials, N is the number of bins 
in the trial, ci1 and ci2 are the spike trains of cells 1 and 2 on trial i, and 
τ  is time lag.

To quantify the temporal synchronization of the correlated firing 
rate, which occurred within ±10 ms of the zero time lag, we used the 
significance ratio (SR). SR was computed as the ratio of two integral 
values: a peak value (P), representing the magnitude of the spike 

correlation, which is calculated by taking the sum of the bins in the 
central 20 ms of the cross-correlogram that exceeds the 95% 
confidence limit, and a variance value (V) representing the expected 
occurrence of coincident spikes, which is computed from the sum of 
the central 20 ms in each histogram lying between the 99% confidence 
limit and the mean value of the correlogram. We computed the SR 
as follows:

FIGURE 2

Neuronal synchronization as a function of surface coarseness. (A,B) PSTHs and CCHs correspond to P120, P220, P600, and P800 textures. The vertical 
scale bar for PSTH shows the spike probability. In the PSTHs, the dashed vertical line indicates the starting point of the stimuli. The vertical scale bar of 
the CCHs shows the number of spikes at zero time lag. The black arrows indicate the time window of significant synchronous spikes. The scale bar for 
the PSTH represents the probability of firing for a 1  msec bin. (C) The influence of surface coarseness on neuronal firing rates and neuronal 
synchronization for the neurons in A. (D) Distribution of SR values in all neurons. The pink distribution shows the SR values below one. (E) Normalized 
distribution of SSE amplitudes for the neurons in A-B resulted in asynchronous (blue and turquoise) and synchronous (red and pink) spikes for two 
textures. (F) The correlation between the low-to high-acceleration events ratio and firing rates (orange), between firing rates and the number of 
asynchronous SSE (blue), and between SR values (degree of synchronization) and the number of synchronous SSE (red) in all neurons.
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FIGURE 3

Cortical neuronal responses to textures are composed of intermingled synchronous and asynchronous spikes. (A) An example of whisker motion, LFP, 
and spike discharge in two neurons in response to the P220 texture. The spikes marked in red are synchronous. (B) STA of whisker motion, 
synchronous (middle panels), and asynchronous spikes (left and right). (C) The relationship between detection threshold and firing probability for the 
neurons in B and Figure 2, in asynchronous and (pink and green) and synchronous (red and blue) spikes for the two textures. This relationship fits a 
sigmoidal function. (D) The relationship between SSE amplitude and firing rates for asynchronous spikes for one of the neurons in B for P220 (red) and 
P600 (blue) textures. Lines indicate the results of a linear regression analysis. (E) Population statistics for asynchronous and synchronized spikes for the 
two textures. The slope of the fit line for the firing rates and probability for asynchronous spikes exhibited a significant change as a function of surface 
coarseness. In contrast, the slope of synchronous spikes did not change. The shift in the fits for both types of spikes exhibited a significant change as a 
function of surface coarseness. Asterisks indicate significant differences (asynchronous spikes probability slope: t (126)  =  6.12, p  =  0.014231; 
asynchronous spikes firing rates slope: t (126)  =  10.544, p  =  0.0015275; asynchronous spikes probability midpoint: t (126)  =  25.626, p  =  1.5901e−06; 
asynchronous spikes firing rates midpoint: t (126)  =  15.994, p  =  0.00011269; synchronous spikes firing rates midpoint: t (126)  =  9.48, p  =  0.001348).
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FIGURE 4

Coding of surface coarseness through local features. (A) Spike latency from its underlying single SSE (red arrow to vertical dashed line) for synchronous 
spikes. (B) The relationship between SSE amplitude and spike latency in synchronous spikes for the P220 and P600 textures (left and right panels, 
respectively). Each point in the graphs represents the mean. The line is the linear regression fit of the data. (C) Spike latency from its underlying LFP (red 
arrow to vertical dashed line) for synchronous spikes from a single SSE. The LFP commencement was determined by the second derivative of the LFP 
(turquoise traces; see Methods). (D) The relationship between SSE amplitude and LFP-spike latency in synchronous spikes for P220 and P600 textures 
(left and right panels, respectively). The line is the linear regression fit of the data. (E) Interneuronal ISI (vertical dashed lines) from its underlying single 
SSE (red arrow) for synchronous spikes. (F) The relationship between SSE amplitude and interneuronal ISI for synchronous spikes. The line is the 
exponential decay fit of the data. (G) Distribution of the normalized linear regression fit slopes for all neurons’ relationships between SSE amplitude and 
spike latency for P220 (red) and P600 (blue). (H) Distribution of the normalized linear regression fit slopes for all neurons’ relationships between SSE 
amplitude and LFP-spike latency for P220 (red) and P600 (blue). (I) Distribution of the normalized linear regression fit slopes for all neurons’ 
relationships between SSE amplitude and synchronous spike interneuronal ISI for P220 (red) and P600 (blue).
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Where X is the mean value of all bins in the cross-correlogram, 
and σ  is the standard deviation of all the bins in the corresponding 
control correlogram.

Each CCH was computed from the cross-correlation between 
each trial of two neurons and the corresponding cumulative 
correlogram was calculated. The SR value was computed for each 
CCH. For each experimental trial, we  computed an equivalent 
pseudorandom trial (i.e., a random trial taken from 75 trials) and 
a shuffled trial obtained by randomly shuffling 75 trials. This 
method, using surrogate data, conserves the PSTH shapes of the 
neuron pairs.

To further examine the influence of the temporal pattern of 
spikes and the significance of the temporal locking of spikes to the 
stimulus, we also computed an equivalent pseudorandom trial in 

which we  shuffled the inter-spike intervals within each trial. 
We created surrogate data that included an equal number of spikes 
and the same ISI distribution in each trial. This procedure shuffled 
spike timing and eliminated temporal locking to the SSE while keeping 
the number of spikes and the ISI distribution constant. These two 
simulations were repeated 500 times for each CCH on each trial. This 
yielded 500 control SR values (pseudorandom and inter-trial 
shuffled) for each experimental CCH. We assigned a confidence limit 
for statistical significance by choosing the SR values in the control 
distribution that were >99% of the values. An SR ratio >1 was 
considered significant. The designation “control correlogram” has 
been assigned to these two methodologies used to generate surrogate 
data for analysis.

Synchrony-based selection

Initially, we  focused on identifying neurons that displayed 
noticeable synchronized activity in their spike trains. Once identified, 
we determined the time window for significant correlation based on 
the central peak observed in the cross-correlogram (CCH) analysis. 
Within this selected group of neurons, we specifically examined the 
interneuronal inter-spike intervals (ISIs) between pairs of neurons. If 
the ISIs between two neurons fell below the chosen time window, 
we  classified the corresponding spikes as synchronized spikes, 
indicating their simultaneous occurrence. Conversely, if the 
interneuronal ISIs exceeded the selected time window, we categorized 
the spikes as asynchronous spikes, indicating their 
non-simultaneous occurrence.

Spike-triggered average calculations

To compute the Spike-triggered average (STA) kernel, the signal 
related to whisker position, velocity, acceleration, or curvature was 
averaged over a specific time window, with a kernel width of 20 ms, 
preceding every spike event (Schwartz et al., 2006). By using various 
types of spikes (synchronous and asynchronous spikes, see above) as 
triggers and selecting different signal components, we  derived 
different STA variants, namely STAsync and STAasync. When 
analyzing the LFPs, we  averaged the LFP signal over the 20 ms 
preceding each spike and the 7 ms following it.

Detection and quantification of SSEs 
underlying spikes

To examine the relationship between SSE characteristics and 
the different response properties, we first defined SSE as a significant 
change in whisker movement prior to each spike. SSE was detected 
preceding each spike by identifying a peak value in whisker 
movement that crossed the threshold within 20 ms preceding each 
spike. The peak value was defined as the time of the SSE event. The 
threshold used in the current study was the mean ± 3 SD (see 
Figure 4; Supplementary Figure S2; different threshold levels did 
not change our results; Sharma and Azouz, 2022). The amplitude of 
SSE preceding each spike was calculated by measuring the peak-to-
peak amplitude within ±10 ms of the largest peak that crossed the 

FIGURE 5

The influence of surface coarseness on firing rates, synchrony, and 
local features. (A) The impact of surface coarseness (for neurons 
from Figures 3, 4) on neuronal firing rates in paired recordings (red 
and blue) and neuronal synchronization (purple). (B) Asynchronous 
spike local features [number of spikes (blue) and probability (black)]. 
(C) Synchronous spike local features [first spike latency (orange), 
LFP-first spike latency (turquoise), and ISI (blue)].
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threshold. To further verify this method, we  calculated the 
SSE-spike latency. Our findings revealed minimal latencies at L4 
(mean ± SD: 6.8 ± 0.8 ms, n = 72 neurons). At L2/3, latencies were 
longer (mean ± SD: 10.3 ± 0.9 ms, n = 82), while L5 and L6 displayed 
even greater latencies (mean ± SD: 9.5 ± 1.6 ms, n = 69; 13.6 ± 0.9 ms, 
n = 47, respectively; Narayanan et  al., 2017; Sharma and 
Azouz, 2022).

SSE-dependent firing rates

Once we  identified SSEs that led to spike occurrences, 
we quantified the number of spikes that occurred in the aftermath of 
each SSE. Specifically, we  investigated how the amplitude of SSEs 
influenced the spike count within a subsequent 30 ms time window, 
explicitly focusing on asynchronous spikes (Figure 4E).

FIGURE 6

Neuronal selectivity and discrimination. (A) Quantification of texture selectivity. The plot compares the normalized firing rate for the different textures. 
Three different numerical values present the SI corresponding to these three conditions. (B) Average firing rate (75 trials) associated with textures P120, 
P220, P400, and P800.The SI value was 0.4751 (calculated using the formula in the Methods section). The inset shows the statistical significance of 
texture selectivity. The histogram shows the distribution of 500 SI values. The red and turquoise vertical lines represent the mean and mean  +  3SD of 
the SI data distribution, respectively. The mean  +  3SD of the SI data distribution was 0.21. (C) Four different groups of neurons based on the relationship 
between surface coarseness and neuronal responses (up, down, tuned, and no change; lower panels; see text). Neuronal firing rates (blue), synchrony 
(purple), and local features (turquoise) show that most of the neurons in the different coding strategies are tuned to a specific texture. (D) The 
coarseness preferring neuronal population was further subdivided according to their texture coarseness preference. (E) Mean selectivity index values 
for neuronal firing rates, synchronization, and local features. The error bars represent the SD of SI. Asterisks indicate significant differences. (F) The 
mean AUC values for neuronal firing rates (blue), synchronization (purple), and local features (turquoise) across all textures in all neurons. Error bars 
represent the SD. Asterisks indicate significant differences.
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SSE-dependent firing probability

To investigate how SSE amplitude affects the probability of 
spike discharge, we implemented a dynamic threshold to detect 
whisker vibration events. We determined a specific threshold for 
each of these events and examined the number of spikes occurring 
within a subsequent 30 ms window. By calculating the ratio of  
the number of spikes to the number of events, we  obtained  
the probability of spike discharge for each threshold value  
(Figure 4D).

Stimulus-dependent LFP commencement

For every spike triggered by sensory stimuli, we determined the 
corresponding LFP. To identify the onset of each LFP, we computed 
the second derivative of the LFP signal. By analyzing the inflection 
points obtained from the second derivative (indicated by red arrows 
in Figure  5B, inset), we  calculated the time interval between the 

initiation of the LFP response and the occurrence of the sensory-
evoked spikes.

Results

To examine the transformation of whisker interactions with 
surfaces into cortical neuronal discharges, we replayed receptive 
whisker sensing of different surfaces by covering the face of a 
rotating cylinder with several grades of sandpaper with varying 
degrees of coarseness (Lottem and Azouz, 2008). The cylinder face 
was placed orthogonally to the vibrissae such that they rested upon 
it (Figure 1A). The experimental goal was to collect records of the 
movement of whiskers across surfaces and use them as a stimulus 
set to probe the neuronal representation of surface coarseness 
(Lottem and Azouz, 2009). The current study examined several 
measures of cortical neuronal responses to different textures. 
We recorded local field potentials (LFPs) and spikes with multi-site 
silicon probe electrodes from vS1 neurons. Single-neuron spike 

FIGURE 7

Surface coarseness preferences in the different coding strategies. (A–C) Neuronal response similarity categories: (A) Similar – all coding strategies 
show the same preference. (B) Partially similar - some coding strategies show the same preference. (C) Different – none of the coding strategies show 
the same preference. (D) Proportions of neurons in the different categories. (E) Mean spatial clustering values in the various coding strategies. The 
dashed horizontal line indicates the significance level (see text).
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trains were obtained through spike sorting (see Methods) to 
separate the spike trains originating from distinct neurons. The 
resulting sample consisted of 212 multi-unit recordings 
encompassing all layers, with the following distribution: 64 in the 
layers 2–3, 57 in layer 4, and 91 in the layers 5–6. In our study, 
we examined the responses to up to five textures. We quantified 
various neuronal parameters, including discharge rates, spike 
count correlations, neuronal synchronization, and neuronal 
responses to SSE in response to different surfaces.

An example of whisker motion for two textures is shown in 
Figure 1B. We quantitatively evaluated the changes in whisker angle 
and curvature caused by texture coarseness. We first calculated the 
whiskers’ position and the curvature SD of each measured whisker 
vibration in response to all studied textures to quantify these changes 
(the SD of these signals was calculated throughout stimulus duration: 
500 ms). We quantified the range of whisker vibration in response to 
the different textures. As shown in Figure 1C for the recording in 
Figure 1B, a relationship was observed between texture coarseness and 
whisker response characteristics. Coarser and finer surfaces are 
expressed by higher and lower response SD values (Gugig et al., 2020). 
These results were consistent across recordings for all whiskers 
(Figure 1D; n = 17) and suggest that the amplitude of SSE changes 
globally due to surface coarseness (Wolfe et  al., 2008; Gugig 
et al., 2020).

PSTHs for paired cortical neuronal responses to the different 
textures are shown in Figure 1E. These examples corroborate our 
previous findings that different cortical neurons respond differently to 
various surfaces (Garion et al., 2014). We quantified the neuronal 
responses in Figure 1F, demonstrating that the first neuron reduces its 
firing rate monotonically as a function of surface coarseness. In 
contrast, the second neuron shows selectivity to P400.

We tested whether a global characteristic of SSEs could provide a 
code for surface coarseness. Such an SSE code is plausible given that 
sharp, high-acceleration events effectively drive spikes in the 
somatosensory cortex (Shoykhet et al., 2000; Arabzadeh et al., 2005; 
Wolfe et al., 2008; Sharma and Azouz, 2022). The pattern of SSEs will 
thus likely be encoded in the cortex. We used acceleration to identify 
these events (Wolfe et al., 2008). We compared acceleration events on 
four sandpaper textures. This measurement was performed for the C2, 
C3, D2, D3 whiskers (n = 17). For this analysis, an acceleration event 
was defined as any acceleration peak that crossed a defined threshold. 
We  normalized each signal to the Z-score, so our threshold was 
reported in units of SD. We defined low-acceleration events as events 
occurring at a threshold of 0.05–0.25 SD. In contrast, high-acceleration 
events occurred at a threshold above 0.5 SD (Wolfe et  al., 2008). 
We  calculated the ratio between the two and found that high-
acceleration events may systematically occur more frequently on 
rougher surfaces (Figure 1H). These findings emphasize a graded 
association between texture coarseness and the ratio of low to high 
acceleration events. However, their explanatory power remains partial 
in accounting for the firing rates observed in the neurons during 
this session.

We characterized the SSE underlying the spikes to investigate 
further the transformation of whisker motion into cortical neuronal 
discharges. Figure 1G illustrates the distribution of SSE amplitudes for 
all the spikes in the neurons presented in Figures 1D,E. Notably, the 
number of events closely corresponds to the firing rates. We quantified 
this relationship by calculating the Pearson correlation coefficient 

(PCC), which yielded a value of 0.92 for the neurons in 
Figures  1E,G. Across all neurons, the average PCC was 
consistently 0.89.

Interestingly, the distribution of SSE amplitudes for the neuron in 
Figures 1E,G, upper panels exhibits a bimodal distribution in the 
upper panels, while the neuron shown in the lower panels displays an 
unimodal distribution in the lower panels. These distinct patterns of 
SSE amplitudes, when compared to firing rates in response to different 
textures (Figure 1G), suggest differential changes in the two separate 
neuronal response characteristics. Later, we will delve into a more 
comprehensive analysis of these phenomena and discuss their 
relevance to additional coding strategies in subsequent (Figures 2–5).

Texture-dependent spike timing correlations

To understand whether cortical neuronal correlations encode 
information about surface coarseness, we conducted recordings from 
a total of 270 neuronal pairs. Figure 2A illustrates the paired cortical 
neuronal responses to various textures. These responses are visually 
represented using established peri-stimulus time histograms (PSTHs), 
showcasing how neurons react to four distinct textures. To delve into 
the temporal synchronization between these neuronal pairs, 
we computed the cross-correlation histograms (CCHs), as depicted in 
Figure 2B. These CCHs allow us to explore and quantify the degree of 
synchronization between the spike trains of these paired neurons.

We generated corresponding pseudorandom spike trains for each 
pair of neurons to assess the statistical significance of temporal 
synchronization. As seen in Figure 2B, the CCHs for simultaneously 
recorded neurons (as indicated in the upper and lower panels of 
Figure  2A) exhibited distinct peaks centered on zero time lag, 
consistent with synchronized pairs.

Notably, for this specific neuronal pair, the CCH exhibited 
variability dependent on surface coarseness, with the peak of the CCH 
differing among the various textures. We calculated the SR to measure 
this synchrony quantitatively. This involved dividing the magnitude of 
the original CCH by the confidence limit, which was determined 
using the criteria derived from pseudorandom spike trains (please 
refer to the Methods section). An SR value >1 was considered 
statistically significant.

We summarized the incidence of significant response 
synchronizations for all neurons taken from the same tetrode under 
all conditions in Figure 2D. Among the 212 pairs analyzed, 110 (52%) 
displayed significant temporal correlations in their spike trains, as 
indicated by SR values >1. Figure  2C illustrates the relationship 
between surface coarseness, discharge rates of the two recorded 
neurons, and their respective SR values. These examples highlight that 
cortical neurons exhibit changes in neuronal synchrony linked to 
surface coarseness. These findings underscore that neuronal 
synchronization is a prevalent and robust feature of stimulus-evoked 
activity (refer to Figures 6, 7 for statistical analysis encompassing 
all neurons).

The SR values represent the ratio of synchronous spikes to what 
would occur by chance, meaning that each neuron’s responses consist 
of synchronous and asynchronous spikes. To distinguish between 
these, we defined all coincident spikes falling within the significant 
temporal window determined by the CCH width for each pair of 
neurons (Figure 2B) as synchronous. In contrast, all other spikes were 
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categorized as asynchronous. An interesting pattern emerged when 
we examined the amplitudes of the SSE underlying all the spikes in 
these neurons. As depicted in Figure 2E, the distribution displayed a 
bimodal distribution, where asynchronous and synchronous spikes 
formed significantly separate peaks. This indicates that the SSE 
amplitudes associated with synchronized spikes were consistently 
larger than those linked to asynchronous spikes across all neurons 
(Sharma and Azouz, 2022).

We compared their distributions to investigate the impact of 
different SSE magnitudes on neuronal responses. In Figure  2E, 
we illustrate that, for the first neuron, the number of asynchronous 
SSE for P600 exceeded that of SSEs for P220, resulting in higher firing 
rates (green vs. blue; Figure  2C). Conversely, the number of 
synchronous SSEs was more pronounced for P220 than for P600 (red 
vs. pink). This pattern held for the second neuron as well. In this 
example, these neurons exhibited a preference for P600 in terms of 
firing rates, whereas they leaned towards P220 in terms of their degree 
of synchrony.

We computed several relationships to quantify the transformation 
of whisker vibrations into neuronal discharges across all neurons. 
First, we determined the Pearson correlation coefficient (calculated 
for each neuron, for each trial) between low-and high-acceleration 
event ratios (as shown in Figure 1H) and firing rates. This correlation 
was found to be relatively low (0.32 ± 0.18; depicted as the orange bar 
in Figure  2F). Second, we  calculated the correlation coefficient 
between the number of asynchronous SSE and firing rates, revealing 
a relatively high correlation (0.86 ± 0.05, represented by the blue bar 
in Figure  2F). Third, we  computed the correlation between the 
number of synchronized SSE and SR values, resulting in a correlation 
coefficient of 0.78 ± 0.18. These findings suggest that the proportion of 
high-magnitude SSE cannot fully explain neuronal firing rates. 
Moreover, the different aspects of neuronal responses vary 
differentially in response to surface coarseness.

Texture-dependent local stick–slip event 
properties

Interactions between the whiskers and the environment lead to 
frictional movement and induce whisker bending, vibrations, and 
brief, discrete micromotions known as SSEs (Wolfe et  al., 2008; 
Diamond et al.,2008a; Lottem and Azouz, 2009; O'Connor et al., 2010; 
Zuo et al., 2011; Chen et al., 2015; Campagner et al., 2018). Here, 
we examined whether surface coarseness impacts the transformation 
of SSEs into neuronal discharges. An example of whisker motion 
across P220 sandpaper is shown in Figure 3A, revealing multiple brief, 
high-acceleration events during whisker motion. Subsequently, 
we investigated the impact of synchronous and asynchronous spikes 
on tactile transformation. All coincident spikes occurring within the 
significant temporal window determined by the CCH width (see 
Methods) were designated synchronous and colored red. In contrast, 
all other spikes were designated asynchronous and colored black 
(Figure 3A, upper panels). The trace shows that the synchronized 
spikes are interspersed with spikes that do not exhibit 
temporal correlation.

Upon analyzing the neuronal response, we observed a correlation 
between high-velocity events and concurrent occurrences of 
significant negative deflections in both the LFP and the neuronal 

discharge. As we have shown previously (Sharma and Azouz, 2022), 
SSEs drove each spike, and different aspects of these neuronal 
discharges convey information regarding the magnitude of an 
SSE. We  measured the Spike-Triggered Average (STA) of both 
synchronous and asynchronous spikes to determine if there were 
differences in their local transformations. In Figure 3B, you can see 
that the STAs obtained from asynchronous spikes (represented by the 
blue and red lines) were smaller and had higher variability. On the 
other hand, the STAs calculated from synchronous spikes (illustrated 
by the purple lines) were larger and showed less variability.

To examine whether surface coarseness affects the transformation 
of SSEs into spikes, we  investigated the relationship between SSE 
amplitudes in the different textures and various aspects of neuronal 
discharges. An example of this analysis for paired neuronal recording 
is shown in Figures  3C,D. To begin with, we  investigated the 
correlation between SSE amplitudes and discharge probability in the 
two types of spikes. In this analysis, any peak that surpassed a 
predetermined threshold was considered an SSE without 
distinguishing between stick and slip events (refer to the Methods 
section for more details). The examination focused on the initial 
20 msec following each SSE. Results showed that the discharge 
probability of asynchronous spikes gradually increased with higher 
thresholds, suggesting their ability to reliably convey the magnitude 
of SSEs (illustrated by examples such as P600 and P220 in Figure 4C). 
In contrast, synchronous spikes displayed an almost all-or-none 
response pattern once they surpassed the higher threshold.

We computed the mean and SD values of the slopes and shifts in 
these response curves to quantify the distinctions between 
asynchronous and synchronous spikes for various textures in all 
neurons. Our findings revealed that asynchronous spikes altered their 
discharge probability with SSE amplitude, as evidenced by the smaller 
slope values. Conversely, synchronous spikes exhibited a steep rise in 
discharge probability with increasing SSE amplitude. Furthermore, 
with increasing surface coarseness, there was an observed increase in 
the slope for asynchronous spikes and a rightward shift in the curves 
for both asynchronous and synchronous spikes (Figure 3E). This effect 
was observed in 0.85 of significant neurons for asynchronous spikes 
and in 0.97 for synchronized spikes, highlighting the correlation 
between surface coarseness and these response characteristics.

Second, we investigated the relationship between SSE amplitudes 
and the neuronal discharge rates in the two groups of spikes, 
calculating firing rates over 30 ms. We detected a linear relationship 
between the neuronal discharge rates and the SSE amplitude for the 
asynchronous spikes (Figure 3D). Comparing all neurons revealed 
that the asynchronous spikes conveyed the SSE amplitude through 
their firing rates. In contrast, the synchronous spikes did so poorly, 
with 98 and 5% of asynchronous and synchronous neurons exhibiting 
this phenomenon. Increasing surface coarseness resulted in an 
increase in the slope for asynchronous spikes and a rightward shift in 
the asynchronous spike curve (Figure 3E). Together, these findings 
suggest that surface coarseness plays a role in influencing the 
transformation of SSE amplitudes into discharge probabilities and 
firing rates.

In a previous study (Sharma and Azouz, 2022), we showed that 
the response latency for synchronous spikes is defined as the relative 
interval between network activity and spikes, and the relative spike 
timing between synchronous spikes depends on SSE amplitude. Here, 
we examined whether these response characteristics are influenced 
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by surface coarseness. First, we calculated the relationship between 
SSE amplitude and spike latency. We examined synchronous spikes 
that show this dependency and compared this dependence across 
different textures. For each spike, we detected its underlying SSEs and 
quantified the timing of each SSE by defining the peak value that 
crossed the threshold at the mean ± 3 SD (Figure 4A). The examples 
shown in Figure 4 are for the same neurons as in Figure 3. Figure 4B 
shows the dependence of synchronized spike latency on SSE 
amplitude for two textures. Each point represents an average of 
multiple points. These figures show that the spike latency in 
synchronous spikes was linearly dependent on the SSE amplitude. 
We then quantified this relationship by calculating the normalized 
slopes for all neurons with synchronous spikes for these textures, 
normalizing SSE slopes to the z score. We found that the synchronous 
spikes showed a significant latency dependence on the SSE amplitude 
in 89% of the neurons (Figure 4G; t (126) = 9.3, p = 0.000127).

Second, we examined the influence of SSE amplitude on the time 
interval between the sensory-evoked commencement of the LFP and 
associated spikes. We calculated its second derivative to define the 
sensory-evoked LFP starting point (Figure  4C; see Methods). 
We examined synchronous spikes that exhibited this dependency and 
compared such dependence across different textures. Figure  4D 
shows the dependence of the LFP-spike latency on SSE amplitude for 
two surfaces in synchronous spikes. These results demonstrate that 
the LFP-spike latency for synchronous spikes depended on the SSE 
amplitude. We  found that the synchronous spikes exhibited a 
significant latency dependence on the SSE position amplitude in 80% 
of the neurons (Figure 4H; t (126) = 15.3, p = 0.000012).

In our final analysis, we explored the impact of SSE amplitude on 
the level of spike synchrony, as reflected by the inter-neuronal inter-
spike interval (ISI) (refer to Figure 4E and the Methods section for 
details). Figure 4F provides an illustrative example of this relationship, 
revealing that larger SSE amplitudes were associated with smaller 
ISIs. Moreover, this dependence could be accurately described by an 
exponential decay function (as depicted in Figure 4F). These data 
show the dependence of ISI on SSE amplitude and highlight a 
decrease in this slope for coarser surfaces (Figure 4I; t (126) = 19.1, 
p = 2.3e−4), with 90.2% of neurons exhibiting this significant 
dependence. This indicates that the distinct attributes of 
asynchronous and synchronous spike responses are influenced in 
varying ways by surface coarseness. It suggests that textural variations 
uniquely impact different aspects of neuronal firing related to 
asynchronous and synchronous spikes.

Comparisons of the different coding 
strategies

Figure 5 shows an example of the different coding strategies as 
a function of surface coarseness. Here, we recorded from a pair of 
neurons shown in Figures 3, 4, presenting the firing rate of each 
neuron (Figure 5A; red and blue traces) and their synchronous 
activity (SR values; purple trace) as a function of surface 
coarseness. These results indicated that the first neuron exhibited 
a preference for the P600 texture, whereas the second neuron 
exhibited a P220 preference. The synchronous activity of the two 
neurons also presented with a P600 preference. Figure 5B shows 
the dependence of the local asynchronous number of spikes and 

probability slope on surface coarseness for the same neurons. 
These two response characteristics exhibited a preference for P600. 
Finally, Figure 5C highlights the dependence of local synchronous 
response characteristics on surface coarseness, specifically a 
preference for the P220 texture. Our results thus suggest that 
changes in texture coarseness lead to complex neuronal responses 
(Figures 1–5), which implies that cortical neurons may be selective 
for specific textures through texture selectivity (Garion et  al., 
2014). Notably, distinct coding strategies may present different 
texture selectivity.

We next examined several surface coarseness-dependent 
responses to compare three different coding strategies: selectivity, 
clustering, and similarity. Cortical neuron texture selectivity was 
assessed using a texture selectivity index (SI) (Figures  4A,B; see 
Methods). First, we calculated the average firing rate across 75 trials 
for four different textures and computed the SI to quantify the 
statistical significance of texture selectivity. Second, we shuffled the 
firing rate of 75 trials between four surfaces 500 times and calculated 
the SI for each shuffling. Then, we calculated the mean + 3SD for the 
500 points of the SI data distribution (Figure 6E). If the calculated SI 
of the original data is higher than the shuffled SI (mean + 3SD), the 
SI was considered statistically significant. We previously reported that 
more than 80% of the recorded cortical neurons are texture-selective 
(Garion et al., 2014).

When we  plotted the firing rate and SR associated with the 
different textures of paired neurons (Figures 1–6), we did not observe 
a linear relationship between the firing rate and SR with texture 
coarseness. This suggests texture selectivity for firing rate, temporal 
synchronization, and local characteristics (the mean value across all 
local features). To quantify these complex relationships, we divided 
the neural responses as a function of surface coarseness into four 
categories (Figure 6C lower panels; see Methods section): (1) Up - 
neurons presenting a significant monotonic increase. (2) Down - 
neurons presenting a significant monotonic decrease. (3) Tuned - 
neurons exhibiting a preference for a specific texture (reduction and 
increase). (4) No change - neurons that did not show any significant 
changes. This analysis revealed that most neurons show texture 
selectivity (Figure 6C, middle panel) (0.82, 0.68, and 0.89 for firing 
rate, temporal synchronization, and local features, respectively). 
These results suggest that ~80% of the cortical neurons preferred a 
specific texture in global and local features. We divided these neurons 
according to their preferred surface. We  found neurons that 
preferentially responded to each examined texture (Figure 6D). These 
findings suggest that cortical neurons can represent a broad spectrum 
of surface coarseness. This implies that these neurons are adept at 
encoding and responding to various textural coarseness within 
their signaling.

To further examine texture selectivity, we calculated the texture 
SI for all coding strategies (Figure 6E). We measured respective SI 
values of 0.35 ± 0.19, 0.56 ± 0.18, and 0.52 ± 0.12 (mean ± SD) for the 
firing rate, synchronization, and local features, respectively. Thus, 
synchronous activity and local features show higher texture selectivity 
than firing rates (F (2,126) = 25.4, p = 0.00235). Finally, to examine the 
capacity of the different coding strategies to discriminate between the 
various surfaces, we calculated the ROC-based AUC values for all 
textures. The result indicated a significantly higher mean AUC value 
for local features (0.78) as compared to synchronization (0.61) and 
firing rate (0.57) (Figure 6F) (F (2,126) = 18.3, p = 0.00122). Together, 
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these findings imply that the various coding strategies exhibit 
differences in their selectivity for textures and their capability to 
discriminate between different textures. This suggests a variability in 
how effectively each strategy can distinguish and respond to 
diverse textures.

We additionally assessed the similarity between the different 
coding strategies to determine whether different coding strategies 
exhibit the same surface coarseness preference. We  divided the 
neurons into three categories: (1) Similar coding strategies show 
similar dependence on surface coarseness. Regarding firing rates and 
synchrony, the preferred texture firing rates for two neurons 
correspond to the preferred texture for synchronous activity 
(Figure 7A); (2) partially different - different coding strategies show 
partially similar dependence on surface coarseness. Only one 
neuron’s preferred texture firing rates correspond to the preferred 
texture for synchronous activity (Figure 7B); (3) different coding 
strategies show dissimilar dependence on surface coarseness. None 
of the neurons’ preferred texture firing rates correspond to the 
preferred texture for synchronous activity (Figure 7C).

Initially, we determined the preferred texture for each coding 
strategy (Figure 6). Based on the similarity in surface coarseness 
preferences, we then divided the analyzed neurons into these three 
categories. For each group, we  calculated Pearson correlation 
coefficient values between the plots, revealing that the proportions of 
cortical neurons in each of these categories for the relationship 
between firing rates and synchrony were: Similar - 0.2 (0.5), partially 
different - 0.35 (0.56), and different - 0.55 (−0.45) (Figure 7D), where 
the values in parentheses are the average Pearson correlation 
coefficients among the different plots. We  found the following 
distribution for the relationship between firing rates and local 
features: Similar  - 0.1 (0.35), partially different  - 0.38 (0.58), and 
different - 0.52 (−0.01). We repeated this analysis for the relationship 
between synchrony and local features, yielding the following group 
proportions: Similar  - 0, partially different  - 0.25 (0.66), and 
different  - 0.75 (0.1). These findings imply that the three coding 
strategies represent surface coarseness independently within the 
same neurons. This suggests distinct and separate ways in which 
surface coarseness is encoded by these strategies within the 
neural network.

Finally, a previous imaging study has shown that the cortical 
neurons cluster spatially following their texture selectivity (Garion 
et al., 2014). To examine the degree of spatial clustering of texture 
selectivity of neurons recorded from the same site (<150 μm), 
we devised a similarity measure between adjacent neurons, termed 
the Similarity value (see Methods). We calculated this Similarity 
value as the number of neurons selective to the same texture divided 
by the number of neurons in a particular cluster. A similarity value 
closer to 1 indicates that all neurons in the group have the same 
preferred surface. We found that for firing rates, the Similarity value 
was 0.72 ± 0.21, which was well above the significance level of 0.49 
(see Methods for details regarding the calculation of the significance 
level), indicating a high degree of texture similarity between adjacent 
neurons (Figure 7E, blue bar). In several cases (n = 25), we calculated 
the Similarity value for synchronous neurons when we recorded 
from synchronous triplet and quadruplet neurons. We found that 
this Similarity value was 0.52 ± 0.15, indicating a low degree of 
texture similarity between adjacent neurons (Figure 7E, purple bar). 
We repeated the same analysis with local coding and measured a 

mean Similarity value of 0.58 ± 0.07 across all local features, 
suggesting that local features of neurons do not show spatial 
clustering. These findings suggest a distinction in the spatial 
arrangement associated with these three coding strategies, 
highlighting unique organizational patterns among them.

Discussion

In the current study, we explored the transformation of tactile 
inputs into cortical neuronal discharges by monitoring the 
kinematic and kinetic characteristics associated with whisker 
motion across textured surfaces and concurrently recording from a 
small population of cortical neurons. SSEs are a prominent feature 
of whisker-surface interactions. Recent studies have shown that the 
kinematic profiles of SSEs carry textural information (Ritt et al., 
2008; Wolfe et  al., 2008) and are encoded by neurons on the 
ascending tactile pathway (Simons, 1978; Pinto et al., 2000; Jones 
et al., 2004; Arabzadeh et al., 2005; Kerr et al., 2007; Stuttgen and 
Schwarz, 2008, 2010; Jadhav et al., 2009; Jadhav and Feldman, 2010; 
Crochet et al., 2011; Waiblinger et al., 2013, 2015; Allitt et al., 2017; 
Isett et al., 2018). The magnitude and frequency of these events were 
correlated with texture, with rougher sandpapers eliciting a larger 
amplitude of SSE position and forces, as well as an increase in their 
number (Figure 1H; Wolfe et al., 2008), as compared to smoother 
surfaces (Figures 1C,D; Wolfe et al., 2008; Gugig et al., 2020). These 
changes may result from the relationship between high-and 
low-acceleration events (Figure  1H; Wolfe et  al., 2008). The 
association between SSE magnitude, forces, and texture may result 
from greater friction between whiskers and rougher surfaces. These 
changes reflected the global interaction between surfaces and 
whiskers. Changes in surface coarseness also resulted in a 
modification in  local interactions between the whiskers and 
surfaces (Poulet and Petersen, 2008; Oladazimi et al., 2018; Gugig 
et  al., 2020; Sharma and Azouz, 2022). Since SSEs constitute a 
significant factor contributing to most spike generation in vS1 
neurons (Arabzadeh et al., 2005; Lottem and Azouz, 2008; Wolfe 
et  al., 2008; Lottem and Azouz, 2009) during whiskers-surface 
interactions (Figures 3, 4), it was hypothesized that the variations 
in the characteristics of SSEs as a function of surface coarseness are 
directly related to the mean neuronal firing rates (Figure  1). 
However, these changes in whisker surface interactions, shown here 
and elsewhere to be gradual and surface coarseness-dependent, 
could not explain cortical selective neuronal responses (Figure 1). 
We found that surface coarseness is encoded in the mean firing rate 
of vS1 neurons (Arabzadeh et al., 2003; von Heimendahl et al., 2007; 
Wolfe et al., 2008; Jadhav et al., 2009). These relationships indicate 
that most vS1 neurons exhibit a surface coarseness preference 
(Figures 1, 5; Garion et al., 2014).

We have demonstrated that the magnitude and number of SSEs 
are components of the kinetic signature associated with various 
textures. However, coding these parameters by vS1 neurons is not a 
result of the direct transformation of whisker-surface interactions 
(Figure 2F, orange bar). Instead, texture-specific changes in firing rate 
depend on neural sensitivity to SSE kinetic and kinematic 
characteristics (Garion et  al., 2014; Sharma and Azouz, 2022). 
Moreover, the direct relationship between SSEs and spike discharges 
argues against the notion that cortical neuronal discharges result 
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from the temporal integration of the vibrotactile signal within 
relatively extended ranges. Thus, our results do not support a model 
in which surface coarseness is transformed into the mean firing rate 
of vS1 neurons (Arabzadeh et al., 2003; von Heimendahl et al., 2007; 
Wolfe et al., 2008; Jadhav et al., 2009), indicating that it is related to 
the mean speed or total power of surface-induced whisker vibrations 
(Arabzadeh et al., 2005, 2006; von Heimendahl et al., 2007).

Another novel and plausible coding strategy outlined in the 
current study relies on precise spike timing through the 
spatiotemporal synchronization of neuronal assemblies. We found 
that neuronal synchronization is a prevalent and robust feature of 
spontaneous and stimulus-evoked activity (Zhang and Alloway, 2004; 
Zhang and Alloway, 2006). We found that the tactile stimulus-driven 
neuronal discharge of nearby neurons consists of a mixture of 
synchronous and asynchronous spikes. This temporal synchronization 
is stimulus-driven (Sharma and Azouz, 2022). We further uncovered 
novel evidence that the degree of synchronization changes as a 
function of surface coarseness (Figures 2A–C). These changes show 
surface coarseness preference that manifests in these firing rates. 
Although this measure of neuronal synchrony indicates local 
temporal interactions, the SR value we used here reflects the ratio 
between the number of events resulting in synchronous spikes and 
that expected by chance. Thus, one may argue that this measure 
reflects global coding (Figures  2E,F, blue and red bars) and may 
be attributable to variations in the number and magnitude of SSEs.

By measuring concurrent neuronal activity and whisker 
movement in response to multiple surfaces, we found that variations 
in surface coarseness resulted in changes in SSE characteristics. These 
changes, designated here as local changes, reflect the complex local 
transformation of the kinetic and kinematic characteristics of SSEs to 
yield neuronal discharges (Figures 4, 5). These surface coarseness-
dependent changes were expressed in the distribution of SSEs 
underlying spike discharges. Changes in surface coarseness resulted 
in a shift in the amplitude of spike-generating SSEs (Figures 1G,I, 2E). 
By assessing the level of synchrony between neighboring neurons, 
we  observed that the neuronal responses to textures exhibited a 
combination of synchronous and asynchronous spikes, which were 
intermingled (Figure  2E; Sharma and Azouz, 2022). Once 
we  separated the synchronous and asynchronous spikes, 
we differentiated their underlying SSEs and successfully identified 
coexisting tactile information streams and corresponding coding 
strategies (Lankarany et  al., 2019). Within a short time frame, 
asynchronous and synchronous spikes convey an unexpected level of 
detail regarding SSE magnitude via multiple channels, including 
spike rates and probability in asynchronous spikes (Figures 3, 4). 
Furthermore, synchronous spikes convey SSE magnitude through the 
precise timing of spikes between and within neurons (Figure 4). Our 
data thus indicate that the relationship between SSE magnitude and 
the different features of neuronal responses can serve to discriminate 
between different textures (Figures 4, 5).

We have shown that most neurons exhibit a surface coarseness 
preference across all coding strategies (Figure 6C) and that these 
neurons show a preference for all textures (Figure 6D). By using AUC 
values and the selectivity index, we further determined that the tactile 
evidence carried by local stick–slip event properties was superior to 
other coding strategies concerning discrimination among different 
textures (Figures  6E,F). Moreover, comparisons of the specific 
preferred surfaces in the same neurons through these various coding 

strategies revealed that most neurons present with differing degrees 
of texture selectivity through these different coding strategies 
(Figures 7A–D). Our findings indicate that the discrepancy between 
these coding strategies in transmitting preferred texture information 
thus stems from their sensitivity to different tactile features.

Whisker-surface interactions are likely to be  modulated in 
response to environmental conditions, tasks, and the motivation of 
the animal (Carvell and Simons, 1995; Berg and Kleinfeld, 2003; 
Sachdev et al., 2003; Towal and Hartmann, 2006; Mitchinson et al., 
2007; Hill et al., 2008; Towal and Hartmann, 2008; Grant et al., 2009; 
Zuo et al., 2011; Voigts et al., 2015), as well as considerable variations 
in stimulus configuration, whisker velocity, head movements, and 
object distances (Carvell and Simons, 1990; von Heimendahl et al., 
2007; Diamond et  al.,2008b; Wolfe et  al., 2008; Diamond, 2010; 
Morita et al., 2011; Voigts et al., 2015). These changes can lead to 
considerable changes in sensory signals (Lichtenstein et al., 1990; 
Shoykhet et  al., 2000; Szwed et  al., 2003) and may differentially 
influence the various coding strategies, changing associated surface 
coarseness preferences.

These results suggest that cortical neurons may have access to a 
more detailed, dynamic description of tactile inputs than initially 
assumed. These coding strategies may enable spike trains to convey 
stimulus information through multiple complementary channels, 
each corresponding to a different aspect of the tactile world and its 
variations, thereby better coping with a dynamic and complex 
tactile environment.

Methodological considerations

To explore the transformation of the tactile features of whisker 
vibrations into cortical neuronal activity, we used receptive sensing 
in which the whiskers are stationary and the surfaces move. Rats 
actively sweep their whiskers across surfaces to locate and distinguish 
objects in the animals’ immediate sensory environment (Welker, 
1964; Carvell and Simons, 1990; Sachdev et al., 2001; Bermejo et al., 
2002; Berg and Kleinfeld, 2003; Knutsen et al., 2005). In addition, 
active whisking is often associated with head and body movements 
(Carvell and Simons, 1995; Brecht et al., 1997; Mitchinson et al., 2007; 
Ritt et al., 2008; Towal and Hartmann, 2008). Moreover, rodents often 
forego whisking, relying solely on passive movement of their whiskers 
instigated by body and head movements. Specifically, they use their 
vibrissae but do not whisk as they maintain contact with walls and 
surfaces while running.

The behavioral paradigms used to study texture discrimination 
extensively influence how rats use their whiskers to sense the tactile 
environment. In head-fixed animals, the only way to sense the 
surfaces is to whisk against them. However, to our knowledge, a 
quantitative examination has yet to be  published regarding the 
influence of whisking strategies on texture discrimination under 
these conditions. That may be due to stable conditions where the 
surfaces are located at a constant location and distance, influencing 
whisking strategies and making perception and discrimination less 
complex (Wolfe et al., 2008; Jadhav and Feldman, 2010).

In free-behaving animals, it has been shown that they develop a 
purposive whisking strategy for whisker-surface interactions that is 
information-seeking to perceive and discriminate between different 
textures. Thus, whisking behavior is related mainly to gathering 
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tactile information, whereas discrimination performance appears to 
be  more closely associated with the details of whisker–surface 
interactions (Zuo et al., 2011; Zuo and Diamond, 2019). Finally, it has 
been shown recently that free-behaving rats can discriminate fine 
tactile patterns while running without whisking (Kerekes et al., 2017).

The present study primarily examined the transformation of 
whisker-surface interactions into cortical neuronal activity. While 
we use anesthetized rats in receptive sensing mode, our results are 
similar to those in awake-behaving animals in many respects. The 
occurrence and magnitude of SSEs are encoded by time-locked spikes 
in vS1 ensembles, with texture-related sequences of SSEs encoded by 
multiple coding strategies constrained by the intrinsic dynamics of 
whisker circuits and synapses. The occurrence of discrete SSEs related 
to texture, observed here, suggests coexisting coding for texture 
during active sensation while awake.

Texture selectivity in cortical neurons

A hallmark of the sensorimotor system is that tactile features 
are organized according to maps whereby the functional role of a 
neuron and its tuning to stimulus properties can be predicted by its 
location. Several properties of tactile stimuli have been spatially 
identified in the somatosensory whisker system. First, whisker 
somatotopy is perhaps the most prominent property of the whisker 
pathway organization (Woolsey and Van der Loos, 1970; Welker 
and Woolsey, 1974). Additionally, a map of directional selectivity 
has been observed in anesthetized and awake rodents performing 
active sensing (Andermann and Moore, 2006; Kerr et  al., 2007; 
Peron et al., 2015). Another spatial feature of whisker stimuli is the 
degree of correlated motion across multiple whiskers (Estebanez 
et al., 2016). In contrast, the distribution of response selectivity for 
whisker angle, curvature, kinematic features, and distance to a wall 
found clear evidence favoring a salt-and-pepper distribution of 
feature selectivity (Peron et al., 2015; Sofroniew et al., 2015; Martini 
et  al., 2017). Studies of selectivity to texture coarseness in rats, 
tested under electrical whisking conditions, found that neurons 
preferring the same texture tend to cluster together within the 
Barrel (Garion et al., 2014). In the current study, we use receptive 
sensing to support our previous finding that cortical neurons 
exhibit surface coarseness preference through different coding 
strategies (Figure 6).

Cortical neurons display spatial clustering according to their 
preferred texture selectivity. However, this clustering is restricted to 
firing rates only. Examination of the spatial organization through the 
two other coding strategies revealed no spatial clustering (Figure 7E). 
Thus, our findings suggest that surface coarseness preference is an 
inherent feature of tactile transformation. These transformations may 
reflect a unique combination of kinetic and kinematic features for 
each texture. These combinations manifest themselves through the 
different coding strategies in which firing rates primarily represent 
global parameters such as the number and magnitude of SSEs. 
Synchrony coding reflects the number and magnitude of SSEs that 
resulted in synchronized spikes. These results suggest a differential 
role for these different coding strategies in which each neuron 
participates in overlapping populations coding different attributes of 
whisker-mediated sensory signals (Derdikman et  al., 2003; 

Komiyama et al., 2010; Rothschild et al., 2010; Ko et al., 2011). A 
comprehensive understanding of how neuronal networks are 
organized will thus need to consider how different neurons convey 
sensory and other relevant signals under different tactile and 
behavioral conditions.
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