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Objective: Focal cortical dysplasia (FCD) is the most common pathological cause

for pediatric epilepsy, with frontal lobe epilepsy (FLE) being the most prevalent

in the pediatric population. We attempted to utilize radiomic and morphological

methods on MRI and PET to detect FCD in children with FLE.

Methods: Thirty-seven children with FLE and 20 controls were included in the

primary cohort, and a five-fold cross-validation was performed. In addition, we

validated the performance in an independent site of 12 FLE children. A two-

stage experiments including frontal lobe and subregions were employed to

detect the lesion area of FCD, incorporating the asymmetric feature between

the left and right hemispheres. Specifically, for the radiomics approach, we used

gray matter (GM), white matter (WM), GM and WM, and the gray-white matter

boundary regions of interest to extract features. Then, we employed a Multi-Layer

Perceptron classifier to achieve FCD lesion localization based on both radiomic

and morphological methods.

Results: The Multi-Layer Perceptron model based on the asymmetric feature

exhibited excellent performance both in the frontal lobe and subregions. In the

primary cohort and independent site, the radiomics analysis with GM and WM

asymmetric features had the highest sensitivity (89.2 and 91.7%) and AUC (98.9

and 99.3%) in frontal lobe. While in the subregions, the GM asymmetric features

had the highest sensitivity (85.6 and 79.7%). Furthermore, relying on the highest

sensitivity of GM and WM asymmetric features in frontal lobe, when integrated

with the subregions results, our approach exhibited overlaps with GM asymmetric

features (55.4 and 52.4%), as well as morphological asymmetric features (54.4 and

53.8%), both in the primary cohort and at the independent site.

Significance: This study demonstrates that a two-stage design based on the

asymmetry of radiomic and morphological features can improve FCD detection.

Specifically, incorporating regions of interest for GM, WM, GM, and WM, and the

gray-white matter boundary significantly enhances the localization capabilities for

lesion detection within the radiomics approach.
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1 Introduction

Frontal lobe epilepsy (FLE) is a common surgically treatable

form of epilepsy, and it is more prevalent in children (Salanova

et al., 1994; Laskowitz et al., 1995; Téllez-Zenteno et al., 2005).

Malformation of cortical development (MCD), and in particular

focal cortical dysplasia (FCD), is the most common pathological

cause for pediatric epilepsy (Harvey et al., 2008; Lorio et al., 2021).

Previous study demonstrates that preoperative diagnosis of lesions

can improve postoperative outcomes (Téllez-Zenteno et al., 2010),

so accurate detection and localization of epileptic lesions are crucial

for resection plan and surgical efficacy.

A few studies have evaluated the cortical thickness (Widjaja

et al., 2011; Rahatli et al., 2020) and cortical volume changes

(Lawson et al., 2002; Rahatli et al., 2020) in children with FLE, these

studies have found cortical changes in the frontal lobe compared

to the control group. However, specific lesion localization studies

are lacking. Currently, FCD lesion detection research has primarily

focused on morphological abnormalities, such as cortical thickness,

blurring at the gray-white matter boundary (GWM) and fluid-

attenuated inversion recovery (FLAIR) signal intensity changes in

MRI. Based on these morphological abnormalities, some studies

employ surface-based features to identify focal abnormalities in

a pediatric cohort (Adler et al., 2017; Kulaseharan et al., 2019)

and Multi-centre Epilepsy Lesion Detection Project cohort (Spitzer

et al., 2022). In order to highlight the cortical thickness and

the blurred GWM feature of FCD, the Morphometric Analysis

Program was employed for lesion localization (Huppertz et al.,

2005; David et al., 2021). Additionally, PET imaging can assist in

the localization of lesions by utilizing metabolic and asymmetric

information (Mo J.-J. et al., 2019), which may aid the identification

of occult FCD lesions that were missed on MRI. It has been

demonstrated that the combination of MRI and PET has higher

sensitivity compared to MRI alone (Tan et al., 2018).

In recent studies, radiomics approaches have shown promising

performance in the directions of type 2 diabetes mellitus (Xu

et al., 2022) and breast cancer (Huang et al., 2021), while also

demonstrating excellent performance in the diagnosis of temporal

lobe epilepsy (TLE) using MRI (Mo J. et al., 2019; Park et al.,

2020; Cheong et al., 2021) and PET (Zhang et al., 2021) images.

In radiomics method that focus on pediatric FCD research, a

particularly relevant study employed a two-stage Bayes classifier

(Kulaseharan et al., 2019). Initially, voxel classification was carried

out based on cortical thickness and blurring at the GWM features.

Subsequently, voxels classified as lesions were reclassified using

texture features. In comparison to the utilization of first-order

statistics and texture features in MRI (Mo J. et al., 2019), MRI

and wavelet images (Cheong et al., 2021) were used for obtaining

rich high-dimensional radiomics features in TLE. However, the

application of radiomics either alone or in combination with

morphological features in FCD research has not been extensively

explored. Additionally, compared to the morphological method

that primarily focuses on the region of interest (ROI) comprised

of gray matter (GM), white matter (WM) and GWM, there is a

lack of literatures available on the application of radiomics methods

for analyzing these ROIs. Therefore, this study was conducted to

investigate the radiomics method for identifying abnormalities in

the GM, WM, and GWM.

Drawing from previous research, epilepsy has been

conceptualized as a disruption at the level of the entire brain

network (van Diessen et al., 2013; Wang et al., 2022). Additionally,

earlier studies have found that in patients with unilateral frontal

lobe epilepsy, compensatory mechanisms exist in the contralateral

hemisphere (Swartz et al., 1996; Widjaja et al., 2014). Furthermore,

FCD lesions in pediatric patients tend to be larger, and surgical

interventions typically focus on resecting the epileptogenic zone

rather than all abnormal areas. To enhance the accuracy of

detecting epileptogenic zone and mitigate potential interference

from contralateral regions in patients with unilateral FLE, We

have designed a two-stage detection method from the frontal

lobe to subregions. Moreover, this two-stage approach offers the

advantage of a progressively refined detection process. In the

first stage, we can more easily identify abnormalities within the

cerebral hemisphere, thus narrowing down the search area for

the lesion. Subsequently, in the second stage, we can concentrate

on detecting abnormal regions within the affected frontal lobe,

thereby enhancing the accuracy of FCD detection.

In this study, we employed a Multi-Layer Perceptro (MLP)

network to analyze multimodal (including T1, FLAIR and PET)

imaging data. We utilized radiomics methods to detect FCD

by extracting features from different ROIs including GM, WM,

GM and WM (GM&WM), and GWM, incorporating shape, first-

order, and texture features from multimodal and wavelet images.

Additionally, we incorporated asymmetric features from the left

and right hemispheres. Based on the clinical diagnostic process

of lesion localization, we devised a two-stage detection approach

using radiomic and morphological approach. First, the presence

of pathology was determined in the left and right frontal lobe

regions. Subsequently, all subregions of the affected frontal lobe

were discriminated to identify the specific areas of FCD. To

ensure the generalizability of our method, we further validated the

performance of our model on an independent site.

2 Materials and methods

2.1 Materials

2.1.1 Participants
The FLE subjects we used for research were collected from

the pediatric epilepsy center of Peking University First Hospital

between 2016 and 2018, with the following inclusion criteria: (1)

FLE in children; (2) Clinical suspicion of FCD or MCD; (3) The

experimental data is a retrospective analysis study, so it is required

to be seizure-free for at least one year after surgery. Since age and

gender-matched healthy control groups of children including T1,

FLAIR, and PET images are difficult to obtain, we used 20 children

with TLE as the control group and underwent the same MRI

and PET protocol from Peking University First Hospital between

2018 and 2021. In addition, other study also adapted patients

with TLE as reference group (Tan et al., 2018). All patients in

the control group underwent surgery and were histopathologically

confirmed to have no FCD present. We conducted PET imaging

confirmation to ensure the absence of metabolic abnormalities

beyond the temporal lobe.

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1289897
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2023.1289897

FIGURE 1

Flow dagram of experimental design. MLP, multi-layer perceptron. GM, gray matter; WM, white matter; GM & WM, GM and WM combined; GWM,

boundary between GM and WM.

2.1.2 MRI acquisition and data preprocessing
All participants contain 3-T T1, FLAIR and PET images. We

obtained three-dimensional datasets using T1-weighted sequences

(TR = 8.0 ms, TE = 3.8 ms, slice thickness = 1 mm, no gap, voxel

size = 0.86 mm × 0.86 mm × 1 mm) and T2-FLAIR sequences

(TR = 4,800 ms, TE = 277 ms, TI = 1,650 ms, FOV = 176 × 220

mm, slice thickness = 1 mm, no gap, voxel size = 0.98 mm × 0.98

mm × 0.56 mm). Simultaneously, we acquired brain PET images

using 18F-FDG (slice thickness of 3 mm, voxel size of 2 mm) and

performed attenuation correction using CT data.

The overview of the FCD processing pipeline is presented in

Figures 1, 2, including ROIs segmentation and extraction steps,

as well as visualizations. Further details are explained in the

sections below. The first preprocessing step for all participants is

to register the FLAIR and PET images to the T1 image through

the Functional Magnetic Resonance Imaging of the Brain Software

Library toolkit (Jenkinson et al., 2012), and cortical reconstruction

using FreeSurfer v6 (Fischl, 2012). In brief, the T1 sequence

was first resampled to achieve isotropic voxel sizes of 1 mm

× 1 mm × 1 mm (Bossi Zanetti et al., 2023). Subsequently,

head motion correction, intensity normalization, skull stripping,

and white matter segmentation were performed. Following that,

three-dimensional reconstruction was carried out to generate the

reconstructed cortical brain. Lastly, the registered FLAIR sequence,

PET data, and manual labels were mapped onto the reconstructed

cortical brain. After preprocessing, Each FLE or control can be

divided into two subjects, including left and right hemisphere. For

each hemisphere, the frontal lobe and its subregions are the areas

we need to analyze. Subregions are extracted from the Desikan-

Killiany atlas (Desikan et al., 2006) and include: caudal middle

frontal; frontal pole; lateral orbitofrontal; medial orbitofrontal;

paracentral; pars opercularis; pars orbitalis; pars triangularis;

precentral; rostral middle frontal; superior frontal. Specifically, the

frontal lobe is the combination of all its subregions. The subsequent

ROIs segmentation and feature extraction are performed separately

on the frontal and subregions. For children with FLE, manual lesion

labels were created based on postoperative resection areas, and the

labels are then registered to the reconstructed cortical surface.

2.2 Methods

2.2.1 Morphological/intensity features
All the features below are calculated in the individual space

of all participants: (1) Cortical thickness; (2) Gray-white matter

intensity contrast; (3) Mean curvaure; (4) Sulcal depth; (5) local

cortical deformation (LCD); (6) FLAIR intensity; (7) Dougnnut

method maps; (8) PET standardized uptake value ratios (SUVR);

(9) GM volume; (10) WM volume. FLAIR intensity was sampled at

the GWM and at depths of 25%, 50%, and 75% of cortical thickness,

as well as at 0.5 and 1 mm below the GWM. The cortical thickness,

gray-white matter intensity contrast, and FLAIR intensity were

measured within the dougnnut method. Details about extraction of

(1)–(7) features can be found elsewhere (Adler et al., 2017; Mo J.-J.

et al., 2019; Spitzer et al., 2022). PetSurfer was used to calculate the

PET SUVR (Greve et al., 2014, 2016). In order to reduce noise, the

following features were smoothed with a 10 mm full-width-at-half-

maximum gaussian kernel: cortical thickness; gray-white matter

intensity contrast; LCD; FLAIR intensity; dougnnut method maps.

2.2.2 Radiomic features
2.2.2.1 Segment and extract ROIs

The steps of extracting various ROIs of frontal lobes and

subregions can be seen in the Figure 1. Based on the reconstructed

brains for all participants, the processing involved segmenting
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FIGURE 2

Region of interest of radiomics. We use T1 as background image to

display region of interest, including GM, WM, GM & WM and GWM,

similar to FLAIR and PET images.

and extracting ROIs as follows: (1) GM and WM images were

segmented using the SPM12 tool; (2) GM and WM binary images

of frontal lobe and subregions were extracted from the Desikan-

Killiany atlas; (3) ROIs of GM, WM, and GM & WM. (4) GM and

WM images of frontal lobe and subregions; (5) GWMwas obtained

by screening the pixel values on the GM and WM images of the

frontal lobe and subregions with thresholds of 1.0. At the boundary

of the GM andWM images, the probability value of GM is relatively

large, and the probability value ofWM is relatively small. Therefore,

the ROI of GMwith a probability≥1.0 is taken, and the ROI ofWM

with a probability <1.0 is taken. All visualizations of the ROIs are

shown in Figure 2.

2.2.2.2 Radiomic features extraction

Based on Figure 2 ROIs, radiomic features are then extracted

from original and wavelet transformed images of T1, original image

of FLAIR and PET. Totally 107 radiomic features can be extracted

from each original image, including 14 shape features, 18 first order

features, 24 gray level co-occurrence matrix (GLCM) features,

16 gray level run length matrix (GLRLM) features, 16 gray level

size zone matrix (GLSZM) features, five neighboring gray tone

difference matrix (NGTDM) features, 14 gray level dependence

matrix (GLDM) features. In wavelet transformed images with

eight decompositions, while H stands for high-pass filter, and L

stands for low-pass filter: LLL, LLH, LHL, LHH, HLL, HLH, HHL,

HHH; and 744 wavelet features were calculated including the first

order, GLCM, GLRLM, GLSZM, NGTDM, GLDM features. For

each ROI of participant, a total of 1,037 features were combined

from T1, FLAIR, and PET. The radiomics feature extraction was

processed using an open-source software named PyRadiomics

(Van Griethuysen et al., 2017).

2.2.3 Asymmetric features
The asymmetric features was obtained by calculating the

features of the left and right hemispheres, the calculation is

according to the following formula:

asymmetry = 2× (fleft − fright)/(fleft + fright). (1)

where fleft and fright represent the features of the left and right

hemispheres, we denote asymmetry as the asymmetric feature of the

left hemisphere, and −asymmetry as the asymmetric feature of the

right hemisphere.

2.2.4 Feature selection and model performance
measurement

In every participant, these features underwent two

normalization procedures. (1) For patients, features were

normalized using intra-subject z-scoring. For controls, features

were normalized using intra-controls z-scoring. (2) The patients

from (1) were z-scored by the mean and standard deviation in the

population of controls. The dataset underwent feature selection

using Random Forest Classifier, followed by classification using an

MLPmodel. Based on the Scikit-learn module in Python (Abraham

et al., 2014), we employed a Random Forest Classifier for feature

selection. We conducted five-fold cross-validation on the primary

cohort to determine the optimal threshold, which ranged from

0 to the maximum feature importance value. Subsequently, we

utilized this selected optimal threshold for feature selection on

both the primary cohort and the independent site. Based on the

groups of radiomic and morphological experiments, the detailed

number of input features after feature selection for each detection

analysis task on the frontal lobe and its subregions can be found in

Supplementary Table S1.

To determine the optimal data processing and network

parameters, we conducted a series of experiments using five-

fold cross-validation on the primary cohort. The selection of

hyperparameters was based on the performance metrics of each

five-fold cross-validation model on their respective validation

sets. The MLP model (Spitzer et al., 2022) had two hidden

layers containing 40 and 10 nodes, two output nodes, and used

a dropout of 0.4 on the input layer for learning more robust

representations. We utilized the Adam optimization algorithm

and employed the cross-entropy loss function. For the full list of

optimized parameters, please refer to Supplementary Table S2. The

classification performance was assessed using accuracy, balanced

accuracy, specificity, sensitivity, and area under the curve (AUC).

Additionally, the detection performance of the lesions in the frontal

subregions were evaluated by measuring the overlap between the

predicted region and the ground truth label.

In the lateralization detection task for the frontal lobe, data

labels are determined based on the surgical side. For a single-

sided frontal lobe, label 0 represents a healthy frontal lobe, and

label 1 represents a frontal lobe lesion. In the subregion detection
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task, data labels are determined based on a combination of manual

lesion labeling and whether there is overlap with the subregion.

For subregions, label 0 represents a healthy subregion, and label

1 represents a subregion lesion. Accuracy refers to the sum of

correctly identified healthy and lesion labels divided by the total

sum of all labels. Sensitivity is the sum of correctly identified lesion

labels divided by the total sum of all lesion labels. Specificity is the

sum of correctly identified healthy labels divided by the total sum

of all healthy labels. Balanced accuracy is the average of sensitivity

and specificity. After obtaining prediction results for all subregions

of each subject, predicted lesion regions for that patient are merged

together, and the overlap with manually labeled lesion regions is

calculated to assess the lesion detection task’s performance. The

metrics used to evaluate detection performance are determined

by calculating the area under the receiver operating characteristic

curve (AUC). The optimal threshold for the AUC is determined by

maximizing the sum of sensitivity and specificity values to predict

detection results.

2.2.5 Feature visualization using UMAP
We performed data visualization to demonstrate the

contributions of rdiomic and morphological features in

distinguishing patients from the control group. For data

visualization, we utilized the Uniform Manifold Approximation

and Projection (UMAP), which is an effective tool for non-linear

mapping of data points’ clustering or grouping and their relative

proximity (McInnes et al., 2018).

3 Experimental setup and results

3.1 Participants characteristics

In primary cohort, 37 children with FLE underwent epilepsy

surgery and 20 controls (see Table 1). Of the 37 FLE, 28 were MRI

positive, including 26 PET positive and two PET negative, nine were

MRI negative and PET positive, 16 frontal lobe lesions in the left

hemisphere and 21 in the right hemisphere, mean age ± standard

deviation (SD) = 5.9 ± 4.5 years. Of the 12 independent site, seven

were MRI positive and PET positive, five were MRI negative and

PET positive, seven frontal lobe lesions in the left hemisphere and

five in the right hemisphere, mean age± SD = 5.6± 4.4 years. Since

it is difficult to obtain a healthy control group of MRI and PET in

children, we obtained 20 children with TLE as the control group

(mean age± SD = 5.5± 3.3 years).

3.2 Test design

In this study, there were a total of 10 groups for radiomic

and morphological experiments (see Table 2). The radiomics

ROIs included GM, WM, GM & WM, and GWM, while the

morphological features (MF) encompassed cortical thickness, gray-

white matter intendity contrast, mean curvature, sulcal depth,

LCD, FLAIR intensity, doughnut method maps, PET SUVR, GM

volume and WM volume. Furthermore, asymmetric features from

the left and right hemispheres were added to the original radiomic

TABLE 1 Subject characteristics of children with FLE and controls.

Characteristics Primary cohort Independent
site

FLE Controls FLE

Number 37 20 12

Age

(years, mean± SD)

5.9± 4.5 5.5± 3.3 5.6± 4.4

Sex (male:female) 22:15 11:9 10:2

Hemisphere (left:right) 16:21 9:11 7:5

Pathology

FCD IA (2) GG (18)

FCD IB (5) FCD IB (2)

FCD IIA (7) PXA (1) FCD IIA (3)

FCD IIB (10) FCD IIB (5)

MCD (13) DA (1) MCD (2)

Seizure-free (>1-year) 37 20 12

SD, standard deviation; NA, not applicable; GG, ganglioglioma; PXA, pleomorphic

xanthoastrocytoma; DA, diffuse astrocytoma. Pathology was classified based on the ILAE

recommendation of the neuropathologic workup of epilepsy surgery brain tissue.

and morphological features. In primary cohort, all experiments

across different groups were conducted using five-fold cross-

validation. Finally, the independent site was used to validate the

model performance.

Our two-stage detection task includes lobe side detection

and subregion detection. In the task of detecting FCD in the

frontal lobe (see Figure 3), the precise label was determined based

on postoperative imaging and surgical side. In the subregion

detection task (see Figure 4), previous structural neuroimaging

studies have revealed characteristic features of FCD, including

cortical thickening, blurring of the GWM, and changes in signal

intensity in FLAIR sequences (Spitzer et al., 2022). Moreover,

diffusion tensor imaging analysis has demonstrated white matter

damage in these patients (Campos et al., 2015), which is confirmed

as another major feature of FCD in histopathology (Blumcke

et al., 2021). These findings mainly focus on the abnormalities

in the GM, WM and GWM regions. Additionally, based on our

postoperative imaging of FCD patients, it was observed that the

resection area involves both GM andWM. Therefore, for the task of

detecting FCD in the subregions, the precise labeling of a subregion

determining the overlap between the computed GM&WM regions

and the manually annotated labels.

In the training dataset of MLP, we included a total of 37

patients and 20 control subjects. For the detection of lobe sides,

each subject encompasses both the left and right frontal lobes,

resulting in a total of 114 training datasets. However, in the

case of subregion detection, we only considered the subregions

of the affected frontal lobes and the single-side frontal lobes of

the control group, resulting in a total of 57 training datasets.

Instead of traditional morphological feature extraction, a radiomics

approach was used to extract a wide range of features, such as shape

and texture.
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TABLE 2 Radiomic and morphological test design.

Test groups GM WM GM = 1.0 WM < 1.0 MF Asymmetry

GM X

GM asymmetry X X

WM X

WM asymmetry X X

GM &WM X X

GM &WM asymmetry X X X

GWM X X

GWM asymmetry X X X

MF X

MF asymmetry X X

Asymmetry means asymmetric feature of the left and right hemispheres. GM, gray matter; WM, white matter; GM & WM, GM and WM combined; GWM, boundary between GM and WM;

MF, morphological feature.

FIGURE 3

Lobe side detection processing pipeline. We use T1 as background image to display frontal lobe, similar to FLAIR and PET images. We employ an MLP

model to detect whether there are lesions in the left and right frontal lobes of patients, thereby identifying the a�ected frontal lobe with lesions. In

this model, the MLP consists of two hidden layers with 40 and 10 nodes respectively.

To address the issue of overfitting common in small sample

data, as mentioned earlier, we employed a random forest classifier

for feature selection. This helped reduce the dimensionality of

the data and, consequently, the complexity of the model. The

number of selected features after feature selection can be found

in Supplementary Table S1, which shows that the filtered features

are in the same order of magnitude as the number of samples.

Additionally, we utilized five-fold cross-validation to evaluate

the performance of the model. Lastly, we introduced Dropout

layers in the MLP network to control model complexity and

prevent overfitting.

3.2.1 Setup for lobe side detection
For each subject, the brain can be divided into two hemispheres,

which can be used as two sets of data for analysis. To detect whether

the left and right frontal lobes of patients have FCD (see Figure 3),

the left and right hemispheres labels were determined based on

postoperative imaging and surgical side. The primary cohort is 114,

including 74 patients and 40 controls data. We use five-fold cross-

validation to train and test MLP model. The independent site of

FLE includes 24 validation data.

3.2.2 Setup for subregions detection
On the basis of determining the frontal lobe of the left and

right hemispheres, to further accurately detect the lesion area

of the patient’s frontal lobe, a classifier was trained separately

for each subregion of the frontal lobe (see Figure 4), and the

predicted results of all subregions were combined to determine

the predicted lesion location of the patient. Considering that the

surgical resection area in the postoperative imaging of patients

does not include the paracentral region, therefore we did not

investigate the paracentral region in the subregions detection task.

The manual lesion labels were created based on the postoperative
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FIGURE 4

Subregions detection processing pipeline. We use T1 as background image to display subregions, similar to FLAIR and PET images. We utilize MLP

classifiers to individually assess the presence of lesions in 10 subregions of the frontal lobe. Subsequently, combining the predictive outcomes of all

subregions yields the final prediction of lesion locations.

resection areas. The precise labeling of a subregion is determined by

calculating whether the subregion overlaps with the manual label.

In the primary cohort, a total of 57 cases were used to evaluate

the model performance through five-fold cross-validation. Among

patients with FLE, only the affected brain regions were selected,

while in the control group, an equal proportion of left or right

frontal lobe regions were randomly chosen. The primary cohort of

57 cases consists of 37 patients data and 20 controls data. Similarly,

the independent site comprises 12 validation cases.

3.3 Performance of radiomics analysis

3.3.1 Primary cohort
In the task of frontal lobe and subregions detection result

(see Table 3). For radiomics ROIs with original features, the

classification performance AUC of GWM, GM & WM, and WM

outperforms that of the GM in lobe side detection (87.2% vs.

83.9% vs. 83.1% vs. 79.4%). In subregions average result, the

ROIs of WM and GM & WM had higher AUC than GM and

GWM (89.1% vs. 88.2% vs. 88.0% vs. 87.3%). This suggested the

radiomics analysis can identify abnormalities in GM, WM, GM

& WM, and GWM. When incorporating asymmetric features, all

ROIs of radiomics had relative higher accuracy, balanced accuracy,

specificity, sensitivity and AUC than the original feature in frontal

lobe. However, in the subregion detection result, only the GM and

GM & WM asymmetry showed improvement. Overall, both in

the frontal lobe and subregions, GM asymmetry had the highest

accuracy (93.0% and 85.1%), balanced accuracy (92.0% and 84.4%),

specificity (94.8% and 83.3%), sensitivity (89.2% and 85.6%) and

AUC (99.0% and 89.9%), suggesting a strong correlation between

high-throughput quantitative features and epilepsy.

3.3.2 Independent site
The results on the independent site are consistent with the

conclusions drawn from the primary cohort in both the frontal lobe

and its subregions (see Table 4). In the frontal lobe, the inclusion

of asymmetric features from all ROIs improved the classification

results, with GM asymmetry and GM & WM asymmetry had the

highest accuracy (91.7% and 95.8%), balanced accuracy (91.7%

and 95.8%), specificity (91.7% and 100.0%), sensitivity (91.7% and

91.7%) andAUC (99.3% and 99.3%). In subregions, GM asymmetry

and WM had the highest sensitivity (79.7% and 78.9%).

3.4 Performance of morphological analysis

3.4.1 Primary cohort
The performance of morphological analysis results were show

in Table 5. After adding asymmetric features in the frontal lobe,

there is a higher accuracy (87.7% and 74.6%), balanced accuracy

(86.7% and 70.6%), specificity (89.6% vs. 81.8%), sensitivity (83.8%

vs. 59.5%) and AUC (95.0% vs. 83.7%) compared to the original

features. However, the improvement in AUC (87.9% vs. 86.9%) on

the subregions is not significant, indicating that the subregions do

not exhibit noticeable morphological abnormalities as observed in

the frontal lobe.

3.4.2 Independent site
When adding asymmetric features, whether in the frontal lobe

or its subregions, there is an improvement in the classification

results on the independent site. In frontal lobe, MF asymmetry had

the higher accuracy (79.2%), balanced accuracy (79.2%), specificity

(75.0%), sensitivity (83.3%), and AUC (92.7%), while in subregions

sensitivity is 77.4%.

3.5 Feature visualaization using UMAP on
the frontal lobe

We employed UMAP visualization to gain insights into

the effectiveness of features in the frontal lobe detection task.
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TABLE 3 Primary cohort radiomics result.

Step Method ACC (%) BACC (%) SPE (%) SEN (%) AUC (%)

Frontal GM 73.7 65.1 89.6 40.5 79.4

GM asymmetry 93.0 92.0 94.8 89.2 99.0

WM 74.6 70.6 81.8 59.5 83.1

WM asymmetry 92.1 89.9 96.1 83.8 92.9

GM &WM 74.6 71.3 80.5 62.2 83.9

GM &WM

asymmetry

93.0 92.0 94.8 89.2 98.9

GWM 79.8 78.7 81.8 75.7 87.2

GWM asymmetry 93.9 91.2 98.7 83.8 97.9

Subregions GM 79.5 78.2 81.2 75.2 88.0

GM asymmetry 85.1 84.4 83.3 85.6 89.9

WM 84.4 83.2 84.1 82.3 89.1

WM asymmetry 81.9 80.9 83.1 78.7 88.9

GM &WM 82.6 81.5 83.6 79.3 88.2

GM &WM

asymmetry

83.2 82.0 82.2 81.8 88.8

GWM 80.9 80.2 79.9 80.6 87.3

GWM asymmetry 82.5 81.7 83.4 80.0 86.9

ACC, accuracy; BACC, balanced accuracy; SPE, specificity; SEN, sensitivity; AUC, Area Under the Curve. The best results are respectively marked in bold fonts.

TABLE 4 Independent site radiomics result.

Method Frontal Subregions

ACC (%) BACC (%) SPE (%) SEN (%) AUC (%) SEN (%)

GM 50.0 50.0 25.0 75.0 53.5 75.2

GM asymmetry 91.7 91.7 91.7 91.7 99.3 79.7

WM 62.5 62.5 75.0 50.0 59.0 78.9

WM asymmetry 91.7 91.7 91.7 91.7 91.7 77.6

GM &WM 62.5 62.5 50.0 75.0 59.0 75.1

GM &WM

asymmetry

95.8 95.8 100.0 91.7 99.3 78.4

GWM 54.2 54.2 75.0 33.3 57.3 69.6

GWM asymmetry 87.5 87.5 100.0 75.0 100.0 71.2

The best results are respectively marked in bold fonts.

Figure 5 illustrates the UMAP two-dimensional embeddings for

GM, GM asymmetry, WM, WM asymmetry, GM & WM, GM

& WM asymmetry, GWM, GWM asymmetry, MF, and MF

asymmetry features. Visually, for the GM, WM, GM & WM,

GWM, and MF, the incorporation of asymmetry features results

in a clearer separation among the affected frontal lobe, healthy

frontal lobe, and control group, this further validates that the

inclusion of asymmetric features can enhance the lobe side

detection results.

3.6 Performance of two-stage method

In the first-stage lobe side detection task, considering the results

of radiomic and morphological methods on both the primary

cohort and the independent site, the radiomics method had the

higher accuracy (93.0% and 95.8%), balanced accuracy (92.0%

and 95.8%), specificity (94.8% and 100.0%), sensitivity (89.2% and

91.7%), and AUC (98.9% and 99.3%) for GM & WM asymmetry,

while in the morphological method, the MF asymmetry had the
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TABLE 5 Morphological result.

Step Method ACC (%) BACC (%) SPE (%) SEN (%) AUC (%)

Primary cohort

Frontal MF 74.6 70.6 81.8 59.5 83.7

MF asymmetry 87.7 86.7 89.6 83.8 95.0

Subregions MF 81.6 81.1 78.6 83.5 86.9

MF asymmetry 82.1 81.0 80.2 81.8 87.9

Independent site

Frontal MF 66.7 66.7 58.3 75.0 69.1

MF asymmetry 79.2 79.2 75.0 83.3 92.7

Subregions MF NA NA NA 63.3 NA

MF asymmetry NA NA NA 77.4 NA

The best results are respectively marked in bold fonts.

FIGURE 5

Uniform Manifold Approximation and Projection visualization of features on the frontal lobe, including GM, GM asymmetry, WM, WM asymmetry, GM

& WM, GM & WM asymmetry, GWM, GWM asymmetry, MF, MF asymmetry. The red data points represent frontal lobes with lesions, the green points

represent healthy frontal lobes, and the purple points represent the control group. MF, morphological feature.

accuracy (87.7% and 79.2%), balanced accuracy (86.7% and 79.2%),

specificity (89.6% and 75.0%), sensitivity (83.8% and 83.3%), and

AUC (95.0% and 92.7%). From the results, it can be observed

that the radiomics method outperforms the morphological method

in the lobe side detection task. Therefore, in the first stage, the

classification results based on GM & WM asymmetry are utilized

as the foundation for subregion detection.

Detailed results of GM & WM asymmetry on the frontal lobe

are presented in Table 6. In primary cohort, GM&WM asymmetry

detected 33 of 37 FLEs; of the 28 MRI positive frontal lobe cases,

25 were correctly detected; among nine negative cases, eight were

detected. The performance is also excellent in an independent site,

the detection rate for FLE patients is 91.7%, with 100.0% detection

rate for MRI positive cases and 80.0% detection rate for MRI

negative patients.

Based on the classification results using GM &WM asymmetry

on the frontal lobe, we have presented the information and images

of patients classified incorrectly in Figure 6. Among these five

subjects, subjects A, B, C, and D are from the primary cohort,

TABLE 6 Frontal detection result with GM &WM asymmetry.

Dataset FLE (%) MRI
positive (%)

MRI
negtive (%)

Primary cohort 89.2

(33/37)

89.3

(25/28)

88.9

(8/9)

Independent site 91.7

(11/12)

100.0

(7/7)

80.0

(4/5)

and subject E is from an independent site. For these five subjects,

the model predicted the affected frontal lobe as a healthy frontal

lobe. In detail, for subjects A and B, although they are MRI

positive, the imaging abnormalities on the affected frontal lobe on

the left side are not prominent. Conversely, there are structural

and metabolic abnormalities observed on the contralateral frontal

lobe in both T1 and PET scans. For subject C, she represents a

unique clinical case. In the clinical assessment before the MRI,

she was initially suspected to have brain atrophy caused by a

stroke. However, postoperative pathology revealed the presence
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FIGURE 6

Visualization of patients who failed the first-stage frontal lobe classification, with subject A, B, C, and D coming from the primary cohort, and subject

E from an independent site. surgical age is presented in years.

of MCD, and it cannot be ruled out that this patient may have

had FCD coexisting with a stroke. As for subjects D and E, both

of them had negative MRI results, and no abnormalities could

be identified from the imaging alone. Furthermore, the brain

development in pediatric patients is still ongoing, and MRI images

are often less clear compared to adult patients, which poses an

additional challenge for classification. Moreover, FCD lesions in

pediatric patients tend to be larger. Surgical interventions typically

focus on resecting the epileptogenic zone rather than all abnormal

areas. Considering the limited information available solely from

imaging, the determination of the surgical resection area is based

on a comprehensive evaluation of anatomical-electrical-clinical

information to determine the final surgical approach (Yu et al.,

2023).

In the task of subregions detection result, the classification

results presented are the average values across all subregions.

When incorporating the results from the first-stage lobe side

detection task with GM & WM asymmetry (see Table 7). In

the radiomics method, both in the primary cohort and the

independent site with the highest overlap in GM asymmetry

and WM, the primary cohort had the all overlap (55.4% and

53.4%), MRI positive overlap (56.3% and 53.2%) and MRI

negative overlap (52.4% and 54.0%). While the independent site

had the all overlap (52.4% and 56.8%), MRI positive overlap

(48.1% and 52.2%) and MRI negative overlap (59.9% and

64.9%).

In the morphological method, both in the primary cohort and

the independent site with the highest overlap inMF asymmetry, the

primary cohort had the all overlap (54.4%), MRI positive overlap

(54.5%) and MRI negative overlap (54.1%). While the independent

site had the all overlap (53.8%), MRI positive overlap (51.7%) and

MRI negative overlap (57.5%).

Figure 7 displays four cases from the primary cohort and

independent site, demonstrating the diagnostic value of our

method. The Sub1 and Sub2 cases originate from the primary

cohort, and abnormalities in the lesion area can also be observed

from T1, FLAIR, and PET images. GM asymmetry exhibits a

higher overlap rate compared to GM, while WM shows a higher

overlap rate compared to WM asymmetry, and MF asymmetry

demonstrates a higher overlap rate than MF. The Sub3 case is

a negative patient with no obvious lesion on the imaging, but

our method is still able to detect the affected region using GM

asymmetry, WM, MF asymmetry. The sub4 case is a patient from

the independent dataset with a positive MRI result. The visualized

outcomes and overlap rates remain consistent.

Both the overlap rate results and the visualized outcomes

reveal that our proposed two-stage radiomic and morphological

combination methods can not only identify positive patients but

also effectively detect negative patients. Additionally, to further

validate the two-stage detection method, we compared it with

the one-stage subregion detection task. Details can be found

in Supplementary Table S3. In the primary cohort, the two-stage
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TABLE 7 Two-stage detection result.

Dataset Method
Overlap

(%)

MRI

positive

(%)

MRI

negtive

(%)

Radiomics

Primary

cohort

GM 51.1 52.2 47.8

GM asymmetry 55.4 56.3 52.4

WM 53.4 53.2 54.0

WM asymmetry 50.0 51.2 46.5

Independent

site

GM 44.2 45.3 42.4

GM asymmetry 52.4 48.1 59.9

WM 56.8 52.2 64.9

WM asymmetry 53.4 49.3 60.5

Morphological

Primary

cohort

MF 51.7 54.4 43.5

MF asymmetry 54.4 54.5 54.1

Independent

site

MF 47.6 41.2 58.7

MF asymmetry 53.8 51.7 57.5

The best results are respectively marked in bold fonts.

detection with the radiomics method of GM asymmetry exhibited

higher sensitivity (85.6% vs. 56.7%) and overlap (55.4% vs. 43.6%)

compared to the one-stage method. Similarly, in the primary

cohort with the morphological method, it showed higher sensitivity

(81.8% vs. 59.9%) and overlap (54.4% vs. 44.5%) than the one-stage

method. These conclusions hold true in the independent dataset as

well. Regardless of whether we compare sensitivity or overlap rates,

it is evident that the two-stage approach outperforms the one-stage

method in FCD lesion detection tasks.

4 Discussion

The findings of our study highlight the effectiveness of utilizing

an MLP network and radiomics methods for the detection of

FCD lesions in multimodal imaging data. We observed that

incorporating radiomic and morphological features from different

ROIs and asymmetric features from the left and right hemispheres

improved the accuracy of FCD detection. Additionally, our

approach, which utilized a two-stage detection process based on

the clinical diagnostic process of lesion localization, demonstrated

excellent performance in detecting FCD lesion.

The proposed asymmetry performs better than basic radiomic

and morphological methods in both frontal lobe and subregion

diagnosis. Also, it is observed through 2D embedding of UMAP

that the accuracy of FCD detection is improved when asymmetric

features are added. This indicates the presence of complex

structural and functional changes in the ipsilateral and contralateral

frontal lobes. This finding is consistent with recent research

that views epilepsy as a network-level disorder of the entire

brain (van Diessen et al., 2013; Wang et al., 2022). Furthermore,

previous studies have also found compensatory mechanisms in the

contralateral hemisphere in patients with unilateral FLE (Swartz

et al., 1996; Widjaja et al., 2014). The compensatory mechanisms

in the contralateral hemisphere to the epileptic focus may further

emphasize the significance of asymmetric features, thus enhancing

localization accuracy.

Radiologically, the characteristics of FCD on MRI imaging

include changes in cortical thickness, blurring of the GWM,

gyration anomalies, alterations in T2 or FLAIR signal intensity,

and WM signal changes (Colombo et al., 2012; Spitzer et al.,

2022). Additionally, while on PET imaging, it is characterized

by metabolic abnormalities (Chassoux et al., 2010). The current

research focuses on using structural MRI-based methods for

identifying FCD characteristics, including surface-based features

(Adler et al., 2017), Morphometric Analysis Program (David et al.,

2021), and diffusion tensor imaging (Lee et al., 2004; Campos

et al., 2015). These methods primarily target abnormalities in

the GM, WM, and GWM. In TLE, radiomics methods have

shown comparable efficacy to clinically empirical methods (Mo

J. et al., 2019), but in FCD, the analysis is limited to extracting

texture features from voxels surrounding the MRI lesions, without

analyzing abnormalities in GM, WM, and GWM (Kulaseharan

et al., 2019). In our study, we applied radiomics methods

including original and wavelet transformed images, for ROI

analysis of the GM, WM, GM & WM, and GWM in pediatric

frontal lobe FCD using both MRI and PET images for the

first time. Compared to morphological methods for identifying

structural and intensity abnormalities, Radiomics analyzes imaging

abnormalities by extracting high-throughput quantitative features

from ROIs. After incorporating asymmetry, the results indicate

that radiomics methods outperform morphological methods. In

lobe side detection, the radiomics methods exhibit an accuracy of

93.0%, balanced accuracy of 92.0%, specificity of 94.8%, sensitivity

of 89.2%, and an AUC of 98.9%. In subregion detection, the

radiomics methods demonstrate an accuracy of 85.1%, balanced

accuracy of 84.4%, specificity of 83.3%, sensitivity of 85.6%,

and an AUC of 89.9% in primary cohort. This indicates that

radiomic methods provide valuable insights into the detection

of FCD lesions and may be helpful in clinical cases where

FCD is suspected but no obvious structural abnormalities are

present.

In the context of structural and functional abnormalities

observed on MRI and PET images, radiomic and morphological

methods can identify lesion areas from different perspectives.

Our experimental findings demonstrate a significant improvement

when combining both methods compared to using morphological

methods alone. In the lobe side detection task, the radiomics

method outperforms the morphological method. Therefore, we

retained the GM & WM detection results in the frontal lobe

as the foundation for the combined experiment of radiomic

and morphological. The two-stage results demonstrate that after

incorporating the morphological information with the first-

stage radiomics results, the two-stage radiomics method exhibits

similar overlap rates to the morphological method, both in the

primary cohort (55.4% and 54.4%) and the independent site

(52.4% and 53.8%). This further supports that the radiomics

method is as effective as the traditional morphological method in

FCD detection.
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FIGURE 7

Visualization of two-stage lesion localization results, including GM, GM asymmetry, WM, WM asymmetry, MF, MF asymmetry. Sub1, Sub2, and Sub3

are from the primary cohort, where Sub1 and Sub2 are MRI-positive, and Sub3 is MRI-negative. Sub4 is MRI-positive and comes from an independent

site. Sub, subject; pre, predict.

However, it is important to acknowledge that there are still

limitations to consider. Due to the difficulty in obtaining a

multimodal healthy control group, we utilized TLE cases as the

control group. Furthermore, we faced challenges in benchmarking

our two-stage FCD detection method. Finding directly comparable

benchmark datasets or conducting rigorous comparative studies

is not straightforward, especially in clinical research involving

medical data privacy and ethical considerations. These limitations

restrict our ability to validate the method’s performance on

extensive benchmark datasets. Lastly, our research still requires

validation on larger multi-center datasets to further assess the

method’s robustness and generalizability.

In conclusion, our study demonstrates the potential of using

radiomics methods for the detection of FCD lesions with GM,

WM, GM & WM, and GWM. The asymmetry and integration

of radiomic and morphological features, along with the two-

stage detection process, improves the efficiency of FCD detection.

These findings contribute to the growing body of research on

the application of radiomics methods in epilepsy diagnosis.

Hence, machine learning utilizing radiomic and morphological

features can offer intelligent FCD lesion detection in pre-surgical

assessments, aiding in surgical strategizing.
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