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With the continuous development of China’s economy and the improvement

of residents’ living standards, it also brings increasing costs of labor and rent.

In addition, the impact of the pandemic on the entity industry has brought

opportunities for the development of new retail models. Based on the booming

development of artificial intelligence, big data, and mobile payment in the

new era, the new retail industry using artificial intelligence technology has

shown outstanding performance in the market. Among them, intelligent vending

machines have emerged in the new retail model. In order to provide users

with a good shopping experience, the product detection speed and accuracy

of intelligent vending machines must be high enough. We adopt Faster R-CNN,

a mature object detection algorithm in deep learning, to solve the commodity

settlement scenario of intelligent vending machines.
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1. Introduction

In recent years, deep learning-based computer vision methods have received extensive

research attention, especially the ResNet proposed by He et al. (2016), which addressed the

degradation problem caused by increasing the number of layers in neural networks, and the

Faster R-CNN proposed by Ren et al. (2017), which has made significant progress in object

detection. These mature and efficient artificial intelligence algorithms have been widely used

in the new retail industry, such as intelligent vending machines that use computer vision

algorithms discussed in this article. Compared with traditional vendingmachines or physical

retail stores, intelligent vending machines have lower costs, more flexible types of goods sold,

and higher profits to the retail industry, thus standing out in the new retail market.

The object detection of retail product checkout in intelligent vending machines faces

several challenges. One challenge is that it is difficult to predict user behavior, and the

products in checkout images may be stacked, placed in abnormal ways, or obscured by

obstacles (such as hands). The challenges mentioned above may result in the algorithm

receiving insufficient information. Therefore, it is essential to ensure that the accuracy

of product detection meets the requirements in such cases. Another challenge is the

detection speed of the algorithm, which is crucial for improving the user experience. This

article addresses these two issues by selecting a unique dataset for training on single-

target commodities from multiple angles and perspectives and verifying it on multi-target

items. Meanwhile, ResNet50 is chosen as the backbone neural network of Faster R-CNN to

improve feature extraction for each product’s angle and enhance the overall performance

and prediction speed of the model. The Faster R-CNN based on ResNet50 used in this article

achieves good accuracy and acceptable response speed in the intelligent vending machine

product checkout scene.
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2. Related work

Intelligent vending machines have advantages such as flexible

stocking and low costs compared to traditional vending machines.

Classic vending machines have complex manufacturing processes

and high prices, are limited by the structure of the vending

channel, and have a specific failure rate. At present, there

are three different technical solutions for intelligent vending

machines, namely gravity induction (Brolin et al., 2018), radio

frequency identification (RFID) (Ramzan et al., 2017), and

computer vision algorithms based on deep learning. The gravity

solution is just an improvement method for traditional vending

machines, and it does not entirely overcome the shortcomings

of conventional vending machines. Due to technical limitations,

RFID cannot perform well on metal goods, meaning that

canned beverages are unsuitable for RFID vending machines.

Moreover, because of the technical characteristics of RFID,

each item must be manually labeled with an RFID tag before

being placed in the intelligent vending machine for sale; this

is an additional cost that cannot be ignored for the RFID

technical solution.

The fundamental technology of intelligent vending machines

based on computer vision is to identify products through images

captured by the camera. Many works have achieved significant

success in object detection (Li et al., 2016; Nian et al., 2016;

Zhang et al., 2019; Ren et al., 2020, 2022), which can be

applied to product recognition. Currently, deep learning-based

object detection algorithms have become mainstream. These

algorithms can be divided into two main types: region proposal-

based methods and single-stage methods. Region proposal-based

methods generate candidate regions and then classify and regress

these regions to obtain the final detection results. These methods

include RCNN (Girshick et al., 2014), Fast RCNN (Girshick, 2015),

Faster RCNN (Ren et al., 2017), etc. Single-stage methods directly

classify and regress the image without generating candidate regions.

These methods include YOLO (Redmon et al., 2016; Redmon and

Farhadi, 2017, 2018; Bochkovskiy et al., 2020), SSD (Liu et al.,

2016), RetinaNet (Lin et al., 2017), etc. In addition, object detection

faces many challenges, such as occlusion, scale variation, and

illumination variation. To overcome these challenges, researchers

have proposed many improved algorithms. For example, Mask

RCNN (He et al., 2017) adds instance segmentation functionality

to Faster RCNN, allowing the model to detect and segment objects

simultaneously. CenterNet (Zhou et al., 2019) is a center point-

based detection algorithm that can maintain high accuracy while

improving detection speed.

For the datasets of retail product checkout, Goldman (Goldman

et al., 2019) assembled a dataset consisting of images of

supermarket shelves. It contains 110,712 product categories,

averaging 147.2 instances per image. The dataset we used, Retail

Product Checkout (RPC) proposed by Wei et al. (2019), is a large-

scale retail dataset that includes 83,739 images with bounding box

annotations for 200 categories of products. In the PRC dataset,

training images only contain a single object. In contrast, testing

images may contain multiple objects and are divided into three

groups: easy, medium, and hard, making it an ideal dataset for

our purposes.

3. Product detection and recognition
methods for intelligent vending
machines

This section applies the Faster R-CNN to the product settlement

scenario of intelligent vending machines. Figure 1 illustrates the

network architecture of the Faster R-CNN based on ResNet50,

which can be summarized as the RPN network + Fast R-CNN. In

this network, the candidate regions for Fast R-CNN are not selected

by the Selective Search algorithm (Uijlings et al., 2013) but are

provided by the RPN. Additionally, the Faster R-CNN used in this

paper extracts features from the input image using ResNet50 rather

than VGG16.

3.1. Input image preprocessing

The input image resolution of the dataset used in this

paper ranges from 1,750×1,750 to 1,850×1,850. High-resolution

images provide more detailed information but pose challenges for

training due to the large number of parameters and calculations

required by the deep neural network ResNet50 used in this paper.

Modern deep-learning methods commonly use GPU acceleration

for training. Still, training on personal computers with limited GPU

andmemory resources can easily lead tomemory overflow and out-

of-memory errors. For example, on my personal computer with

16GB RAM and 8GB GPU memory, when the batch size is set to 3,

the memory usage is up to 95% when using the Dataloader to read

data, and the GPUmemory overflow occurs when preparing to start

training after reading the data. When the batch size is set to 2, the

training time for one epoch is as long as eight hours. Therefore,

we attempted to reduce the resolution of all input images from

3×438×438 to 3×463×463 before training. And when calculating

the bounding box loss, the predicted coordinates of the model’s

bounding boxes are multiplied by four before being compared to

the coordinates in the labels. This can be done because there are

generally no tiny targets in the checkout scenario, so the negative

impact on the model is relatively small. Through experiments, this

has been shown to improve the training speed.

3.2. ResNet50

As shown in Figure 2, the first layer of all ResNet consists of

a 7×7 convolutional layer with a stride of 2, followed by a 3×3

max pooling layer with a stride of 2. After the convolutional layer,

there is a 3×3 max pooling layer with a stride of 2. The max pooling

layer downsamples the feature maps output from the convolutional

layer, reducing the size of the feature maps while retaining the most

salient features. After passing through the common convolutional

and pooling layers, all ResNet structures are followed by four

residual block layers. Specifically, implementing the residual block

in ResNet involves adding a shortcut connection between two

convolutional layers and adding the input directly to the output of

the convolutional layers.
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FIGURE 1

Network architecture of the faster R-CNN based on ResNet50.

FIGURE 2

Network architecture of ResNet.

When VGG16 was used as the backbone neural network

in the original Faster R-CNN paper, the number of parameters

used for feature extraction was ∼ 138 M, with a floating-point

calculation of 30.8 G FlOPS. In contrast, ResNet50 only had about

23 M parameters and 8.2 G FlOPS floating point calculations.

During training, ResNet50 had amuch faster convergence rate than

VGG16, making it both quick and efficient, significantly reducing

training time. Additionally, ResNet50 has a larger receptive field

in its feature map than VGG16 due to the multiple convolutional

layers, which allows it to capture larger image contexts. A larger

receptivefield is generally better in object detection tasks, as it

can capture more overall features. When the receptive field is

not large enough, it can cause the model to have bias errors,

seriously affecting its performance. ResNet50 has a receptive lot

of approximately 483, while VGG16’s receptive field is only 212.

Since the target pixels in the images used in this paper are mostly

equal to or larger than 300×300, ResNet50 is better suited to this

task than VGG16. The formula for calculating the receptive field is

as follows:

RFi = (RFi−1 − 1) ∗ Stridei + Ksizei (1)

RFi refers to the receptive field of the i-th layer; Stridei is the stride

of the i-th layer; Ksizei is the size of the convolutional kernel used in

the i-th layer.

3.3. Faster R-CNN

3.3.1. Region proposal network
In Faster R-CNN, the role of the region proposal network(RPN)

is to generate region proposals, which are candidate regions that

may contain objects. These region proposals are then fed into a

subsequent classification network for object detection.

The RPN operates on a feature map and uses a convolutional

neural network over the feature map, generating multiple anchor

boxes of different sizes and aspect ratios, as shown in Figure 3.
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FIGURE 3

Illustration of anchor boxes.

There are three sizes of anchor boxes, which are 128, 256, and

512, and three aspect ratios, which are 1:2, 2:1, and 1:1. Based

on the combinations of sizes and aspect ratios, nine different

anchor boxes are generated at each point in the feature map, with

their coordinates projected onto the original image as the center.

For each anchor box, the RPN predicts whether it contains an

object and the rough location of the object, thus generating region

proposals. These region proposals can then be fed into a subsequent

classification network for object detection, resulting in the final

detection results. In the end, we divided the image into 9×14×14

anchor boxes (approximately 1.7k). Some of the anchor boxes we

split may span across boundaries, but we ignore those that do.

After removing the anchor boxes that span across boundaries, we

sample 64 anchor boxes from the remaining ones, with an equal

distribution of positive and negative samples, each accounting for

50%. If there are not enough positive samples to fill half of the

selected samples, we can use negative samples to fill the remaining

slots. Whether the IoU (Intersection over Union) value between

each candidate box1 and the ground-truth box exceeds a preset

threshold is the criterion for determining positive and negative

samples.

The loss function of RPN consists of two parts: classification

loss and bounding box regression loss. In the classification

loss function, we calculate a binary classification loss for each

anchor box, representing the error of classifying it as foreground

(containing an object) or background (not including an object). For

each anchor box, the corresponding binary classification loss is:

Lcls =

{

− log(p) if (y == 1)

− log(1− p) else
(2)

Where p represents the predicted probability of the anchor box

being classified as foreground, y represents the ture label.When

y == 1, it represents true lable of the anchor box is foreground,

and when y == 0, the true label is the background. In the bounding

box regression loss function, we calculate a smooth L1 loss for each

anchor box that is classified as foreground, which represents the

difference between the predicted bounding box coordinates and the

true bounding box coordinates. For each foreground anchor box,

1 The sampled 64 anchor boxes are referred to as candidate boxes.

its corresponding L1 loss is:

smoothL1(x) =

{

0.5 ∗ x2 if (x < 1)

|x| − 0.5 else
(3)

Lreg(t
∗, t) = smoothL1(t

∗
i − ti) (4)

Here, t∗ represents the true bounding box coordinate offset, t

represents the predicted bounding box coordinate offset, and i

represents the dimension of the coordinate axis. The N represents

the number of anchor boxes classified as foreground.After

computing the loss functions for both components, we add them

together to obtain the final RPN network loss function:

LRPN =
1

Ncls

Ncls
∑

i

Lcls + λ
1

Nreg

Nreg
∑

i

piLreg(t
∗
i , ti) (5)

p and t denote the classification prediction and bounding box

regression prediction of the RPN network, while and t∗ represent

the true bounding box coordinate offsets. Ncls and Nreg correspond

to the numbers of all and foreground anchor boxes, respectively.

λ is a hyperparameter that balances the classification loss and

bounding box regression loss.

3.3.2. ROI pooling
Since the dimensions of the images are not the same, it

means that the corresponding feature map sizes are also different.

The purpose of ROI pooling is to unify the feature map sizes,

making it easier for subsequent neural network processing. The

implementation of ROI pooling involves dividing the feature

map into 7×7 regions and performing max pooling within each

region.The feature map image outputted by the ROI Pooling

layer is a three-dimensional tensor of size 7×7×2048. We flatten

it into a one-dimensional vector of size 1×100,352. Then, we

concatenate these vectors in the order of their corresponding

ROIs in the input image, forming a two-dimensional tensor

of size 64×100,352 This two-dimensional tensor serves as

the input to the fully connected layer for classification and

regression tasks.

4. Experimental analysis

4.1. Retail product checkout dataset
introduction

The dataset used in this article is a large-scale retail product

checkout dataset publicly available on Kaggle (link: https://www.

kaggle.com/datasets/diyer22/retail-product-checkout-dataset).

This dataset provides rich image data of products during the

checkout process and is currently the largest dataset regarding

the number of images and product categories. It includes 200

common product categories in daily life, with a training set of

48,000 single-product images, a test set of 24,000 multi-target

product images, and a validation set of 6,000 multi-target

product images.

The training set consists of single-object images captured

by four cameras placed at the top, 45 degrees upward, 30
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degrees upward, and horizontally in a specified environment,

covering 0–360 degrees, as shown in Figure 4. The validation

and test sets are multi-object images. They are categorized

into easy mode, medium mode, and hard mode based on

the clutter level of the products in the images. The training

set consists of single-object images captured by four cameras

placed at the top, 45 degrees upward, 30 degrees upward, and

horizontally, respectively, in a specified environment, covering

0–360 degrees. The validation and test sets are multi-object

images and are categorized into easy mode, medium mode,

and hard mode based on the clutter level of the products in

the images.

The dataset validation is divided into three levels of difficulty

based on the complexity of product arrangement, as shown in

Figure 5.

4.2. Experimental parameter settings and
experimental environment

The experimental environment is a personal computer with

the following specifications: Processor: AMD R7-5800H; GPU:

NVIDIA RTX 3070 8G; Memory: 16G. The editor used is Pycharm

2022.1; operating system: WIN11; CUDA version: 11.02; Pytorch

version: 1.11.0. We used the Pytorch framework to construct

our model. Before starting the training, we loaded the pre-

trained parameters of ResNet50 into the model to speed up

the training process. The optimizer we used is the stochastic

gradient descent algorithm with a momentum value of 0.9

and set weight decay to prevent overfitting. Finally, we set

a learning rate with dynamic decay. Since we trained on a

personal computer with limited GPU memory, we set the batch

size to 4.

4.3. Analysis of experimental results

In order to evaluate the model we trained, we used Pycocotools

provided by the COCO official for evaluation. It provides 10

evaluation metrics including AP (Average Precision), AP (IOU

= 0.5), AP (IOU = 0.75), AP (Small Area), AP (Medium Area),

and AP (Large Area), AR (Average Recall), AR (Max = 1), AR

(Max = 10), and AR (Max = 100). Among them, AP(IOU =

0.5) is the most commonly used metric. The experimental results

are shown in Table 1. The above results indicate that using the

Faster R-CNN algorithm for object detection on the Retail Product

Checkout dataset can achieve good performance. The performance

of the model varies under different AP metrics, with AP (IOU =

0.5) and AP (Large Area) performing well and AP (Small Area)

and AP (Medium Area) performing poorly. This is because the

environment of the intelligent vending machine is relatively fixed,

and there are no small or medium-sized objects in the dataset, so

APs and APm are close to 0. This can also be inferred from the fact

that APl and AP values are always close.

4.4. Detection performance of the model
under di�erent di�culty levels

This section presents themodel’s prediction performance under

different difficulty levels, and the detection of the goods is good. See

Figures 6–8.

FIGURE 4

The collection form of the training set.
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FIGURE 5

Three levels of validation di�culty. (A) Easy mode. (B) Medium mode. (C) Hard mode.

TABLE 1 Evaluation results.

Epoch Average precision

AP AP (IOU = 0.5) AP (IOU = 0.75) AP (Small area) AP (Medium area) AP (Large area)

20 0.539 0.6379 0.5596 0 0 0.5391

24 0.5794 0.6412 0.5784 0 0 0.5795

28 0.5818 0.6415 0.5807 0 0 0.5819

32 0.5888 0.6435 0.5825 0 0 0.5986

36 0.5962 0.6463 0.5875 0 0 0.5972

40 0.5921 0.6484 0.5866 0 0 0.5921

5. Conclusion

After years of development, object detection technology has

made rapid progress, and there are now many mature and

efficient object detection algorithms such as Faster R-CNN,

YOLO, SSD, and others. In this paper, we successfully applied

Faster R-CNN for object detection in the context of commodity

settlement and achieved good results. Using object detection
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FIGURE 6

Easy mode.

FIGURE 7

Medium mode.

FIGURE 8

Hard mode.
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in computer vision as a commodity settlement recognition

task for intelligent vending machines is reliable, low-cost,

and efficient.

The Faster R-CNN object detection model based on ResNet50

constructed in this paper achieved good results on a large

commodity dataset, with precision meeting the requirements on

recognized targets and a very low probability of misclassification.

However, there are still cases of missed detections in multi-

object scenarios, which I believe can be improved through

further training. At the same time, the model constructed in

this paper has already met the recognition speed requirements

for intelligent vending machines, but there is still room for

improvement.
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