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Neuropsychiatric disorder (ND) is often accompanied by abnormal functional 
connectivity (FC) patterns in specific task contexts. The distinctive task-specific 
FC patterns can provide valuable features for ND classification models using 
deep learning. However, most previous studies rely solely on the whole-brain 
FC matrix without considering the prior knowledge of task-specific FC patterns. 
Insight by the decoding studies on brain-behavior relationship, we develop TSP-
GNN, which extracts task-specific prior (TSP) connectome patterns and employs 
graph neural network (GNN) for disease classification. TSP-GNN was validated 
using publicly available datasets. Our results demonstrate that different ND types 
show distinct task-specific connectivity patterns. Compared with the whole-
brain node characteristics, utilizing task-specific nodes enhances the accuracy 
of ND classification. TSP-GNN comprises the first attempt to incorporate 
prior task-specific connectome patterns and the power of deep learning. 
This study elucidates the association between brain dysfunction and specific 
cognitive processes, offering valuable insights into the cognitive mechanism of 
neuropsychiatric disease.
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1 Introduction

Neuropsychiatric disorder (ND) defines a wide range of psychiatric symptoms accompanying 
specific emotional, memory, social, or other cognitive impairments (Eddy, 2019; Porcelli et al., 
2019; Jahn et al., 2021). Different subtypes of diseases, such as attention-deficit/hyperactivity 
disorder (ADHD) (Zepf et al., 2019), autism spectrum disorder (ASD) (Vaidya et al., 2020; 
Wadhera and Kakkar, 2020), and schizophrenia (SZ) (Ioakeimidis et al., 2022; Riedel et al., 2022) 
show abnormal brain activity during specific task context compared to healthy controls. Mental 
disorder diagnosis using neuroimaging and machine learning is thus promising (Lanillos et al., 
2020; Perez et al., 2021).
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Recent years have seen explosive growth in applying deep learning 
to facilitate ND classification (Chan et al., 2019; Canario et al., 2021; 
Liu et  al., 2021). Previous studies often use brain functional 
connectivity (FC) or graph theory features (Farahani et al., 2019) and 
build convolutional neural networks (CNNs) for disease classification 
(Kim et  al., 2016; Guo et  al., 2017). However, brain networks are 
generally irregular and non-Euclidean structures, which can be better 
captured by graph neural networks (GNNs) than CNNs (Parisot et al., 
2017; Zhang et al., 2020; Li L. et al., 2021; Li X. et al., 2021; Zhao et al., 
2022). The benefit of GNN is due to the peculiarities of the message-
passing mechanism on the graph (Ying et al., 2019). A pioneering 
study by Parisot and colleagues integrated the FC matrix and 
phenotype information to construct a sparse graph that captures 
participants’ relationships (Parisot et al., 2017). Subsequently, various 
graph structures (Li L. et al., 2021) and graph modules, such as graph 
pooling (Li X. et al., 2021) and even dynamic graph strategies (Zhao 
et  al., 2022), have been proposed, significantly enhancing GNN 
models for neuropsychiatric disease classification. These models 
utilize node pooling or edge convolution layers to selectively aggregate 
important node features, thereby providing insights into relevant 
diseases from a regional perspective within the brain. For example, 
default mode network (DMN) and memory-associated brain regions 
have been identified as biological markers of ASD (Li X. et al., 2021), 
while damage to the DMN associated with occipital and frontal lobes 
may explain ADHD (Zhao et al., 2022).

The whole-brain resting-state FC matrix contains redundant and 
spurious correlations because of confounding or collider effects 
(Sanchez-Romero and Cole, 2021). It is thus valuable to extract and 
define distinct connectivity patterns specific to certain cognitive 
contexts. Recent studies have demonstrated that task-state FC patterns 
play an essential role in dynamically reshaping brain networks and 
modulating the flow of neural activity during task performance (Cole 
et al., 2021; Hearne et al., 2021). These task-related changes in brain 
network activity provide valuable prior knowledge for understanding 
the mechanisms underlying brain disorders (Briend et al., 2019; Xia 
et al., 2019; Kofler et al., 2020; Riedel et al., 2022). However, previous 
research on ND classification often overlooked this valuable prior 
information (Gupta et al., 2022; Jiang et al., 2022).

Decoding studies on brain-behavior relationships provide an 
insightful framework (Jiang et al., 2020; Finn, 2021). We hypothesize 
that incorporating prior knowledge of task-specific connectivity 
patterns can improve the performance of ND classification. Motivated 
by the underlying association between brain decoding and disease 
diagnosis, the present study seeks to integrate task-specific prior 
(TSP) knowledge (task-specific functional connectivity) and GNN 
into a ground-breaking framework for detecting neuropsychiatric 
disease, dubbed TSP-GNN. We use the Elastic-Net regression model 
to decode task-specific brain connectome patterns from task-state 
fMRI in healthy people. Then, task-specific connectome patterns 
were migrated to illness classification using resting-state 
fMRI. Finally, we  build a population-based graph convolution 
network to detect brain disease in two neuropsychiatric datasets. The 
brain decoding approach reduces the dimension of the brain network 
while providing interpretive information relevant to the task context. 
Our results demonstrate that task-specific connectome improves 
disease categorization compared to whole-brain nodes and sheds 
light on the relationship between brain pathology and specific 
cognitive processes.

2 Materials and methods

2.1 Participants

2.1.1 HCP dataset
The Human Connectome Project (HCP) (Van Essen et al., 2013) 

is a remarkable and widely available dataset aimed at defining the 
anatomical and functional interconnection of the human brain. This 
dataset contains high-resolution structural MRI, resting-state fMRI, 
task fMRI scans, and detailed behavioral information for over 1,000 
healthy individuals. Subjects completed seven scanner tasks: motor 
execution, language, emotion, social cognition, working memory 
(WM), relational, and gambling-related processes. The seven tasks, 
which lasted for about 20–30 frames under different conditions during 
each block, and the detailed task paradigm were described in 
Supplementary Table S1.

2.1.2 Neuropsychiatric dataset
The present study consisted of two datasets, ADHD1 and ABIDE,2 

for the investigation of disease classification. The ADHD dataset 
consists of eight cohorts of structural MRI and resting-state fMRI 
scans (Bellec et al., 2017). Similarly, the ABIDE dataset has the same 
acquisition modalities from 20 data sites (Cameron et al., 2013). To 
address the potential impact of heterogeneity in equipment and 
scanning parameters across different sites, we selected five data sites 
for the ADHD dataset and three for the ABIDE dataset. Demographic 
information for the two datasets mentioned above can be found in 
Table 1.

2.2 fMRI data preprocessing

To ensure the reproducibility of our investigation, we  utilized 
preprocessed fMRI results from ConnectomeDB as a basis for our 
subsequent analysis. We applied restricted data usage to exclude any 
influence of inter-individual synchronization among participants 
within the same family, and finally, 473 unrelated individuals were 
included. Additionally, we obtained two neuropsychiatric datasets that 
offered a standard preprocessing workflow. These datasets were directly 
accessible from their respective data buckets. The preprocessing of 
fMRI data involves numerous steps to clean and standardize the data 
prior to statistical analysis. All preprocessing is conducted using 
fMRIPrep (Esteban et al., 2019), a best-in-breed workflow that ensures 
high-quality preprocessing to address the challenges of robust and 
reproducible fMRI data preparation. The minimal preprocessing steps 
defined by fMRIPrep include motion correction, field unwarping, 
normalization, bias field correction, and brain extraction.

Subsequently, we conducted a fist-level analysis on each task-state 
fMRI within HCP using the general linear model (GLM). Our study 
used the ‘3dDeconvolve’ command in AFNI v20.3.02 to perform first-
level GLM analysis. Specifically, the ‘-stim_times_FSL’ parameter was 
used to specify the timing of stimulus events, while the ‘-stim_file’ 
parameter was employed to include six head motion parameters. The 

1 https://preprocessed-connectomes-project.org/adhd200/

2 https://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
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‘-mask’ parameter was also used to specify the brain mask generated by 
fMRIprep. The total number of stimuli ‘-num_stimts’ represented the 
sum of task conditions and head motion directions. All these 
parameters collectively constitute the design matrix for each task type, 
which consists of columns for each condition, nuisance variables, and 
a constant term, with rows corresponding to each time point of the 
fMRI data acquisition. The specifics of the design matrix vary according 
to the exact nature and timing of the task conditions within each of the 
seven tasks in the HCP dataset. After GLM analysis, we obtained the 
distribution of brain activation under different task conditions and the 
purified fMRI time series, devoid of noise signals from task events and 
motion parameters, which can enable us to investigate the neural 
correlates of the tasks accurately (Spencer et al., 2022).

We utilized the ‘3dNetCorr’ command by AFNI v20.3.02 to 
calculate the FC matrixes for both HCP and neuropsychiatric datasets 
based on the fMRI time series residual preprocessed by GLM. The 
command will calculate the correlation matrix between the time series 
of each pair of ROIs defined by parameter ‘-in_rois.’ The average time 
series and the functional connections between brain regions can 
be found in the destination file. The atlas adopted in our research was 
the Brainnetome Atlas (Fan et al., 2016), which has been extensively 
employed in various clinical studies (Li et al., 2020; Lee et al., 2021). 
The atlas consists of 246 distinct brain areas that have been carefully 
delineated. These brain regions can be parcellated into eight functional 
subsystems (Jiang et al., 2020; Lee et al., 2021). For more details on the 
names of brain regions in the atlas and their corresponding network 
allocation, please refer to Supplementary Table S2.

2.3 HCP behavioral performance

Due to the HCP dataset consisting of seven task fMRI scans 
covering various cognitive abilities, we  employed corresponding 
performance measures as markers of these abilities. For the social task, 
we used the ratio of precious divided by the median response time 
(median_RT) under random mode. Working memory ability was 
evaluated using the accuracy (Acc) divided by the Median_RT score 
under the 2-back conditions. Emotion reflection performance was 
assessed using the Acc/Median_RT ratio. In the language task, the story 
condition was selected to indicate language competence, as performance 
under both story and math conditions showed a substantial association. 
However, no significant performance-related markers were detected for 
the gambling and motor tasks. We used the delay discounting measure 
to approximate the gambling task performance involving impulsive 
decision-making. Specifically, we calculated the difference in the area 

under the curve (AUC) scores between DDisc_AUC_40k and DDisc_
AUC_200 as the gambling task score (Cai et al., 2020). A smaller AUC 
value indicates a higher degree of decision impulsivity. For the motor 
task, which does not quantitatively reflect participants’ athletic ability, 
we substituted the endurance measure obtained from the NIH Toolbox 
2-Minute Walk Test.

In addition to the task-based fMRI, we considered resting-state 
fMRI, which reflects a baseline state of cognitive ability without task 
requirements. We  utilized general ability (intelligence) measures 
related to reasoning, problem-solving, abstract thinking, planning, and 
learning. These measures, which reflect individual cognitive skills like 
brain fingerprint, were combined into a general factor score using 
exploratory factor analysis (Dubois et al., 2018; Thiele et al., 2022). Task 
performance indicators and their corresponding calculations for all 
fMRI tasks mentioned above can be found in Supplementary Table S3.

2.4 Task-specific functional connectome 
decoding based on corresponding 
behavioral performance

Acknowledging the advantages of the task-state connectome in 
predicting cognitive traits, we constructed eight models to decode 
task-specific brain connectome patterns across various fMRI tasks. By 
incorporating task performance as a driving factor, we aimed to reveal 
the brain connectivity patterns that contribute to cognitive traits and 
potentially improve our understanding of the neural mechanisms 
underlying these traits. Considering the superior performance of 
classical linear regression methods in terms of computational 
efficiency and their ability to capture complex brain-behavior 
relationships (Sui et al., 2020; Kim et al., 2021), we developed a task 
performance-driven brain decoding model utilizing the 
Elastic-net algorithm:
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The Elastic-net algorithm is known for handling high-dimensional 
data and selecting relevant features. The above formula, λ represents 
the weight coefficient of the linear regression and regularization terms, 
while α  determines the balance between the L1 (Lasso regression) and 
L2 (Ridge regression) norms. For � � 0, the model is equivalent to 
ridge regression, and for � �1, it becomes equivalent to lasso 
regression. The weight coefficients assigned to the features in the 

TABLE 1 Demographic and clinical characteristics of ADHD and ABIDE datasets.

Clinical 
Phenotype

HCP ADHD ABIDE

n  =  473 TD
(n  =  239)

ADHD
(n  =  220)

P Value TD
(n  =  201)

ASD
(n  =  155)

P value

Age (years) 28.8 ± 3.69 11.2 ± 2.58 10.9 ± 2.48 0.315 15.05 ± 5.24 14.21 ± 4.32 0.110

Gender (M/F) 227/246 122/117 164/56 < 0.001 164/37 134/21 0.218

FIQ – – – – 110.67 ± 12.77 107.29 ± 15.94 0.032

PIQ – – – – 107.58 ± 12.62 103.89 ± 15.63 0.017

VIQ – – – – 109.44 ± 12.91 106.98 ± 16.32 0.126

Age value computed using two-sample Student’s t-test with two tails; Gender value computed using chi-square test; FIQ, Full-scale IQ; PIQ, Performance IQ; VIQ, Verbal IQ.
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Elastic-Net model can quantify the contribution of FC pairs between 
different brain regions to predicting cognitive traits. To construct our 
brain functional decoding models, we tailored them for each specific 
fMRI state (as depicted in the top half of Figure 1). Initially, we screened 
out edges highly correlated with connectome strength. Subsequently, 
we employed a 10-fold cross-validation approach to creating regression 
models to decipher task-specific connectivity patterns. By aggregating 
the non-zero coefficients obtained from each fold in the Elastic-Net 
model, we obtained a functional subnetwork that best reflected the 
specificity of the given task (Caunca et  al., 2021). To assess the 
reliability of the prediction outputs, we combined the predictors from 
each fold and performed a permutation test. Specifically, we calculated 
the Pearson correlation coefficient between the predicted and observed 
(random shuffled) scores. The permutation test probability was 
determined by evaluating the frequency of correlation coefficients in a 
set of 10,000 permutations that exceeded the initial coefficient.

2.5 Graph theory measures the 
connectome

Changes in graph theory measures of brain connectome have 
been recognized as significant aspects of various brain diseases 
(Savanth et  al., 2022). By quantifying the graph-theoretical 
properties, researchers can gain insights into the essential brain 
regions and unravel the underlying organizational principles of the 
brain network (Fallahi et al., 2021; Zhang T. et al., 2021; Zamani 
et  al., 2022). Our investigation included several graph theory 
measures as supplementary features for disease classification. 
These measures, namely graph strength, clustering coefficient, local 
efficiency, page rank centrality, betweenness centrality, eigenvector, 
flow coefficient, and k-coreness centrality, were calculated based 

on binary or weighted graphs after implementing a sparsity 
threshold (Wang B. et al., 2022). The ideal sparse brain graphs were 
constructed by optimizing the global brain efficiency, and the 
graph theory features extracted from the corresponding task-
specific brain nodes.

2.6 Task-specific prior-knowledge graph 
neural network model

The population and brain parcellation methods are two commonly 
used GNN frameworks for diagnosing brain diseases. The population 
graph methodology involves constructing a graph representation at 
the population level (Parisot et al., 2017, 2018), while the brain-level 
graph methodology focuses on building graphs based on individual 
brain connectivity patterns (Felouat and Oukid, 2020; Wang L. et al., 
2021). In our study, we  employed a population GNN for further 
computations after decoding task-specific brain regions (as shown in 
the bottom half of Figure 1). We chose the population GNN approach 
due to its superior classification performance demonstrated in 
previous studies (Pan J. et al., 2022). Neuropsychological scale score, 
gender, or age were considered as the set of non-imaging phenotypic 
features N Nh� � � . The adjacency weights of the population graph 
were defined as follows:

 
W x y Sim A A N x N yx y

h

H
h h, , ,� � � � � � � � �� �

�
�
1

�
 

(2)

where Sim A Ax y,� � is a similarity measure between subjects x  and 
y, γ  is the distance between phenotypic measures. For every category 
in h, we adopt a threshold θ  and define γ  as a unit-step function:

FIGURE 1

The architecture overview of the proposed TSP-GNN framework which combines task-specific patterns for disease diagnosis. The top half of the 
framework decodes task patterns based on cognitive performance, while the bottom extracts task-specific functional connectome and graph 
theoretical measures from various disease datasets. Subsequently, phenotypic information is integrated to construct the population-based graph 
neural network to achieve disease classification.
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The similarity of graph features was defined as:
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Where ρ  is the correlation distance, and σ  determines the width 
of the kernel. Due to network connectivity and graph theory measures 
based on the interconnected nodes on both sides of the edges to form 
subnetworks, the features remain in a relatively high dimension. 
We adopt a ridge classifier to perform recursive feature elimination 
(RFE) with a fixed number of features (Ravishankar et al., 2016). In 
the graph convolutional component of the TSP-GNN model, the 
normalized graph Laplacian function of a weighted 
graph G V E� � �� �, ,W  is defined as  � � �I D WDN

1 2 1 2/ /  where IN  
and D are, respectively, the identity matrix of size N N∗  and diagonal 
degree matrix. The GNN architecture is derived from (Parisot et al., 
2018), consists with L fully convolutional hidden layers activated 
using the Rectified Linear Unit (ReLU) function.

 
g g g U U Ug UT T
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(5)

The input layer encompasses the entire population graph, while 
a SoftMax activation function follows the output layer. To evaluate 
the performance of our model, we  employed a five-fold cross-
validation approach across all databases. During training, the 
training fold consisted of a subset of tagged graph nodes, the loss 
function was assessed, and gradients were backpropagated on 
this subset.

2.7 Compare with other classification 
methods

The current research comprehensively compared the TSP-GNN 
method with various machine learning techniques, deep learning 
models, and graph neural networks. Specifically, the comparison 
included support vector machine (SVM), K-nearest neighbor (KNN), 
and several ensemble learning methods. In addition, we included two 
deep neural networks (DNN) methods, namely multilayer perceptron 
(MLP) and convolutional neural networks (CNN). The MLP method, 
a supervised feedforward neural network which consists of one 
hidden layer, was connected to the stacked autoencoder (Parisot et al., 
2018). The CNN method uses the most classical design, using dropout 
and linear layers to achieve reduction and forecast. As for the GNN 
model, we employed MAGE and EV-GNN, which have demonstrated 
superior performance in previous studies. It is worth noting that the 
original MAGE utilizes a variety of brain atlas features to improve the 
accuracy of disease diagnosis (Wang Y. et al., 2022). We adopted this 
concept in our paper to effectively integrate relevant prior information 
from multiple task modalities. Additionally, the EV-GNN model 
demonstrated the ability to automatically integrate imaging data and 

phenotype data within a learnable adaptive population graph (Huang 
and Chung, 2020).

3 Results

3.1 Functional connectivity patterns of 
different cognitive tasks

Our study demonstrates that brain connectivity patterns exhibit 
both task-specific characteristics and commonalities. We observed 
that the decoded edges traverse multiple functional brain regions and 
are distributed across various intrinsic resting-state networks (RSNs), 
indicating shared patterns across different tasks. The assessment 
metrics presented in Table 2 indicate the strength of the decoding 
results, with all expected correlation coefficients (r values) exceeding 
0.3 and the corresponding value of ps being less than 0.05. Notably, 
we  found that the prediction models for all tasks passed the 
permutation test, confirming the reliability and consistency of our 
decoding results (Figure  2). In addition to the permutation test, 
we employed several evaluation measures to assess the performance 
of the decoding models. These measures included the mean squared 
error (MSE), explained variance score (EVS), and mean absolute error 
(MAE). By examining these metrics, we gained further insights into 
the accuracy and precision of our prediction models.

3.2 Anatomical and functional localization 
of task-specific network edges

Significant interconnections were identified by analyzing the 
non-zero coefficients in the Elastic-Net model. Our analysis results 
revealed the most prominent interconnections associated with each 
task state, with the following number of edges identified: emotion (47 
edges), gambling (46 edges), language (21 edges), motor task (15 
edges), relational (27 edges), social (44 edges), working memory (22 
edges), and rest (99 edges). Importantly, it was observed that the seven 
task-specific regions were widely distributed across different 
anatomical locations, and the number of specific edges involved in 
rest-state fMRI was greater than that in task fMRI. A circular diagram 
has depicted the distribution of the essential connected edges of social 
cognition and gambling tasks (Figure 3). The specific connectivity 

TABLE 2 Prediction and evaluations of various cognitive abilities.

Task r value Value of p R2 MSE EVS MAE

W 0.400 0.017* 0.125 0.851 0.141 0.730

S 0.489 0.044* 0.205 0.741 0.228 0.685

L 0.394 0.019* 0.147 0.845 0.151 0.747

E 0.445 0.018* 0.169 0.803 0.186 0.725

R 0.383 0.016* 0.112 0.873 0.141 0.734

M 0.337 0.043* 0.097 0.887 0.108 0.713

G 0.432 0.006** 0.165 0.816 0.183 0.740

REST 0.418 0.011* 0.149 0.824 0.161 0.715

W, working memory; E, emotion processing; L, language; S, social cognitive; R, relation 
processing; M, motor; G, gambling.
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distribution patterns of the brain networks for the other five tasks and 
resting-state fMRI are presented in Supplementary Figures S1, S2.

The social task-related FC patterns were distributed inter-
LIM-VIS, LIM-SUB, VAN-SUB networks, and intra-DMN and SUB 

networks. In the gambling task, participants were asked to guess the 
number of a mystery card. Decoding results showed significant ROIs, 
such as inter-insular subsystem, angular gyrus (IPL_L_6_2), 
supramarginal gyrus (IPL_L_6_3), superior parietal lobule (SPL), 

FIGURE 2

Results of permutation tests on task-state and resting-state fMRI decoding. The green histograms illustrate the correlation values’ distribution between the 
predicted task performances and those obtained from 10,000 permutation tests. The red line marks the correlation from the predictions of the original 
Elastic-Net model to the actual outcomes, clearly showing that the permutation test outcomes systematically register below the baseline correlation.
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precuneus (Pcun_L_4_1), right cuneus (Cun_R_5_3, Cun_R_5_4). 
From the RSN perspective, brain edges related to gambling or risk 
decision were mainly distributed inter- SMN-VIS, DAN-VIS, 
DAN-FPN, and LIM-SUB networks (Figure 4), indicating a broader 
cross-network interaction. In the resting state, the FC pattern has the 

highest number of brain edges and almost exhibits the highest 
proportion of connections within brain anatomical locations. Resting-
state fMRI predicts general intelligence, which includes reasoning, 
problem-solving, abstract thinking, planning, and learning, in 
our model.

FIGURE 3

FCs with the best task performance prediction capability. The nodes and edges of the brain network are created by averaging the FC strength of a 
particular task across all people, and the strength determines the node size and edge thickness. Connections within a module are depicted using the 
same color as the module in which it is situated, whereas gray lines represent inter-module connections.

FIGURE 4

The distribution of functional brain networks associated with edges differs across decoding modes of task states. DAN, dorsal attention network; DMN, 
default mode network; FPN, frontoparietal network; LIM, limbic network; SMN, somatomotor network; SUB, subcortical network; VAN, ventral 
attention network; VIS, visual network.
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3.3 Task-specific brain connectivity for 
disease classification

To evaluate the impact of task-specific prior knowledge on brain 
disease classification, we extracted a subnetwork comprising all the 
nodes involved in the task-based connectome. Additionally, 
we incorporated graph-theoretical properties of these task-specific 
nodes derived from binary and weighted brain network analyzes. 
These steps allowed us to amalgamate FC strength with graph metrics, 
culminating in a refined set of input features for the GNN model. This 
particular methodology facilitated a comprehensive exploration of the 
influence of prior knowledge on disease categorization. Notably, 
demographics and behavioral statistics are also incorporated into the 
construction of the population graph. Table  3 presents the 
classification performance ranking by task paradigm of each dataset. 
The findings suggest that the classification of different types of mental 
illnesses exhibited a preference for the specific task prior knowledge. 
As two prevalent neurodevelopmental disorders, ASD and ADHD 
frequently co-occur. Interestingly, they exhibited distinct task 
preferences in classification tasks. For ADHD, task-specific features 
related to social and relational processing tasks can achieve higher 
classification accuracy. In contrast, the ABIDE dataset has shown that 
gambling, motor, and relational processing are the top three task-
specific patterns that yielded the best classification performance.

3.4 Investigate the categorization effect of 
various task combination models

We further conducted task-specific prior knowledge experiments 
on disease classification to evaluate previous task information’s 
influence on disease classification and investigate if information 
complementarity between tasks may enhance diagnosis performance. 
We selected four, five, and six tasks from seven different task categories 
to create diverse combinations, C C C7

4

7

5

7

6
, and . We presented the top 

three ranking AUC results for each combination of task quantities, as 
shown in Table  4. Our findings reveal that C74 yields the best 
classification performance, whereas increasing the accurac 
y of C C

7

5

7

6
and .

From the perspective of the classification effect of the combination 
mode, brain diseases exhibit differential task combination preferences. 
Specifically, the combination of M_R_S_W achieved the best 
classification results on the ADHD dataset. Not exactly consistently, 
the combination of E_G_S_W performed best on the ABIDE dataset. 
Compared with single-task experiments, the classification 
performance is slightly improved by selecting task-specific 
information for combinations. Additionally, the types of tasks 
frequently appearing in the 4-task combination also perform well in 
single-task experiments.

We displayed the task-specific brain node interactions effect for 
best task combinations under ADHD and ABIDE datasets (Figure 5). 
The best task combinations for these two diseases involve working 
memory and social cognition. In ADHD, social cognition and 
working memory tasks contribute the most nodes, whereas gambling 
and social cognition do in ABIDE. Table 5 shows that when all ROIs 
are included, i.e., FC features (246 * 245/2 = 30,135) or graph theory 
features (15 attributes, 246 * 15 = 3,690), the classification accuracy 
decreases, further highlighting the superiority of task-specific nodes.

3.5 Comparison results with other baseline 
models

In this present investigation, various machine learning and deep 
learning methods were used to illustrate the superiority of the 
TSP-GNN model in ND diagnosis. To ensure the uniformity of input 

TABLE 4 The effects of task decoding information combination patterns on neuropsychiatric disease classification.

ADHD ABIDE

TASK group AUC ACC TASK group AUC ACC

Task_4 E_M_S_W 0.722 0.666 G_L_R_W 0.740 0.691

E_M_R_S 0.723 0.660 G_M_R_W 0.754 0.705

M_R_S_W 0.724 0.671 E_G_S_W 0.759 0.702

Task_5 E_G_L_R_S 0.721 0.669 G_L_M_R_W 0.738 0.716

L_M_R_S_W 0.721 0.662 E_G_R_S_W 0.740 0.670

E_G_M_R_S 0.721 0.656 E_G_L_M_S 0.741 0.705

Task_6 E_L_M_R_S_W 0.712 0.662 E_G_M_R_S_W 0.722 0.680

E_G_L_M_R_S 0.715 0.656 E_G_L_M_R_S 0.725 0.677

G_L_M_R_S_W 0.720 0.680 E_G_L_M_S_W 0.728 0.694

Task_7 G_L_M_R_S_W_E 0.712 0.659 G_L_M_R_S_W_E 0.732 0.677

TABLE 3 The implications of priori information decoded by different 
tasks on neuropsychiatric disease classification.

ADHD ABIDE

TASK AUC ACC TASK AUC ACC

M 0.697 0.653 S 0.670 0.652

W 0.700 0.653 REST 0.696 0.655

L 0.705 0.632 W 0.723 0.702

G 0.705 0.636 E 0.724 0.680

REST 0.705 0.649 L 0.728 0.722

E 0.705 0.658 R 0.734 0.688

R 0.711 0.680 M 0.739 0.711

S 0.720 0.651 G 0.760 0.670
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features, we  conducted experiments using the optimal task 
combination stated in section 3.4. In the classification experiments of 
ADHD and ABIDE datasets, TSP-GNN has obtained the optimal 
results (Figure  6), and the detailed numerical values of the 
classification results can be found in Supplementary Tables S2, S3. In 
comparison to classic machine learning approaches such as SVM 

(Abraham et al., 2017) and ensemble learning (Liu et al., 2020), GNN 
models the individual-based topologies structure (Zhou and Zhang, 
2021) between subjects utilizing participant similarity, which is 
advantageous for enhancing classification performance. After 
numerous layers of graph convolution computation, highly relevant 
characteristics are continually aggregated (Wang L. et al., 2021). MLP 

FIGURE 5

Visualizing the distribution set of nodes involved in the optimal task combination: (A) for ADHD dataset, (B) for ABIDE dataset. The findings indicate that 
the decoded results (node distribution) are relatively independent, with a low proportion of nodes belonging to the intersection of multiple tasks.

TABLE 5 Comparing the classification performance of task-specific features and whole brain features during two datasets.

ADHD ABIDE

AUC ACC AUC ACC

All FCs 0.706 0.649 0.693 0.671

All Graph Measures 0.675 0.630 0.738 0.719

FCs + Graph Measures 0.663 0.621 0.739 0.716

Best TSP-GNN 0.724 0.671 0.759 0.702

FIGURE 6

On the ADHD (A) and ABIDE (B) datasets, the classification performance of the TSP-GNN framework was compared to that of various machine learning 
and deep learning methods. The task priors used were combinations of the best four, five, and six combinations described in section 3.3. M_R_S_W 
stands for a task combination of motor, relational processing, social cognitive, and working memory tasks, and the remaining acronyms are similar.
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and CNN apply fully-connected and convolutional layers to achieve 
dimensionality reduction on brain network features, which are spatial 
topological graphs between brain areas and cannot be equated to the 
image receptive field (Dvornek et al., 2017; Khosla et al., 2018). The 
TSP-GNN architecture blends multi-task information from FC 
characteristics and graph measures to collect better and characterize 
the most discriminative information than typical machine learning 
and deep neural network models.

4 Discussions

This study represents the first investigation in brain disease 
classification that focuses explicitly on task-specific FC patterns. Task-
based fMRI offers distinct advantages in exploring and understanding 
the mechanisms and brain-behavior relationships specific to cognitive 
impairments, which may not be evident in resting-state fMRI. Task 
paradigms provide structured cognitive engagement (Jiang et al., 2020; 
Yoo et  al., 2022), allowing for a better examination of individual 
differences in critical neural circuits (Greene et al., 2018). Given the 
advantages of task fMRI, we  employed the Elastic-Net regression 
model to explore task-specific FC patterns decoded relying on brain-
behavior relationships. Additionally, we used resting-state fMRI to 
decode general intelligence as a baseline for comparison with task-
specific FC (Dubois et al., 2018; Thiele et al., 2022; Anderson and 
Barbey, 2023). The decoding results for different tasks exhibited high 
heterogeneity, highlighting the brain regions and connectivity patterns 
that are more representative of the current task, in contrast to 
traditional supervised models based on task labels alone (Zhang 
et al., 2022).

In decoding brain-behavior relationships, selecting predictors and 
outcomes for the predictive model is a topic worthy of exploration. 
While predictions about various behaviors can be made based on 
resting-state data, our research prioritizes focus on the relationship 
between task-state fMRI and corresponding cognitive performance 
under task scenarios. The predictive modeling based on task-state 
fMRI is inspired by the potential of task-state FC to enhance cognitive 
outcome prediction (Jiang et al., 2020). Additionally, it fully explores 
the multiple task states within the HCP dataset. We consider utilizing 
the Acc/RT ratio as a behavioral index for tasks with accuracy and 
response speed metrics in predicting behavioral performance. 
Literature also conceptualizes the trade-off between speed and 
accuracy as ‘throughput’ (Thorne, 2006; Heitz, 2014). It reflects the 
accuracy of the response and its rapidity, thereby providing a 
composite measure of cognitive processing efficiency.

Our research corroborates the efficacy of integrating task-specific 
connectome priors into classification models for diagnosing a 
spectrum of psychiatric disorders across various datasets. Specifically, 
enhanced classification performance is observed in differentiating 
diseases when utilizing FC patterns associated with specific cognitive 
domains (Chauvin et al., 2021). Network patterns related to working 
memory tasks contribute significantly to both ADHD and ASD 
datasets. The previous study also reveals that impairments in working 
memory are prevalent across psychiatric conditions (Wang X. L. et al., 
2021), and memory assessments are crucial for predicting and 
mitigating high-risk disorders (Seabury and Cannon, 2020). In 
classifying ADHD, leading tasks also encompass motor task, social 
cognition, and relational processing. Previous studies have 

demonstrated that severe declines in social cognition and motor speed 
(Haining et al., 2020) correlate with a high risk of clinical psychiatric 
conditions. ADHD is also associated with abnormalities in the large-
scale cognitive control network that impact social attention (Fateh 
et al., 2022), with adolescents among the patient population exhibiting 
impairments in social cognition and communication abilities (Chen 
and Chen, 2020). Children with ADHD have a deficit in relational 
reasoning (Brunamonti et al., 2017), a skill subtending the acquisition 
of many cognitive abilities and social rules. In the classification of the 
ABIDE dataset, leading tasks also encompass emotion, gambling, and 
social cognition. Facial emotion recognition disorder is typical of 
people with autism. Facial emotion recognition disorder is a classic 
symptom of autism (Yeung, 2022). Cognitive inflexibility in people 
with autism appears characterized by the unwillingness to switch 
toward processing socio-emotional information (Latinus et al., 2019). 
Individuals with ASD frequently report difficulty making flexible 
decisions across various contexts to resolve social or moral 
conflicts(Tei et al., 2022). Concurrently, studies based on gambling 
paradigms also suggest they tend to exhibit a more cautious decision-
making style (Hosozawa et al., 2021).

Integrating multi-task FC and graph theory has further enhanced 
classification accuracy, achieving optimal performance using four task 
combinations. However, the addition of features from more tasks did 
not continue to improve classification results, presenting an intriguing 
avenue for investigation. In constructing brain FC-based diagnostic 
models, selecting features is more critical than quantity (Du et al., 
2018; Chen et al., 2020). An increased number of features may offer a 
richer representation of task-specific FC information, but it can also 
lead to the “curse of dimensionality”—a phenomenon where the 
introduction of noise, overfitting, and the increased difficulty of 
identifying meaningful patterns in high-dimensional spaces may 
decrease classification performance (Wee et al., 2014; Barbieri et al., 
2022). Our research also validates that opting for a more suitable 
selection of features, rather than simply increasing their number, is the 
superior strategy.

The TSP-GNN system achieves a balanced trade-off between 
model interpretability and classification performance. In contrast to 
previous studies that incorporated whole-brain connectome features, 
our model utilizes a task-specific FC pattern, which enhances the 
interpretability of features by linking them to specific cognitive 
activities. Furthermore, the classification stage of the TSP-GNN 
framework employs a population graph model, simplifying the 
modeling of brain areas as nodes and improving classification 
performance. Regarding classification performance, our TSP-GNN 
outperforms various classical machine learning and deep network 
models, underscoring the superiority of our task-prioritized 
population graph model in detecting brain diseases. Although our 
classification accuracy may differ from recent studies (Chen et al., 
2021; Pan J. et al., 2022), this may be due to trade-offs and parameter 
adjustments made during model construction. Our framework 
prioritizes the interpretation of cognitive processes and their extended 
values related to underlying disease, and task-specific prior 
information from brain areas can be easily transferred to other studies 
of cognitive brain disease and disorders. In summary, we consider the 
decoding model in our TSP-GNN framework as a pre-task, effectively 
reducing feature dimensionality and elucidating the role of task-
specific prior information in the classification model for brain disease 
diagnosis. The model effectively bridges the gap between cognitive 
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behavior decoding and brain illness research, offering valuable 
insights and serving as a reference for task-related investigations in 
brain diseases.

Several considerations need to be  addressed in our research. 
Firstly, it should be acknowledged that the ADHD and ABIDE illness 
cohorts in our study were not comprehensive and may not represent 
all available data sources. The inherent imbalance resulting from 
variations in data collection parameters and equipment across 
different locations is a significant challenge in our investigation. 
Constrained by the differing intended uses of data acquisition between 
HCP and ND, a strict age match between groups was not feasible, thus 
warranting further investigation into the exclusion of age-related 
differences in brain network impacts (Zhang et al., 2023). Secondly, 
the task-specific FC derived from the regression process has enhanced 
the efficacy of disease diagnosis and is considered, to some extent, 
correlative rather than causally direct. Employing causal correlation-
based FC (Sanchez-Romero et  al., 2023) and evidence of neural 
modulation (Zhou et al., 2020) based on brain networks holds promise 
for overcoming this limitation. Lastly, our current classification results 
can be  further enhanced by refining the incorporation of prior 
information and optimizing future models to approach state-of-
the-art performance. Continual efforts to improve the quality of prior 
knowledge and refine model development are necessary to ensure our 
approach remains at the forefront of research in this field.

Future research aims to develop deep learning models integrating 
cognitive performance and task state labels for brain decoding. 
Recognizing the intricate relationship between brain decoding and 
classification, despite their distinct objectives, we intend to explore the 
application of zero-shot learning and advanced transfer learning 
models that can achieve mutual benefits for both brain function 
decoding and disease classification tasks (Zhang P. et al., 2021). An 
exciting prospect is the collection of psychiatric disorder data using 
appropriate task paradigms in clinical settings (Birba et al., 2022). By 
incorporating task performance in actual clinical circumstances, 
we can investigate and evaluate the underlying causes of illnesses, 
expand our prior knowledge about task-based brain activity, and 
further optimize our models accordingly. Our future endeavors aim 
to bridge the gap between brain decoding and disease classification by 
developing advanced deep-learning models informed by clinical data 
and task performance. This approach has the potential to significantly 
contribute to the field by providing valuable insights into the 
underlying mechanisms of brain disorders and facilitating more 
accurate diagnoses.

5 Conclusion

The present study introduces a novel TSP-GNN framework to 
improve brain disease classification. By leveraging functional 
connection-based cognitive performance prediction, this study 
decodes task-specific FC patterns and transfers them as prior 
knowledge for diagnosing ND. As far as we know, this study represents 
the first attempt to transfer task-specific connectivity patterns as a 
priori knowledge in brain disease research. Our results demonstrate 
that integrating task-specific priors leads to improved classification 
accuracy compared to traditional methods. The finding highlights the 
informativeness of task-specific connection patterns. Besides, the 
optimal task combinations for each kind of ND offer valuable insights 

into the underlying mechanisms of that brain disease. By incorporating 
task-specific connectivity patterns, our framework enhances the 
understanding and prediction of brain diseases, opening up new 
avenues for future investigations in this domain.
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