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Electroencephalogram (EEG) signals are very weak and have low spatial resolution,

which has led to less satisfactory accuracy in cross-subject EEG-based emotion

classification studies. Microstate analyses of EEG sources can be performed to

determine the important spatiotemporal characteristics of EEG signals. Such

analyses can be used to cluster rapidly changing EEG signals into multiple brain

prototype topographies, fully utilizing the spatial information contained in the

EEG signals and providing a neural representation for emotional dynamics. To

better utilize the spatial information of brain signals, source localization analysis

on the EEG signals was first conducted. Then, a microstate analysis on the

source-reconstructed EEG signals is conducted to extract the microstate features

of the data. We conducted source microstate analysis on the participant data from

the odor-video physiological signal database (OVPD-II) dataset. The experimental

results show that the sourcemicrostate feature topologies of di�erent participants

under the same emotion exhibited a high degree of correlation, which was proven

by the analysis of microstate feature topographic maps and the comparison of

two-dimensional feature visualization maps of the di�erential entropy (DE) and

power spectral density (PSD). The microstate features represent more abstract

emotional information and are more robust. The extracted microstate features

were then used with the style transfer mapping method to transfer the feature

data from the source domain to the target domain and were then used in support

vector machines (SVMs) and convolutional neural networks (CNNs) for emotion

recognition. The experimental results show that the cross-subject classification

accuracies of the microstate features in SVMs were 84.90 ± 8.24% and 87.43 ±
7.54%, which were 7.19 and 6.95% higher than those obtained with the PSD and

0.51 and 1.79% higher than those obtained with the DE features. In CNN, the

average cross-subject classification accuracies of the microstate features were

86.44 and 91.49%, which were 7.71 and 19.41% higher than those obtained with

the PSD and 2.7 and 11.76% higher than those obtained with the DE features.
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Introduction

Emotional theory was proposed as early as the nineteenth century (Darwin, 1872; James,

1894), and it received enthusiastic discussion and research at that time. It also provided

more inspiration and guidance for people’s current research on emotional classification

(Scherer, 2005). As a key factor reflecting human behavior, emotions have a direct internal
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connection with the way people communicate with each other. By

understanding others’ current emotional states, people can choose

the best way to communicate to improve their communication

process. The expression of emotions is a response that people make

to external stimuli, and it is fixed in different areas of the brain

according to the unique reactions triggered by different stimuli

(Rached and Perkusich, 2013). In particular, emotional states can

be mainly classified into two categories. One is the discrete model,

where the emotion is thought of as discrete states such as happiness

and sadness. The other is the dimensional model, which considers

the emotion states to be continuous, such as the valence-arousal

metric (Wu et al., 2023).

An essential goal of EEG-based emotion recognition studies is

to decode EEG signals and extract more discriminating features

for classifying different emotional states more effectively. Based

on this goal, a vast number of studies have been conducted.

Duan et al. (2013) proposed the use of differential entropy (DE)

features on symmetric electrodes for the emotional recognition

of subjects’ electroencephalogram (EEG) signals, achieving good

classification results. Padhmashree and Bhattacharyya (2022) used

multivariate variational mode decomposition and multivariate

modulated oscillation methods to study the emotional recognition

of arousal emotions, dominant emotions, and valence emotions

based on instantaneous amplitudes and instantaneous frequencies.

Jie et al. (2014) used sample entropy features to distinguish

positive and negative emotions in a high arousal state and subjects’

emotions in different arousal states. In addition, both traditional

machine learning models, such as support vector machines (Wu

et al., 2023), and deep learningmodels, such as deep belief networks

(DBNs) (Zheng and Lu, 2015) and long-short term memory

(LSTM) (Wu et al., 2022), have achieved great performance for

EEG-based emotion recognition. In these studies, satisfactory

classification results have been achieved, indicating that EEG

signals have good application prospects in the field of emotional

recognition. However, the differential entropy, amplitude, and

frequency features used in the above studies only contain the

temporal information of EEG signals, and the spatial information

of multi-channel EEG signals are not provided.

The microstate depicts the topographical map of multiple

channel arrays of scalp potential, which can simultaneously result

in the signals being recorded in all regions of the cerebral cortex

and the topological information of the brain being fully used. In

the 1980s, Lehmann et al. (1987) found that the time series of

spontaneous EEG signals in the alpha frequency band maintained

stability between 80 and 120 ms and that the time series of

the scalp potential map suddenly changed to a new state and

maintained stability again in this state. This change in the scalp

potential field of the brain can reflect the momentary state of

the overall activity of the underlying brain network well, and the

different topographical map configurations of the brain reflect

the changes in the overall and coordinated activity of the brain.

These stable periods can reflect the basic steps of human brain

information processing.

Li et al. (2021a) used microstate analysis and

geoelectrophysiological source imaging methods to study severe

depression and found that microstate statistical features have good

classification accuracy in identifying severe depression. Strik et al.

(1997) studied the microstate of resting electroencephalograms

in Alzheimer’s disease and found that the duration of continuous

microstates was shortened, providing a direction for the early

diagnosis of Alzheimer’s disease. Chen et al. (2021) used microstate

analysis for emotion recognition research and, based on microstate

statistical features, achieved ideal results in valence and arousal

accuracy in the recognition of emotions from EEG signals.

Microstate features can effectively improve the emotional

recognition performance of EEG signals. Shen et al. (2020) used the

microstate method of EEG to potentially characterize emotional

experiences and determined that the microstate statistical features

achieved better classification results in arousal and negativity in the

DEAP dataset.

Currently, most studies on EEG-based emotion recognition are

conducted within subjects. Due to differences in the education level,

living environment, genetic factors, and the non-stationarity of

EEG signals (Graimann et al., 2010), the performance of EEG-based

emotion recognition tasks significantly decreases when applied

across subjects. Transfer learning methods proposed by researchers

in 1995 (Pan and Yang, 2010) can improve the accuracy of EEG

signal-based emotion classification across subjects by reducing

the differences between EEG signals from different subjects and

weakening the interference of signals during data collection.

Transfer learning is mainly divided into sample-based (Li et al.,

2022; Zhao et al., 2023), model-based (Wang and Li, 2022; Zhao

et al., 2022), and feature-based (Li et al., 2021b; Khalil et al.,

2022) methods. Feature-based transfer learning methods minimize

the distance between the source and target domains (Dai et al.,

2007), enabling the model trained on the source domain data to

perform well in the target domain, thereby improving the accuracy

of cross-subject emotion classification.

During the experiment, source localization analysis was

first conducted on the OVPD-II preprocessed data, and source

microstate analysis was then performed on the traced data after

the global field power was calculated. Four statistical features of

the source microstate prototype coverage, duration, occurrence

rate, andmicrostate sequence transition probability were calculated

for the participants. In this study, source microstate features were

applied to cross-subject EEG-based emotion recognition research

for the first time. The calculated source microstate statistical

features were put into the style transfer mappingmethod for feature

transfer, and the transferred feature data were put into a support

vector machine (SVM) and convolutional neural network (CNN)

for cross-subject emotion classification.

Materials and methods

Introduction to the dataset

As an important human sense, olfaction constantly affects

people’s daily lives. OVPD-II is a physiological signal database

based on olfactory odors and video induction, and it was developed

from the OVPD dataset (Xue et al., 2022) and other datasets from

Anhui University. It includes two sub-datasets: video stimulation

data and video with odor stimulation data. Thirty representative

Chinese film clips were selected as video stimuli from 70 films

for the experiment. At the same time, 10 common odors that can

arouse the emotions of the participants and are consistent with the
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FIGURE 1

OVPD-II dataset EEG signal acquisition paradigm. The paradigm mainly consists of 4 modules: the hint module that was implemented for 3 s, the

emotion evoking module that was implemented for 2 min, the feedback module that was implemented for 5 s, and the rest module that was

implemented for 5s. In particular, the emotion evoking module consists of two patterns, i.e., in the first minute of the video stimuli, we only use video

stimuli to evoke the emotions of the subjects, while in the last minute of the video stimuli, we applied both a video stimuli and odor to evoke the

emotions of the subjects. In addition, in the feedback module, all subjects were asked to report their feedback from −7 to 7.

video were chosen as olfactory stimuli. These odors include four

that can evoke positive emotions (rose, orange, lavender, and toilet

water), four that can generate negative emotions (a cleaning agent,

alcohol, vinegar, and ink), and two neutral odors that have little

effect on emotions (odorless pure water and air).

As there are individual differences in the emotional tendencies

toward the same odor, each participant underwent two sets of

repeated odor tests before the formal experiment started. Finally,

the odors that can induce the same emotion as that obtained from

the video stimulus are selected based on the emotions induced

by different odors on the participants and the emotions aroused

by the video. Each experiment starts with a 3-s prompt, and the

participants need to watch a 2-min video clip. After watching the

video for 1 min, the experimenter placed an odor related to the

content of the clip approximately 2 cm below the participant’s

nostrils for 1 min. To minimize the influence of the previous odor

on the emotions, there was a transition time of 1.5 s between

two adjacent odor stimuli. After watching the video, there was a

feedback time of 5 s and a rest time of 15 s. The experimental

paradigm is shown in Figure 1.

Thirteenmentally and physically healthy students aged between

18 and 27, without visual, auditory, or olfactory impairments,

participated in the experiment. These students included 7 males

and 6 females. Moreover, a 32-channel electrode distribution, in

which four electrode channels (O1, O2, the P3, and P4) were used to

record the participants’ eye signals, were utilized in the experiment,

and the remaining 28 channels were used to record the participants’

EEG signals, as shown in Figure 2. The EEG data were collected at a

frequency of 250 Hz, and after watching the video, the participants

needed to evaluate their emotions based on their own feelings. The

FIGURE 2

Electrode distribution map of EEG signal acquisition.

evaluation criteria were marked from 3 to 7 for positive emotions,

from−2 to 2 for neutral emotions, and from−3 to−7 for negative

emotions. Then, the obtained two-dimensional emotional labels

weremapped to a discrete emotional model of positive, neutral, and

negative emotions.
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Data preprocessing

During the experiment, the OVPD-II dataset was recorded

shown in Figure 3A, and preprocessed before the microstate

features and EEG source localization were extracted. First, the four

electrode channels used for collecting eye signals were removed,

and only the data from the 28 channels used for collecting EEG

signals were used. Then, bad electrodes weremanually interpolated.

The EEGLAB toolbox in MATLAB was used for preprocessing

(Delorme and Makeig, 2004). First, a notch filter with a frequency

of 49–51 Hz was used to remove power line interference. Then, a

bandpass filter was used to retain the EEG data in the frequency

range of 0.05–47 Hz. The data after filtering were re-referenced,

and independent component analysis was used to remove eye

movement artifacts from the EEG signals. Finally, the denoised

EEG data were divided into five frequency bands: delta, theta, alpha,

beta, and gamma, as shown in Figure 3B.

Source microstate analysis

As shown in Figure 3C, the source microstate analysis was

employed to extract the microstate information. The EEG source

analysis method measures the potential at different locations on the

brain to simulate the electric currents generated by the neuronal

activity in the brain. It calculates the optimal current source in

the brain that best fits these EEG data, and the activity during

the fitting period can be approximated well by a current dipole

(Helmholtz, 1853). The cortical surface of the brain is divided into

a very detailed grid as the potential location of sources in EEG

source analysis methods. The brain source signal is calculated by

considering the direction and magnitude of the source of all grid

points perpendicular to the cortical surface (Michel et al., 2004).

In this experiment, a distributed source localization method was

used (Jun et al., 2019). It is assumed that there are m sensors

and n samples in the EEG signal. Moreover, AǫRm×n represents

the measured scalp signal, d represents the number of dipoles in

the model, BǫRm×d represents the lead field matrix in the model,

θǫRd×n represents the dynamic sources of d dipoles and n EEG

samples, and ω1 represents the random fluctuations in the sensor

space. The specific algorithm for the inverse problem of distributed

source localization is as follows:

A = Bθ + ω1 (1)

Standardized low-resolution brain electromagnetic

tomography (sLORETA) uses the collected EEG data to achieve

EEG source localization analysis and create a standardized

low-resolution brain source model for further study of the

brain’s processing of signal stimulation (Scharmüller et al., 2012).

Assuming X represents the Laplacian operator in discrete space,

BǫRm×d represents the lead field matrix in the model,W represents

the weighting matrix, and d represents the number of dipoles in

the model, the specific calculation method ofW is:

W = X × diag (‖B1‖ , ‖B2‖ , . . . ‖Bd‖) (2)

The sLORETA method further considers the postprocessing

of the standardized current density power. Assuming θǫRd×n

represents the dynamic source of d dipoles and n EEG samples, Dθ

represents the variance of the estimated current density; then, the

specific algorithm for θǫRd×n and Dθ is:

θ
′
l = θTl {[Dθ ]ll}−1 θl (3)

Dθ = W−1AT
(

AW−1AT
)+

A (4)

In microstate analysis, the electric field topography results at

the local maximum of the global field power (GFP) (Koenig et al.,

2002) curve are considered the discrete states of the EEG signals

(Brunet et al., 2011). Assuming C is the number of electrodes in the

EEG signal, 28 channels are used in the OVPD-II dataset to record

the EEG signals of participants. V(i, t) represents the instantaneous

potential of the i − th electrode at time t, and V(t) represents

the mean value of the potential of all electrodes at time t. The

calculation method of global field power is as follows:

GFP =

√

√

√

√

√

√

k
∑

i

(

Vi(t)−
−
V(t)

)2
)

C
(5)

The K-means clustering algorithm (Arthur and Vassilvitskii,

2007) uses the peak values of the GFP of the EEG signals

as the original topography maps for clustering. Then, several

scalp topography maps are randomly selected from all original

topography maps as template maps for microstate classes. The

spatial correlation between each template topography map and

the original topography map of the EEG data is calculated.

Based on the calculated spatial correlation sequence, the global

explained variance (GEV) of each microstate class topography map

is calculated to measure the explained variance of the selected

microstate topography maps for the entire EEG data (Khanna et al.,

2015). Assumingµ1,µ2 toµn represent themapping of n clustering

templates, where µj represents the j− th clustering template, x(i) is

the original topographic map of EEG data, and l(i) is the label of the

nearest microstate template to the original topographic map. The

calculation method is as follows:

I(i) : = argminj
∥

∥Xi − µj

∥

∥

2
(6)

µj : =

n
∑

i =1

{

li = j
}

Xi

n
∑

i =1

{

l(i)=j
}

(7)

For the selection of the optimal number of microstate clusters,

the GEV and cross-validation (CV) criteria (Pascual-Marqui et al.,

1995) are used in this study to select an appropriate number of

microstate clusters. The GEV is used to calculate the correlation

between the EEG signals and the microstate prototypes at a certain

time, quantifying the degree of match between the EEG data and

the assigned microstates. The higher the GEV value is, the better

the fit between the microstates and the data. The CV criterion is

used to measure the residual noise between the EEG signals and the

microstate topography maps. The smaller the value is, the more the

clustering of the microstate numbers can explain the EEG signals
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FIGURE 3

Flowchart of cross-subject emotion recognition using the microstate features. The flowchart consists of 5 modules: (A) recording of the emotional

EEG signals; (B) preprocessing of the EEG signals, where interpolation for bad channels, notch filtering, artifact removal, reference, and bandpass

filtering were successively performed; (C) extraction of the microstate features of the EEG signals, such as coverage and duration; (D) feature transfer

process based on the style transfer mapping method; and (E) emotion classification based on SVM or CNN methods.

(Murray et al., 2008). Assuming xi is the EEG signal at time i,

pli represents the label of the microstate topography map of the

i − th EEG sample, GFPi represents the standard deviation of

all electrodes in the i − th EEG sample, where C represents the

number of EEG channels, K represents the number of microstates,

and σ̂ 2 represents the variance of the residual noise. The specific

calculation methods of the GEV and CV criterion are as follows:

GEV i =
(

Corr
(

Xi , pli
)

• GFPi
)2

N
∑

i
′
GFP2

i
′

(8)

CV = σ̂ 2 •
(

C − 1

C − K − 1

)2

, σ̂ 2 =

N
∑

n
XT
i X

i −
(

aT
li
Xi

)2

N(C − 1)
(9)

After an appropriate source microstate prototype is selected,

the source microstate topographic map is inputed back to the

original data, and the statistical features of the source microstate,

including the time coverage, duration, occurrence, and transition

probabilities between the source microstates, are calculated. The

time coverage of the source microstate template refers to the

proportion of the source microstate topographic map active in

the entire analyzed EEG data. The duration refers to the average

length of each source microstate topographic map in milliseconds

of EEG data sequences. The occurrence of the source microstate

represents the average frequency of occurrence of a source

microstate class per second. It is calculated by dividing the number

of segments belonging to a source microstate class by the total

duration of the analysis data in seconds. The transition probabilities

refer to the transition probability between any two given source

microstate templates.

Style transfer mapping

As shown in Figure 3D, the style transfermapping is introduced

to map the target domain EEG features into source domain

to narrow the difference of data distribution between different

domains. In transfer learning, we use the training set data as the

source domain and the test set data as the target domain. The

style transfer mapping method maps the data from the source

domain to the target domain through affine mapping, reducing

the distance between the source and target domains (Zhang and

Liu, 2012). This causes the classification model to be more familiar

with the target domain data, leading to better classification results.

It is assumed that the target domain data are represented as

X =
{

xi ∈ RM
∣

∣i = 1, 2, 3, . . .N
}

and that the source domain data
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FIGURE 4

Topological map of the source microstate in the pure video stimulus dataset.

are represented as Y =
{

yi ∈ RD
∣

∣i = 1, 2, 3, . . .N
}

, where M

represents the feature dimension and N represents the number of

data points in the target domain. Assuming xi is mapped to yi
under the condition that the confidence level is set to fi ∈ [0, 1],

concept drift may occur after mapping. The style transfer mapping

transforms yi back to xi through the inverse function Ayi + b and

learns the transfer matrix xi by minimizing the weighted square

error. The specific calculation method is as follows:

min

A ∈ RM×M , b ∈ RM

N
∑

i=1

fi
∥

∥Ayi − xi
∥

∥

2

2
+ β ‖A− I‖2F (10)

β is used to balance the degree of data transfer and non-transfer to

avoid excessive transfer. A value of β that is too small may result

in excessive transfer, while a larger value may not be conducive to

transfer. The calculation method of β is:

β =
∼
βTra

(

fiyiy
T
i

)

(11)

After cross-validation, the value of
∼
β can be chosen from the range

of [1,3]. During the style transfer mapping, the nearest prototype

model (Bezdek and Kuncheva, 2001) is used for destination

mapping. The source domain data are clustered using the K-means

clustering algorithm, and the cluster centers serve as the prototypes

required for the experiment. The specific calculation method is

as follows:

pij = ǫRM , j = i, . . . , ni, i = 1, . . . ,M (12)

Experimental settings

In this experiment, the source microstates of the preprocessed

OVPD-II dataset were first analyzed. We first calculated the GFP

of the five frequency bands of the EEG data for 13 subjects in

the dataset. Then, we used the K-means clustering method to

cluster the GFP for source microstate clustering and selected an

appropriate number of source microstate clusters based on the

GEV and CV criteria. Through calculation, we finally selected 5

source microstate topologies that can explain approximately 85%

of the EEG data information in the OVPD-II dataset, as shown in

Figure 4, which is the source microstate topology of the OVPD-

II dataset in the alpha band. We fitted the EEG data based on

the selected source microstate prototypes and finally smoothed the

fitted data over time. Then, we calculated the statistical features of

the 5 source microstates, including the time coverage, duration,

occurrence, and transition probabilities. The dimensions of the

coverage range, duration, and occurrence frequency are consistent

with the number of microstate categories, all of which are row

vectors of size 1 × 5. The dimension of the transition probability

is a data matrix of size 5 × 5. Therefore, the feature dimension of

a single frequency band sample is 5 × (5 + 3) = 40 dimensions.

The EEG data features of the 5 frequency bands are fused, and the

feature dimension after frequency band fusion is 200 dimensions.

The OVPD-II dataset contains EEG data from 13 participants.

We employed a multi-source domain style transfer mapping

method (Li et al., 2019), using 12 subjects in the dataset as the

source domain and the remaining subject as the target domain.

The 12 subjects were trained using SVM and CNN (shown in

Figure 3E), and the trained model was tested using verification
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TABLE 1 Setting of the hyperparameters in the convolutional neural

networks.

Hyper parameter Values

Learning rate 0.005

Batch size 16

Learning decay coefficient 0.8

Regularization 0.001

Epoch 100

data. The best performing model was selected, and the source

domain data used to train the model were identified. The target

domain data and source domain data were migrated using the style

transfer mapping method, and the migrated data were classified

using a classifier. The experimental confidence level fi value was

determined to be 0.8, and β was determined to be 0.2 through

cross-validation analysis.

For the parameter setting of a classification model, choosing

the linear kernel function for the SVM classifier can achieve the

highest classification accuracy. Moreover, the grid search method

from the parameter pool, Pvalue = {0.01k, 0.1k, k |k = 1, 2, ..., 9},
was adopted to choose the optimal regulation parameter C and the

kernel function hyperparameter gamma. For the CNN experiment,

a single-layer CNN was used, with the hyperparameters listed in

Table 1. The experimental environment was built on a Windows

10 PC with Core (TM) i7-8700 CPU and 16 GB memory, and the

computing environment was MATLAB 2019b.

Results and discussion

Analysis of the source microstate features

In the experiment, non-overlapping 1-s sliding windows were

used to extract the source microstate features from the subjects

in the OVPD-II dataset, and the topological maps of the source

microstates were analyzed. By calculating the GFP values of each

subject under each emotion, the source microstate prototypes

that could explain approximately 70% of the EEG information

were selected as representative topological maps for each subject.

We calculated the common active areas of the representative

microstate topological maps of 13 subjects under three emotions

and drew a typical source microstate prototype that could represent

the dataset. The Pearson correlation coefficients between the 13

subjects and the source microstate prototype were calculated,

as shown in Figure 5, where “V” represents the video stimuli

and “OV” represents odor with video stimuli. The results of

the experiment show that the topological maps of the source

microstates extracted from different subjects under the same

emotion had high correlation. We believe that this is because

the microstates reflect the overall coordinated changes in brain

activity. Regarding the clustering of the source microstates of all

13 subjects in the dataset, the selected 5 topological maps could

explain 85% of the EEG data, and the differences in the active

areas of different subjects were ignored in the selected microstate

templates under the same emotion. Therefore, the statistical

features of the source microstates from different subjects have

high robustness.

Under video stimulation, the active regions of the positive

emotion source microstate topography were mainly concentrated

in the frontal and parietal lobes, those of the neutral emotion

were concentrated in the frontal, parietal, and occipital lobes,

and those of the negative emotion were concentrated in the

frontal and parietal lobes. After adding odor stimulation that

could induce the same emotion in the subjects, the activity

level of the source microstate in the frontal lobe increased for

positive and negative emotions, while the odor stimulation for the

neutral emotion was colorless and tasteless (pure water and air),

and the active region of the source microstate topography did

not show a significant enhancement. This indicates that adding

odor stimulation can induce stronger emotional responses in

the subjects, and this result is consistent with the experimental

conclusion (Xue et al., 2022).

Non-transfer cross-subject emotion
recognition

Moreover, the DE and power spectral density (PSD) features

of non-overlapping 1-s sliding windows are calculated in this

experiment, where the DE features are calculated as:

h(x)= −
∫ ∞

−∞

1√
2πσ 2

e
− (x−µ)2

2σ2 log(
1√
2πσ 2

e
− (x−µ)2

2σ2 )dx

= 1

2
log(2πeσ 2)

(13)

The time series X follows a Gaussian distribution N(µ, σ 2).

The t-distributed stochastic neighbor embedding (t-SNE)

function was used to reduce the dimensionality of the data features

and draw a two-dimensional visualization feature map. Figure 6

shows the feature visualization map of Subject HH, where the

purple dots represent positive emotions, the yellow dots represent

neutral emotions, and the green dots represent negative emotions.

The results of the experiment show that the two-dimensional

visualization feature map of the source microstate was different

from those of DE and PSD. The clustering distribution boundaries

of the features obtained were more obvious. In addition, it was

observed that there was more obvious clustering of the positive

and neutral emotion samples in DE and clustering of the positive,

neutral, and negative emotion samples in PSD, whichmay be due to

the difference in the induced materials. This phenomenon did not

occur in the source microstate features we extracted, and we believe

that this feature can capture more abstract emotional information

compared to DE and PSD.

Before performing data transfer, we separately input the

extracted three types of features into SVM and CNN for emotion

classification. Table 2 shows the cross-subject classification results

of the source microstate features, DE and PSD before style transfer

mapping under pure video stimulation and video-odor stimulation.

In SVM, the average classification accuracy of the source microstate

was the best, with 60.95 and 64.79%, respectively, which were 4.06
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FIGURE 5

Topographic map of the microstate features in the OVPD-II video stimulus dataset.

FIGURE 6

2D visualization of the microstate, di�erential entropy, and power spectral density features.

and 6.14% higher than the accuracy of DE and 3.84 and 5.83%

higher than that of PSD. In CNN, the average classification accuracy

of the source microstate was 65.09 and 66.39%, respectively,

which was 9.59 and 11.73% higher than that of DE and 2.99

and 4.08% higher than that of PSD. The experimental results

show that cross-subject emotion recognition based on source

microstate features achieved good classification results in both

SVM and CNN.

Cross-subject emotion recognition based
on style transfer mapping

We used the extracted source microstate features, DE and

PSD to perform nearest prototype feature transfer mapping. The

transferred features were separately input into SVM and CNN

for cross-subject emotion classification under video stimuli. The

recognition accuracy of the three features is shown in Table 3. The
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experimental results show that the source microstate features had

the highest recognition accuracies in cross-subject classification in

both SVM and CNN, with average recognition accuracies of 84.90

and 86.44% for 13 subjects, which were 1.28 and 2.7% higher than

those obtained with the DE, and 7.19 and 7.13% higher than those

obtained with the PSD.

Figure 7 shows the cross-subject recognition accuracy of the

three features under odor with video stimuli. In SVM and CNN,

the recognition accuracies of the source microstate were 87.43

and 91.49%, respectively, which were 1.79 and 18.77% higher than

those obtained with the DE and 6.95 and 19.82% higher than

those obtained with the PSD. The experimental results show that

the source microstate achieved ideal classification results in both

cross-subject emotion recognition under video and odor with video

stimuli. Moreover, the cross-subject recognition accuracy based on

source microstate features under odor plus video stimuli was 2.53

and 5.05% higher than that under video stimuli in SVM and CNN,

respectively, indicating that the addition of odor stimuli induced

stronger emotions in the subjects.

TABLE 2 Cross-subject classification accuracy without transfer learning

(%).

Feature
V OV

SVM CNN SVM CNN

Source microstate 60.95 65.09 64.79 66.39

DE 56.89 55.50 58.65 54.66

PSD 57.11 62.10 58.96 62.31

The bold values mean the highest of each column.

The experimental results show that the combination of the

microstate features and style transfer mapping achieved promising

results in cross-subject emotion classification. After feature transfer,

the cross-subject emotion classification accuracy significantly

improved compared to that before transfer. Specifically, the EEG

data with video stimuli increased by 23.95 and 21.35% in SVM

and CNN, respectively. The cross-subject emotion classification

accuracy with video and odor stimuli increased by 22.64 and

25.10% in the two classifiers, respectively. This indicates that

the combination of style transfer mapping and source microstate

features can be effectively applied to cross-subject emotion

recognition research based on EEG signals.

Conclusions and future works

Based on the problem of low recognition accuracy in cross-

subject emotion recognition using EEG signals, the robust source

microstate and style transfer mapping methods are combined

in this study, and they are applied to the odor-video-induced

physiological signal database. The source microstate reflects the

overall coordinated changes in brain activity. When conducting

source microstate analysis based on the dataset, we ignored the

differences in the active areas of different subjects under the

same emotion, resulting in a high correlation between the source

microstate topological maps of different subjects and certain

robustness in the statistical features of source microstates from

different subjects. Furthermore, the two-dimensional visualization

feature map of the source microstate, in contrast to the feature

maps of DE and PSD, has more obvious distribution boundaries

and can characterize more abstract emotional information than DE

TABLE 3 Cross-subject recognition accuracy based on source microstate features, di�erential entropy, and power spectral density under video stimuli

(%).

Participant
SVM CNN

Source microstate DE PSD Source microstate DE PSD

CL 93.44 88.76 85.07 98.83 92.96 94.37

CSY 84.22 81.65 60.65 88.68 83.31 72.50

HH 82.15 83.78 78.96 77.18 86.57 83.80

LHY 87.25 82.69 81.34 53.85 88.69 83.80

LWX 89.90 80.05 88.81 99.39 88.45 86.62

RJ 89.65 93.08 81.34 63.94 81.925 83.10

SX 88.33 83.48 91.79 98.26 82.96 92.25

WCQ 92.36 84.86 81.25 92.47 84.32 87.04

WJQ 62.53 73.49 60.30 97.18 84.37 88.73

XD 85.08 86.47 84.78 91.94 59.58 38.06

XJ 83.43 76.71 63.48 87.59 85.185 63.889

XMX 89.82 85.86 86.49 97.922 83.59 62.47

YXK 75.60 86.23 65.94 76.48 86.71 94.37

Mean 84.90 83.62 77.71 86.44 83.74 79.31

Std 8.24 5.04 11.10 14.53 7.85 16.19

The bold values mean the highest of each column.
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FIGURE 7

The cross-subject recognition accuracy of the three features under odor plus video stimuli. (A) Support Vector Machine. (B) Convolutional Neural

Network.

and PSD, showing significant advantages in cross-subject emotion

recognition research.

After combining the sourcemicrostate feature and style transfer

mapping method, the cross-subject emotion recognition accuracy

was significantly improved. The recognition accuracies of the

source microstate after style transfer in pure video were 84.90 and

86.44% in SVM and CNN, respectively, which were 23.95 and

21.35% higher than the cross-subject recognition accuracies before

transfer. The recognition accuracies of the source microstate after

style transfer in the odor plus video were 87.43 and 91.49% in SVM

and CNN, respectively, which were 22.64 and 25.10% higher than

the cross-subject recognition accuracies before transfer. Adding

odor stimulation increased the emotion recognition accuracies of

the subjects by 2.53 and 5.05% compared to video stimulation,

indicating that stronger emotions were induced in the subjects with

the addition of odor stimulation.

In the current work, we focus on the emotion recognition

of EEG single modalities, while other modalities, such as facial

expressions, speech signals, and eye-tracking signals, also contain

rich emotional information. OVPD-II is a physiological signal

database for emotion recognition based on odor video, in which 4

channels record eye-tracking signals during emotional induction.

In future work, we will attempt to fuse eye-tracking signal

features and source microstate features for multi-modal cross-

subject emotion recognition research. However, brain connectivity

is a common and effective analysis method for EEG signals,

and we will study the correlation and difference between the

brain connectivity functions and the EEG microstates for emotion

recognition tasks. We will also test the effectiveness of the EEG

microstate features in other public datasets by combining deep

learning methods.
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