
Frontiers in Neuroscience 01 frontiersin.org

Neuron pruning in temporal
domain for energy efficient SNN
processor design
Dongwoo Lew , Hoyoung Tang and Jongsun Park *

School of Electrical Engineering, Korea University, Seoul, Republic of Korea

Recently, the accuracy of spike neural network (SNN) has been significantly
improved by deploying convolutional neural networks (CNN) and their parameters
to SNN. The deep convolutional SNNs, however, suffer from large amounts of
computations, which is the major bottleneck for energy efficient SNN processor
design. In this paper, we present an input-dependent computation reduction
approach, where relatively unimportant neurons are identified and pruned without
seriously sacrificing the accuracies. Specifically, a neuron pruning in temporal
domain is proposed that prunes less important neurons and skips its future
operations based on the layer-wise pruning thresholds of membrane voltages.
To find the pruning thresholds, two pruning threshold search algorithms are
presented that can efficiently trade-off accuracy and computational complexity
with a given computation reduction ratio. The proposed neuron pruning scheme
has been implemented using 65  nm CMOS process. The SNN processor achieves
a 57% energy reduction and a 2.68× speed up, with up to 0.82% accuracy loss and
7.3% area overhead for CIFAR-10 dataset.

KEYWORDS

spiking neural network, approximation, computation reduction, input-dependent
neuron pruning, neuromorphic

1 Introduction

Convolutional neural networks (CNN) such as GoogLeNet (Szegedy et al., 2015) and
VGG-16 (Simonyan and Zisserman, 2014) have been achieving record-breaking classification
accuracies in computer vision benchmarks like CIFAR-10 (Krizhevsky, 2009) and ImageNet
(Russakovsky et al., 2015). To achieve state-of-the-art accuracy, deeper and larger neural
network architectures with considerable computational costs are required, which is a large
burden for hardware implementation. Recently, with a need for running deep neural networks
on mobile applications under limited power budget, new computational paradigms have been
actively researched (Esser et al., 2016; Rueckauer et al., 2017).

Unlike other classes of artificial neural networks, spiking neural networks (SNNs) perform
neural computations using spikes in an event-driven fashion. SNNs use sparse temporal–spatial
patterns of spikes to convey information. With event-driven temporal data processing, SNNs
are expected to be implemented with energy efficient hardware. IBM’s TrueNorth (Merolla et al.,
2014) and Intel’s Loihi (Davies et al., 2018) are the typical examples of energy efficient SNN
hardware, where millions of neurons are implemented with a few hundred mW of power
dissipation. In terms of functional accuracies, new training methods (Diehl et al., 2015;
Rueckauer et al., 2017; Sengupta et al., 2019; Li et al., 2021) are proposed to improve the
accuracies of SNNs, where CNN architectures and the parameters are deployed to SNNs.
According to Rueckauer et al. (2017), the accuracies of the convolutional SNNs have reached to

OPEN ACCESS

EDITED BY

Timothée Masquelier,
Centre National de la Recherche Scientifique
(CNRS), France

REVIEWED BY

Yang Li,
Chinese Academy of Sciences (CAS), China
Kenneth Stewart,
University of California, Irvine, United States
Paul Kirkland,
University of Strathclyde, United Kingdom

*CORRESPONDENCE

Jongsun Park
 jongsun@korea.ac.kr

RECEIVED 30 August 2023
ACCEPTED 07 November 2023
PUBLISHED 30 November 2023

CITATION

Lew D, Tang H and Park J (2023) Neuron
pruning in temporal domain for energy efficient
SNN processor design.
Front. Neurosci. 17:1285914.
doi: 10.3389/fnins.2023.1285914

COPYRIGHT

© 2023 Lew, Tang and Park. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

TYPE Original Research
PUBLISHED 30 November 2023
DOI 10.3389/fnins.2023.1285914

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1285914&domain=pdf&date_stamp=2023-11-30
https://www.frontiersin.org/articles/10.3389/fnins.2023.1285914/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1285914/full
https://www.frontiersin.org/articles/10.3389/fnins.2023.1285914/full
mailto:jongsun@korea.ac.kr
https://doi.org/10.3389/fnins.2023.1285914
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1285914

Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 02 frontiersin.org

FIGURE 1

Image classification tasks in Spiking Neural Network (SNN).

those of CNNs in computer vision benchmarks such as CIFAR-10 and
ImageNet. In spite of the accuracy improvements, since only small
portions of neurons are updated in each timestep in SNN, the number
of computations at each timestep is much lower than those of
CNN. However, in order to get high recognition accuracies, large
number of timesteps are still needed, which incur redundant
computations with latency overheads.

To reduce the amount of computations, efficient conversion
methods from deep CNN to SNN have been proposed (Diehl et al.,
2015; Rueckauer et al., 2017; Sengupta et al., 2019; Li et al., 2021). By
re-scaling the pre-trained parameters of CNN, a large number of
spike-driven computations are reduced. However, as the importance
differences among the computations are not considered, all the
computations in SNN are processed with equal efforts and the
complexity reduction is quite limited. An input-dependent
approximate computing approach (Sen et al., 2017) is also proposed
for SNN, where less important spiking neurons are skipped for each
input spike train. With the inherent error resiliency of neural network,
large portion of computations can be skipped. But, the approach
suffers from large control and computation overheads, which weakens
the effect of the energy reduction gained from the
approximate computing.

In this paper, we present an input-dependent computational
complexity reduction approach, where temporal domain information
is efficiently exploited to remove the computational redundancies
that inherently exist in convolutional SNN. In the proposed scheme,
the relatively less important neurons are first identified, and those
are removed in the temporal domain by monitoring the changes of
the neuron’s membrane voltages. Since the approach performs the
pruning based on the membrane voltages, the overhead in hardware
is minor. For the search of each layer’s pruning threshold, the
threshold search process is modeled as a graph search problem, and
greedy best-first search is used to find the thresholds for a given
target computing reduction ratio. In addition, a layer-wise pre-search
procedure is also presented to expedite the overall threshold search
to automatically find a good starting point of the pruning threshold.

The SNN processor that supports the proposed input-dependent
computational reduction technique, has been implemented using
65 nm CMOS process. The implementation results show that the
SNN processor shows significant energy reduction with minor
hardware overhead.

The rest of the paper is organized as follows. In Section 2, the
preliminaries for SNN architectures and the previous computation
reduction approaches are introduced. The proposed neuron pruning
scheme is presented in Section 3, and the experimental and hardware
implementation results are presented in Section 4 and 5, respectively.
Finally, conclusions are drawn in Section 6.

2 Preliminaries

2.1 Spiking neural networks (SNN)

Figure 1 shows a typical example of an image classification task in
SNNs. From input pixel data, Poisson-distributed spike train is
generated with the rate proportional to pixel intensity, and the input
spikes are first fed into integrate-and-fire (IF) neurons. The IF neurons
integrate synaptic weights of incoming input spikes to its membrane
voltage (Vmem) during each timestep of spike train. When Vmem
exceeds a predefined threshold voltage (Vth), the neuron fires an
output spike to the next layer, and simultaneously its Vmem resets. In
the last layer, there are same number of output neurons as the number
of output classes. SNN performs the classification task that selects the
output class neuron that has maximum spike rate. In order to increase
the accuracies of the classification tasks, previous research works
(Diehl et al., 2015; Rueckauer et al., 2017; Sengupta et al., 2019; Li
et al., 2021) try to convert and deploy the trained weights of CNN to
SNN. By employing the CNN architecture and matching the spike
rates in SNN to the activation values, SNN have achieved near-lossless
accuracies over those of CNN’s (Rueckauer et al., 2017; Sengupta et al.,
2019) in various datasets such as CIFAR-10 (Krizhevsky, 2009) and
ImageNet (Russakovsky et al., 2015). However, the number of

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 03 frontiersin.org

computations, which are needed to catch up the CNN classification
accuracy, significantly increases (Diehl et al., 2015; Rueckauer
et al., 2017).

2.2 Previous computation reduction
approaches

Although CNN shows excellent classification accuracies, such
performance comes at the cost of an enormous number of
computations. To reduce the number of computations, various
computation reduction approaches have been studied for CNNs. Zero
prediction (Kim et al., 2017, 2018; Akhlaghi et al., 2018) is one of
those computation reduction approaches, that aims to predict zeros in
the output feature map (ofmap) of CNNs with ReLU. Zero prediction
reduces the number of computations by terminating the partial sum
computation of the predicted zeros, before the end of the complete
computation of a pixel in ofmap. In Akhlaghi et al. (2018), zero
prediction is executed by first performing the multiply and accumulate
(MAC) operation of the weights having large absolute values,
evaluating the partial sum value, and predicting zero based on the
evaluated intermediate partial sum. This is possible since a partial sum
is sequentially computed in the time domain by a series of MAC
operations. In other words, CNNs have temporal domain information
in hardware, which has been exploited to reduce the number of
computations in Akhlaghi et al. (2018).

Similarly, SNN has inherent temporal domain information in
both algorithm and hardware since the information is encoded and
processed in a time series of spikes (temporal information in
algorithm), which is processed through physical time in an SNN
processor (temporal information in hardware). This increase in
information in the temporal domain also can cause errors in the
network, where inactivated neurons can fire spikes (Li et al., 2022).
However, the increase in temporal domain information can also
be exploited for computation reductions. In a particular timestep,
when a neuron exceeds its threshold value, the membrane voltages
(Vmems) of fan-out neurons increase by the weights of the
respective connections. As the spike-triggered membrane voltage
updates are repeated during the whole timesteps, it incurs a large
computational overhead. In this regard, recent conversion methods
try to reduce the number of timesteps and decrease the
computational overhead. For instance, burst spikes (Li and Zeng,
2022) allows efficient information transmission using spikes in
short period of time, and (Bu et al., 2022) proposed activation
function that accounts SNN errors during training to greatly reduce
the number of timesteps required to achieve comparable accuracies
to CNNs. On the other hand, an approximate computing scheme
(Sen et al., 2017) is proposed to skip the neuron updates with a
minor impact on classification accuracy without modifying the
training or conversion of SNN. In this approach, the importance of
neurons is obtained based on their output spike rates, and the
neuron updates are approximated or skipped for less important
neurons. However, the approximate scheme (Sen et al., 2017) needs
large additional memories for storing neuron states as well as
synapse weight reorganizing process. In order to efficiently take
advantage of temporal domain information in SNN, a new
computation-skip scheme (neuron pruning scheme) with small
overhead is highly needed.

3 Neuron pruning in temporal
domains (NPTD)

In this section, we present an input-dependent computation
reduction approach, where the temporal redundancies in SNN are
identified and removed with minor accuracy degradation.

3.1 SNN training method used in the
simulations

Before talking about the pruning techniques, let us describe the
training method for SNN used in this work. Among numerous
methods to train SNN, ANN-to-SNN conversion method (Diehl et al.,
2015; Rueckauer et al., 2017; Sengupta et al., 2019; Li et al., 2021) is
selected in this work as it shows classification accuracy comparable to
CNNs. A state-of-the-art conversion technique is adopted with Light
Pipeline (Li et al., 2021) using the implementation of the authors of
the original paper. While the Advanced Pipeline method (Li et al.,
2021) can achieve higher classification accuracies, Light Pipeline is
chosen as it has a smaller memory overhead when implemented in
hardware. Unless otherwise specified, all details regarding the training
and conversion process are identical to Li et al. (2021), and the
timestep used in the simulations is 128 in the following to explain the
proposed techniques.

Although the proposed pruning technique is applied to the above
mentioned conversion method as a case example, since temporal
redundancies exist in almost any of SNNs, the proposed techniques
can also be applied to the SNNs obtained through other
training methods.

3.2 Overview of neuron pruning in
temporal domains (NPTD)

The Neuron Pruning in Temporal Domain (NPTD) is motivated
by the observations that the changes of neuron membrane voltages
are predictable. Figure 2A shows the plot of membrane voltages
with increasing timestep, which are obtained from the 4th layer of
VGG-16 with CIFAR-10 dataset. While monitoring the changes of
membrane voltages, two interesting observations are found, which
are useful to identify the relatively less important neurons. First, as
shown in Figure 2A, unlike the positive membrane voltage values
which are reset after firing spikes, the negative membrane voltages
of inactive neurons keep decreasing without any reset operations.
As the neurons with decreasing membrane voltages are not likely
to fire spikes afterward, they do not have any effect on output
quality. Those unimportant neurons can be pruned immediately
after their membrane voltages reach to a pre-decided threshold
values. Second, as presented in Figure 2A, the membrane voltages
of the neurons that fire spikes, sometimes go below zero to some
degree. Accordingly, if the pruning thresholds are set too high,
even the active neurons can be pruned, thus degrading the
classification accuracies. As a case study of Neuron Pruning in
Temporal Domain (NPTD), NPTD with three pruning thresholds
(−2, −4, and −6) are simulated, and the results are shown in
Figure 2B. As shown in the figure, when the pruning thresholds are
−2, −4, and −6, 70.7, 62.1, and 56.9% of neurons are pruned with

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 04 frontiersin.org

3.02, 0.23, 0.01% accuracy losses, respectively. This means that
different pruning thresholds lead to different points of accuracy
losses and computation reductions. As the threshold is getting
smaller (usually negative values), relatively smaller number of
neurons are pruned with less accuracy loss. Whereas larger
threshold results in relatively larger number of pruned neurons
with larger accuracy loss. Therefore, searching a good pruning
threshold is definitely needed to minimize the accuracy loss of the
NPTD with a given target computation reduction ratio.

3.3 Greedy search algorithm to find NPTD
threshold

When applying NPTD, if the pruning thresholds are individually
assigned to all the neurons, search space becomes prohibitively large
and the memories to store the pruning thresholds should be large as
well. Referred from the previous literatures (Bengio et al., 2006; Lin
et al., 2017; Wang et al., 2019), where layer-wise search algorithms are
utilized to find optimum design points such as bit-widths of
quantization or approximation parameters, pruning thresholds of the
NPTD are searched per layer in this work.

3.3.1 Definition of the search problem
The pruning threshold search problem can be formulated as

follows: “Given the target computation ratio (α), determine the
pruning threshold of each layer such that accuracy degradation can
be minimized.” As an output of the search, a set of pruning
thresholds is determined as Pth = …{ }p p pth th th L, , ,1 2, , , , where pth,n
denotes the pruning threshold of nth layer and L refers to the
number of layers. When considering the target computation ratio
(α), as a measure of the number of computations, the synaptic
operation (SOP) (Merolla et al., 2014) is used. The total number of
SOPs (C), which means the total number of membrane updates of
the neurons in a SNN across the timestep T, can be described
as follows:

(),

1 1
,

= =

= × +

∑ ∑
T L

out l l l
t l

C f s t n

(1)

where s tl () denotes the number of spikes fired in layer l-1 at
timestep t , fout l, denotes the number of fan-out synapses from layer
l-1 to layer l and nl denotes the number of neurons in layer l and L
refers to the number of total layers.

3.3.2 Search procedure
When brute force search is applied to the search space, the time

complexity is as large as O (nL), where L is the number of total layers
and n refers the number of possible threshold candidates. Considering
the prohibitively large time complexity, we adopt the greedy best-first
search (Coles and Smith, 2007) in our approach. The conceptual
diagram of the Greedy search is presented in Figure 3. The algorithm
starts from the initial search point of Pth

init ={p p pth
init

th
init

th L
init

, , ,
, , ,

1 2
⊃ },

where each of pth k
init

, values are very small. Then, we increase pth k
init

, by
adding ∆G . After adding ∆G to each one of L candidates
independently, we calculate C Lossi

reduct
i
inc/ of L cases, where Cireduct

means the amount of computation reduction, and Lossiinc denotes the
corresponding output loss (cross entropy loss) increment over subset
of the training dataset S (an identical S is used during the entire
search). Then, we find the one that incur largest C Lossi

reduct
i
inc/ with

pruning threshold increase of ∆G . This process is repeated until
C Corg/ reaches the target computation ratio α, where Corg is the
SOP before applying the proposed NPTD. While the search problem
is to find the pruning thresholds with minimum accuracy loss at a
given target computation ratio, the output loss is used instead of
accuracy during the search. It is because output loss and the
classification accuracy of the network are closely related, output loss is
widely used instead of accuracy in previous works (Shih and Chang,
2020; Gholami et al., 2021). The pseudocode of our greedy best-first
search is presented in Algorithm 1.

3.4 Layer-wise pre-search procedure

Although the greedy best-first search algorithm can find a set of
pruning thresholds for NPTD while providing efficient trade-offs
between accuracies and computational complexity, we still have room
for improvement in terms of the runtime of the search. This can
be observed in Figure 4, where the plot of SOP ratio and output loss
with respect to the number of iterations of the greedy search (i.e., loop

0 10 20 30 40 50 60 70 80 90

-8

-6

-4

-2

0

2

Me
m

br
an

eV
ol

ta
ge

Timesteps

Regions of active neuronsVTH

Pruning threshold = -4

Pruning threshold = -2

Pruning threshold = -6

0

1

2

3

4

-2 -4 -6
40

50

60

70

80

Ra
tio

so
fP

ru
ne

d
Ne

ur
on

s(
%

)

Ac
cu

ra
cy

Lo
ss

(%
)

Pruning Threshold

Ratio of pruned neurons
Accuracy loss

A B

FIGURE 2

(A) Membrane voltages of neurons and three pruning thresholds of case study. (B) The ratios of pruned neurons and accuracy losses with three
pruning threshold values.

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 05 frontiersin.org

iteration of line 5 in Algorithm 1) is shown when the initial pruning
thresholds of all the layers are set to −20 for VGG-16 with CIFAR-100.
The SOP ratio is computed by dividing the current SOP by the SOP
without NPTD applied. We can notice from Figure 4 that SOP ratio is
decreasing during the whole search, however, output loss shows very
little change before the knee point of the curve. This means that a large
number of the iterations are performed while output loss increases
very small, hence this region can be considered as the quasi-
lossless region.

To reduce the total number of iterations in the greedy search and
the time spent in this quasi-lossless region, searching the initial

threshold of each layer with minor output loss change can
be considered. To automatically find the set of initial pruning
thresholds that can significantly reduce the quasi-lossless region with
minor change on the output loss, we present the layer-wise pre-search
based on the bisection method (Burden and Faires, 1985). First,
considering the complexity of the search, the pre-search problem can
be divided into each of a layer-wise search. A layer-wise approach has
been selected, since the error of the output layer, which directly affects
the output loss, is upper bounded by the weighted linear combination
of layer-wise error (Li et al., 2021). In other words, the layer-wise error
introduced by the NPTD will have a negligible impact on the output

{ pth,1, pth,2, pth,3, pth,4, , pth,L }

{ pth,1 + , pth,2, , pth,L }

{ pth,1 , pth,2+ , , pth,L }

{ pth,1 , pth,2, , pth,L+ }

Compute Creducts and Alosss

Largest

{ pth,1, pth,2+ , pth,3, pth,4, , pth,L }

Pth
current :

Pth
next : If C/Corg < α

L candidates

Creduct/Lossinc

FIGURE 3

Greedy search procedures to find the set of pruning thresholds Pth.

ALGORITHM 1

The greedy best-first search to find threshold Pth.

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 06 frontiersin.org

loss if the layer-wise error introduced by the NPTD is small enough.
This can be exploited in the layer-wise search, as finding a pruning
threshold with minor effect to the output loss (i.e., rough threshold
with some margin) using a fast layer-wise search will allow the quick
search of pruning thresholds of the whole network.

The outline of the pre-search procedure for a layer is as followings
and it is also presented in Figure 5.

 ① Set search interval of the pruning threshold [pth i
A

, , pth i
B

,] for the
bisection method.

 ② Using the bisection method, find a pruning threshold that
results in the output loss that is close to ()1+ initLoss , where
Lossinit is the output loss before the search of this layer.

 ③ Perform backward steps until the output loss is smaller than
()1+ initLoss , by decreasing the pruning threshold found in
② with a step size of B .

Figure 5 illustrates the pre-search procedure using the plot of
output loss ratio with respect to the layer-wise pruning threshold. The
output loss ratio is calculated by dividing the current output loss by the
Lossinit (output loss when the pruning threshold of the layer is the
initial pruning threshold, which is −32 in this figure).

As shown in Figure 5, starting from the first layer of the network,
the step ① first sets the search interval for current layer by starting
from [Pth

global, 0]. Then, both endpoints are reduced by B , until the
output loss of the right endpoint becomes smaller than ()1+ initLoss .
This step is needed since simply setting the search interval to [Pth

global,
0] can make the bisection method to fail at the beginning. It is
because setting the pruning threshold to 0 makes so many neurons
to be pruned, which results in almost no output spike generations,
thus making the output loss to be a very small. Then, the step ②
performs bisection for predefined iterations (MI) to find a pruning
threshold that has output loss close to ()1+ initLoss .
Hyperparameter β is the bisection target ratio and it is added as a
margin to ensure stable bisection search. Without β, fluctuation of
output loss can introduce multiple roots, failing to find a pruning
threshold. Lastly, in step ③ of Figure 5, the pruning threshold found
in step ② gets decreasing to ensure negligible layer-wise error

introduced by NPTD. After all three steps, pre-search of the preceding
layer is performed. When the layer-wise pre-search is finished, a set
of pruning thresholds found is used as the initial pruning threshold
set of the greedy best-first search. The detailed procedure is described
as pseudocode in Algorithm 2.

Regarding the hyperparameters used in the pre-search, Pth
global

should be small enough not to add significant layer-wise error. A good
starting point is found to be around −32 or − 64. In the case of MI, it
should be set with consideration of the search interval and the desired
resolution of the threshold pre-search. For instance, when the desired
resolution is 1 and Pth

global is −32 (= − 25), MI of 5 can be used to
achieve the desired resolution of 1. In case of β, a value between
0.05 ~ 0.1 is found to be a good balance point between the stability of
the search and the total time spent for backward steps. For γ, the value
around 0.01 works well for various conditions. It is noteworthy that
the value of β has little to no effect to the final results of the pre-search,
as long as γ is set to a small value (e.g., 0.01). This is because backward
steps diminish the error increment caused by β.

FIGURE 5

The outline of the pre-search procedure on output loss ratio with
respect to pruning threshold. The figure is obtained from the second
convolutional layer (conv1_2) of VGG-16 with CIFAR-100.

Quasi-lossless region

Knee point of loss curve

200 400 600 800 1000 1200 1400 1600 1800 2000

0.4

0.5

0.6

0.7

0.8

2

4

6

8

10

12

14

16

GreedySearchIteration

SO
P

Ra
tio

0

Ou
tp

ut
Lo

ss

SOP
Loss

FIGURE 4

SOP ratio and output loss with respect to the number of iterations when the greedy best-first search is performed.

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 07 frontiersin.org

4 NPTD simulation results

In this section, we present the simulation results of the proposed
NPTD with threshold search algorithms. The simulations have been
performed using PyTorch (Paszke et al., 2019) and the ANN-to-SNN
conversion method used is the Light Pipeline proposed in Li et al.
(2021). Unless otherwise specified, hyperparameters used in the
simulations are as followings: 0.5, 0.1= ∆ =G and the number of
elements in S is 1,024 for the greedy best-first search. For the layer-
wise pre-search, 64, 6, 0.05, 0.01, 1.0= − = = = ∆ =global

BthP MI
and the number of images in S is 2048. The number of elements in S
is set to a minimum value such that the stability of the threshold
search is sustained.

4.1 Classification accuracies and SOPs

Table 1 shows the simulation results of the classification
accuracies and the number of SOPs for VGG-16 and ResNet-20
on CIFAR-10 and CIFAR-100. Considering the baseline accuracy
of the networks, results with timesteps over 32 are reported. In
Table 1, the values in the parenthesis of accuracy and SOP are the
accuracy drop compared to the baseline accuracy and the ratio of
the SOP compared to the baseline SOP, respectively. Overall, the
layer-wise pre-search finds pruning thresholds with SOP ratio
within the range of 0.5 ~ 0.7 and the SOP reduction ratio is
generally higher when the timestep becomes larger. The accuracy
drops are less than 0.6% for all cases. Interestingly, for the case of

ALGORITHM 2

The layer-wise pre-search to find threshold Pth
init.

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 08 frontiersin.org

T = 128 and 256 for VGG-16 on CIFAR-100, accuracies increase
compared to the baseline.

After the layer-wise pre-search, pruning thresholds found by the
pre-search are used as the initial thresholds of the greedy best-first
search. Since the target SOP ratio is set to 0.5, most of the search
finishes with a final SOP ratio of 0.5 with SOP ratio error of around 0.01.
It is also very interesting that the accuracy loss of PS + GS is generally
smaller when the timestep of the networks is larger, which is because
the model capacity increases as a larger timestep is used for the network.
The increase of model capacity is upheld by the higher baseline accuracy
as the timestep gets larger. One notable exception in Table 1 is the case
of T = 256 for VGG-16 on CIFAR-10, which shows an SOP ratio of 0.41
right after the layer-wise pre-search (all simulations for this case
consistently show an SOP ratio less than 0.5). For this case, the greedy
best-first search is not performed as the target SOP ratio is set to 0.5.

4.2 Analysis on the effects of the layer-wise
pre-search

In this section, to demonstrate the effectiveness of the layer-wise
pre-search (PS), analyses on the search runtime, classification

accuracy, and SOP are performed. While the simulations are
conducted with parameters explained at the beginning of this section,
‘GS’ in Table 2 is conducted with initial pruning thresholds of 15 for
all layers. The reported runtimes are simulated on a single Nvidia
TITAN RTX and the results are presented in Table 2. The search

TABLE 1 Classification accuracies and SOP simulation results.

VGG-16, CIFAR-10

T  =  32 T  =  64 T  =  128 T  =  256

Accuracy SOP Accuracy SOP Accuracy SOP Accuracy SOP

Baseline 93.49 2.42E+8 94.97 4.98E+8 95.28 1.02E+9 95.55 2.05E+9

PS 93.49 (0.00) 1.73E+8 (0.71) 94.68 (0.29) 2.78E+8 (0.55) 95.09 (0.20) 5.33E+8 (0.52) 95.03 (0.52) 8.40E+8(0.41)

PS + GS 91.76 (1.73) 1.20E+8 (0.49) 94.05 (0.92) 2.48E+8 (0.49) 94.99 (0.29) 5.03E+8 (0.49) - -

ResNet-20, CIFAR-10

T  =  32 T  =  64 T  =  128 T  =  256

Accuracy SOP Accuracy SOP Accuracy SOP Accuracy SOP

Baseline 94.51 2.71E+8 95.19 5.48E+8 95.52 1.11E+9 95.59 2.23E+9

PS 94.47 (0.04) 1.96E+8 (0.72) 95.04 (0.15) 3.65E+8 (0.66) 95.20 (0.32) 6.70E+8 (0.60) 95.06 (0.53) 1.18E+9 (0.52)

PS + GS 93.08 (1.43) 1.36E+8 (0.50) 93.38 (1.81) 2.81E+8 (0.51) 94.96 (0.56) 5.30E+8 (0.47) 95.05 (0.54) 1.14E+9 (0.51)

VGG-16, CIFAR-100

T  =  32 T  =  64 T  =  128 T  =  256

Accuracy SOP Accuracy SOP Accuracy SOP Accuracy SOP

Baseline 59.86 3.78E+8 71.10 7.70E+8 75.15 1.56E+9 77.23 3.15E+9

PS 59.78 (0.08) 2.39E+8 (0.63) 71.10 (0.00) 4.80E+8 (0.62) 75.28(−0.13) 9.14E+8 (0.58) 77.34(−0.11) 1.68E+9 (0.53)

PS + GS 55.78 (4.08) 1.89E+8 (0.50) 69.50 (1.60) 3.85E+8 (0.50) 74.23 (0.92) 7.83E+8 (0.50) 77.21 (0.02) 1.58E+9 (0.50)

ResNet-20, CIFAR-100

T  =  32 T  =  64 T  =  128 T  =  256

Accuracy SOP Accuracy SOP Accuracy SOP Accuracy SOP

Baseline 73.18 3.92E+8 75.52 7.94E+8 76.55 1.60E+9 76.91 3.21E+9

PS 72.75 (0.43) 2.90E+8 (0.74) 75.32 (0.20) 5.35E+8 (0.67) 76.22 (0.33) 9.40E+8 (0.58) 76.39 (0.52) 1.68E+9 (0.52)

PS + GS 68.91 (4.27) 1.97E+8 (0.50) 73.09 (2.43) 3.97E+8 (0.50) 75.96 (0.59) 8.01E+8 (0.50) 76.18 (0.73) 1.60E+9 (0.49)

Baseline, NPTD not applied; PS, layer-wise pre-search; GS, greedy best-first search.

TABLE 2 The Effects of the layer-wise pre-search on search time and
accuracies.

VGG-16, CIFAR-100, T  =  128

Accuracy SOP Search runtime

Baseline 75.15 1.56E+9 -

PS + GS 74.23 (0.92) 7.83E+8 (0.50) 1.3 + 25.8 h

GS 73.77 (1.38) 7.82E+8 (0.50) 82.1 h

ResNet-20, CIFAR-100, T = 128

Accuracy SOP Search runtime

Baseline 76.55 1.60E+9 -

PS + GS 75.96 (0.59) 8.01E+8 (0.50) 1.5 + 45.5 h

GS 76.14 (0.40) 8.01E+8 (0.50) 149.4 h

Baseline, NPTD not applied; PS, layer-wise pre-search; GS, greedy best-first search.

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 09 frontiersin.org

runtime of PS + GS is presented in form of ‘(PS runtime) + (GS
runtime)’. The application of the proposed layer-wise pre-search has
dramatically reduced the runtime of greedy search to 31.4 and 30.4%
for VGG-16 and ResNet-20, respectively, while only adding 1.5 and
1.0% of pre-search time overhead for VGG-16 and ResNet-20,
respectively. The pruning thresholds obtained by PS + GS also show
similar accuracies and SOP reductions compared to GS, showing the
effectiveness of the proposed PS.

Please note that for VGG-16, using both the pre-search and the
greedy search shows higher accuracy than only using the greedy
search, and the reason for this outcome is shown in Figure 6A,
where the pruning thresholds found by the layer-wise pre-search
are shown for VGG-16 on CIFAR-100. Before explaining further,
please recall that the layer-wise pre-search finds the pruning
threshold on the left side of the knee point of the loss curve as
explained in Figure 5 (i.e., near the end of the quasi-lossless region).
In Figure 6A, layer 13 has a smaller pruning threshold found by the
pre-search than −15. Such outlier layer makes the greedy search
start from a pruning threshold on the right side of the knee point,
and it causes the classification accuracy to deteriorate from the
beginning of the greedy search. On the other hand, for the
ResNet-20 as shown in Figure 6B, the pruning threshold found by
pre-search is below −15 for all the layers, and using only the greedy
search shows slightly higher accuracy.

5 Hardware implementation

This section presents the SNN processor that implements the
proposed neuron pruning techniques. The baseline architecture is
designed based on Sen et al. (2017), and the proposed NPTD has been
added to the baseline. 65 nm CMOS standard cell library has been
used for the implementation, and the energy results are obtained from
post-layout simulations using the CIFAR-10 dataset. Considering the
required on-chip memory size to implement the network to hardware,
a small convolutional SNN is selected for hardware implementation.
The network has 3 convolutional layers and 1 fully connected layer,
arranged as architecture of 48c5-AP2-96c5-AP2-96c5-AP2-10. In the
network architecture, 48c5 means a convolutional layer with 48 5 × 5
convolutional filters, AP2 means 2 × 2 average pooling layer, and 10
means fully connected layer with 10 neurons. In the case of the first
convolutional layer, it is processed off-chip due to the direct input
encoding used in Li et al. (2021). The hyperparameter used for the

pruning threshold search is the same as the ones specified in section
IV, with exception of 0.3= . The network shows 88.02 and 87.2%
accuracy without and with the proposed NPTD, respectively, on
CIFAR-10 with 128 timestep.

5.1 Overall hardware architecture

Figure 7 shows the block diagram of the proposed SNN processor
which consists of an array of 48 spike firing check (SFC) units and an
array of 48 membrane voltage update (MVU) units. It also contains a
set of neuron memories that are membrane voltage memories, bias
memories, and pruned flag memories. The synaptic weights are stored
in weight memories, and the global controller orchestrates the overall
operations. In the proposed architecture, when a spike is generated,
all the membrane voltages of its fan-out neurons are updated, and 48
MVU operations are performed in parallel considering the channel
sizes of the kernels (48 and 96). For example, in case of Conv1
(48 × 5 × 5c) layer, each neuron has 48 × 5 × 5 fan-out neurons. So,
when a spike is generated from Conv1 layer, 48-parallel MVU
computations are performed 25 times to update 48 × 5 × 5 fan-out
neurons. To support 48-parallel processing, 2 × 48 banks of membrane
voltage memories are accessed to simultaneously read and write the
membrane voltages of 48 neurons. Here, half of the memory banks
read the membrane voltages of 48 neurons, and the other half memory
banks write the membrane voltages that are previously processed.
Since the bias memories and weight memories perform only read
operation per each neuron, doubling the number of banks is not
necessary to support 48-parallel processing. So, 48 banks are used in
the architecture for the bias memories and weight memories.

The timing diagram of the proposed architecture is shown in
Figure 8. First, SFC array loops over neurons in a certain layer L, and
it adds bias values to membrane voltages. In addition, SFC unit checks
if the membrane voltages are above Vth. If not, it moves on to the next
neurons in the layer L. When neurons fire output spikes, MVU unit
array is activated, and it reads the membrane voltages and the synaptic
weights for the fan-out neurons in the layer L + 1. As previously
described, 2 banks of membrane voltage memories are used as a pair
of ping-pong buffers because write operations are also needed to
update the membrane voltage values. So, each neuron is updated
within one clock cycle. If MVU units are busy when output spike is
fired, the indices of output spikes are stored in the output spike buffer
and the index is delivered to MVU unit when MVU units are ready.

2 3 4 5 6 7 8 9 10 11 12 130

5

10

15

20

25

Layer

Pr
un

in
g

Th
re

sh
ol

d

initPth = -15

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 190

5

10

15

20

25

Pr
un

in
g

Th
re

sh
ol

d

initPth = -15

Layer

A B

FIGURE 6

The examples of the pruning thresholds found by the layer-wise pre-search from (A) VGG16 and (B) ResNet-20. Bars with identical color are the
thresholds from the identical network [i.e., black bars in (A) are pruning thresholds searched from VGG-16 of an identical random seed].

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 10 frontiersin.org

After updating all the fan-out neurons of the output spikes stored in
spike buffer, SFC array resumes the operations over the neurons in the
layer L. When all the neurons in the layer L are processed, the SFC
unit moves to the next layer L + 1. In the procedure, flag count signals
inform how many neurons can be skipped at once from the current

processing neuron, and using the flag count signal, neuron indices and
the corresponding addresses of memories are generated to skip
the computations.

In the proposed SNN processor, 11 bits are used to store the
membrane voltages with a negligible accuracy loss of 0.05% compared

48-parallel processing

MU
X

Weight

Potential up.

Potential
Pruned

flag

Global controller

Potential Bias

Th.
Prun.
Th.

Pruned
flag Spike

Spikingfiring
checkunit

(SFC)

Shifter

Neuron
memory

Weight
memory

MU
X

MU
X

Weight
memory

Weight
memory

Neuron
memory

Neuron
memory

Pruned
flag MembraneBias

Output spikebuffer

Data
Control

Membrane
voltageupdate

unit (MVU)

Membrane
voltageupdate

unit (MVU)

Membrane
voltageupdate

unit (MVU)

FIGURE 7

Block diagram of the SNN processor.

SpikeFiring
Check(SFC) L-1 layer Llayer

Llayer L+1 layer
If aneuronfires

Weight mem.
Oper. R R R R R R R R R R

SFCen.
Flagcount

value (e) '1' '3' '3' '2'
Flagcount

value (o) '2' '1' '5'
Memb. mem.

Addr. (e) a a+1 a+3 a+4 a+8 a' a'+4 a'+7 a'+8 a'+9
Memb. mem.

Addr. (o)
W R W R W R W R W R W R W R W R W R WRMemb. mem.

Oper. (e)
Memb. mem.

Oper. (o) W R W R W R W R W R W R W R W R W RR
Biasmem.

Oper. R R R R R R R R R R
O_spike

MVUstate
O_spikebuffer en.

MVUen.

CLK

BusyIdle

L+1 layer

L+2 layer

b'+9b b+3 b+5 b+6 b+7 b' b'+1 b'+7 b'+8
R
W

R

MembraneVoltage
Update(MVU)

FIGURE 8

Timing diagram of the proposed SNN processor.

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 11 frontiersin.org

to the floating-point baseline. However, larger bit-widths are needed to
implement NPTD because the pruning threshold Pth can be larger than
the threshold voltage (Vth). In other words, the proposed NPTD needs
wide dynamic ranges for the negative membrane voltages to represent
values down to the pruning thresholds. Since large dynamic ranges are
only needed for negative values, using additional bits to represent both
positive and negative membrane voltages can be wasteful. So, dynamic
fixed-point arithmetic is employed to allow a wider dynamic range for
the negative values to realize NPTD without adding too much hardware
overhead. For example, when the magnitude of the Pth of a layer is 5
times of Vth, 3 bits = ()()log /)2 Vth Pth are shifted when representing
the negative values, and when the membrane voltage becomes a positive
value, the number representation changes back to normal. The dynamic
fixed-point allows a simple yet efficient implementation of the NPTD
without accuracy loss and additional memory overhead due to
increasing bit-widths.

In the proposed architecture, although power consumption can
be improved with the neuron pruning by simply not performing
the computations of pruned neurons, it cannot increase the
throughput of the processor. So, to increase the throughput of the
proposed SNN processor, the pruned neurons are identified ahead
by counting stored flags using leading one (zero) counter (Miao
and Li, 2017) and computations of the identified neurons
are skipped.

5.2 Hardware implementation results

The proposed SNN processor has been Verilog coded, and it is
synthesized using Synopsys Design Compiler with 65 nm CMOS
standard cell library. The netlists are placed and routed using
Synopsys IC Compiler, and Figure 9 shows the layout of the SNN
processor and its sub-block module. The processor occupies
5,156 × 4,900 um2 of area, and it consists of 48 sub-blocks and a
global controller. Each of sub-block has one synaptic weight

memory, two banks of membrane voltage memories, eight banks
of pruned flag memories, one bias memory, and MVU and SFC
units. Figure 10A shows the area breakdown of the SNN processor.
Approximately 71% of the area is occupied by the memories storing
synapse weights, membrane voltages, and bias values. In addition,
the proposed NPTD incurs 7.3% area overhead to the baseline
architecture. The previous input-dependent pruning scheme (Sen
et al., 2017) needs approximately 35% overhead to implement the
pruning scheme, which mainly consists of memory to store the
target neuron index of each synapse based on our redesigned
implementation of (Sen et al., 2017). On the other hand, the
proposed NPTD needs the memories only for storing 1-bit flag per
each neuron instead of the indices of target neurons (Sen et al.,
2017). Therefore, the memory area overhead to implement the
input-dependent pruning scheme is significantly reduced for the
proposed NPTD. As presented in Figure 10B, the area overhead for
skipping computations is around 7.3%.

When processing images from the CIFAR-10 dataset, the
proposed SNN processor can process 1,531 classification tasks
(frames) per second by consuming 109.1uJ for each frame. Figure 10C
shows the energy reductions of the proposed NPTD with the
CIFAR-10 dataset. Using the proposed neuron pruning scheme, a
significant portion of membrane update computations are skipped,
and by skipping the membrane updates of the pruned neurons, the
SNN processor saves 57% of energy with 0.82% accuracy loss. In
addition to that, the throughput of the processor increases from
570fps to 1531fps by the proposed NPTD.

Table 3 shows the comparisons with other SNN processors (Sen
et al., 2017; Deng et al., 2020; Kuang et al., 2021; Lew et al., 2022).
The previous input-dependent complexity reduction technique has
been proposed and implemented in Sen et al. (2017). But, Sen et al.
(2017) has only reported accuracy losses, but not actual accuracies.
SNN processors with the flexibility of supporting multi-chip based
SNN processing have been implemented by Kuang et al. (2021) and
Deng et al. (2020). While these two processors are designed for

5156 um
49

00
um Synaptic

Weight

Prunedflag

Me
m

br
an

e
Vo

lta
ge

s

Prunedflag

Bi
asSF

C
MV

U

Controllers

Gl
ob

al
Co

nt
ro

lle
r

Sub-
block

FIGURE 9

The layout of the proposed SNN processor.

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 12 frontiersin.org

SNNs, but also support a variant of ternary ANN and report
CIFAR-10 accuracies of ternary ANN. In the case of (Lew et al.,
2022), it is an SNN processor specifically designed for temporal
SNNs with a single spike per neuron, and it uses external DRAM to
allow the execution of large SNN models. Thanks to the proposed

NPTD, the lowest energy per image has been achieved by the
proposed SNN processor. In Table 3, to compare the processors
implemented using different process technologies, the normalized
energy consumptions have been obtained using the following
equation (Rabaey et al., 2003):

Memories(71.50%)
Etc. (6.68%)

Pruned flag (6.91%)
Logics (0.39%)

Area overheads (7.30%)

Logics (14.52%)

Total area
= 25.26 mm2

0

20

40

60

80

100

120

140
)

%(n
wodkaerb aer

A

Proposed Sen et al., 2017Baseline

* Estimated

7.3%

Logic

36%*

Overhead

Etc.

Memory

Logic
Etc.

Memory

Logic
Etc.

Memory

Baseline Sen et al., 2017 Proposed

ygrene dezila
mro

N

0.00

0.20

0.40

0.60

0.80

1.00

57
.0

0%42
.0

0%
Comp. Logic ProposedMemories

A

B

C

FIGURE 10

(A) Area breakdowns of the proposed SNN processor. (B) Area comparison with the previous input-dependent pruning scheme. (C) Normalized energy
benefits with CIFAR-10 dataset.

TABLE 3 Hardware performance comparison.

Sen et al., 2017 [12] Kuang et al., 2021 [25] Deng et al., 2020 [26] Lew et al., 2022 [27] This work

Technology 45 nm 65 nm 28 nm 28 nm 65 nm

Supply voltage - 1.2 V 0.85 V 0.99 V 1.2 V

Frequency 1 GHz 192 MHz 300 MHz 250 MHz 357 MHz

Area 0.34 mm2 107.22 mm2 14.44 mm2 0.9102 mm2 25.26 mm2

Network model - 8 layers (Ternary ANN) 15 layers (Ternary ANN) VGG-16 (Temporal SNN) 4 layers (Rate SNN)

Accuracy (CIFAR-10) - 85.76% 89.5% 91.7% 87.2%

Inference throughput - 181 fps 46,827 fps 327 fps 1,531 fps

Inference energy

(Normalized to

65 nm, 1.2 V)

- - 129 uJ (1,385 uJ) 327 uJ (2,589 uJ) 109.1 uJ

Measurement Pre-layout simulation Chip Chip Pre-layout simulation
Post-layout

simulation

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 13 frontiersin.org

Energy Energy

process supply voltagenorm = ×

×

65 1 2
2

.

(2)

The normalized energies show even more difference between this
work and previous works, which further highlights the energy
reduction effects of the proposed NPTD.

6 Conclusion

In this work, we present a neuron pruning in temporal domain
(NPTD) approach, an input-dependent neuron pruning technique that
efficiently removes temporal redundancies in the convolutional SNNs. The
proposed NPTD skips less important neuron operations by identifying
relatively unimportant neurons, based on the membrane voltage of the
neurons and pre-decided pruning thresholds. The pruning thresholds are
also searched using the proposed layer-wise pre-search and greedy best-
first search algorithms. With the proposed neuron pruning schemes and
pruning search algorithms, a target SOP reduction can be reached with
good accuracy computation trade-offs. The NPTD has also been
implemented to the SNN processor using 65 nm CMOS process and the
processor achieves 57% energy reductions and 2.68 × speed ups, with
0.82% accuracy loss for CIFAR-10 dataset. The proposed input-dependent
neuron pruning technique can assist the use of SNNs in edge devices,
particularly for low energy applications with limited hardware resources.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

DL: Conceptualization, Methodology, Writing – original draft. HT:
Conceptualization, Writing – original draft. JP: Writing – review & editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work was
supported by the National Research Foundation of Korea grant
funded by the Korea government (No. NRF-2020R1A2C3014820 and
Grant NRF2022M3I7A2079267); in part by Institute of Information
& communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government(MSIT) (No.2021-0-00903,
Development of Physical Channel Vulnerability-based Attacks and
its Countermeasures for Reliable On-Device Deep Learning
Accelerator Design), and (No. 2022-0-00266, Development of
Ultra-Low Power Low-Bit Precision Mixed-Mode SRAM PIM). The
EDA tool was supported by the IC Design Education Center
(IDEC), Korea.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnins.2023.1285914/
full#supplementary-material

References
Akhlaghi, V., Yazdanbakhsh, A., Samadi, K., Gupta, R. K., and Esmaeilzadeh, H.

(2018). Sna PEA: predictive early activation for reducing computation in deep
convolutional neural networks. 2018 ACM/IEEE 45th annual international symposium
on computer architecture (ISCA), Los Angeles, CA. 662–673.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2006). “Greedy layer-wise
training of deep networks” in Advances in neural information processing systems
(Cambridge, MA: MIT Press)

Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., and Huang, T. (2022). Optimal ANN-SNN
conversion for high-accuracy and ultra-low-latency spiking neural networks in
International conference on learning representations. Available at: https://openreview.
net/forum?id=7B3IJMM1k_M (Accessed September 7, 2022)

Burden, R. L., and Faires, J. D. (1985). Numerical analysis. Boston, MA: Prindle, Weber
& Schmidt.

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic Manycore processor with on-Chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Deng, L., Wang, G., Li, G., Li, S., Liang, L., Zhu, M., et al. (2020). Tianjic: a unified and
scalable Chip bridging spike-based and continuous neural computation. IEEE J. Solid
State Circuits 55, 2228–2246. doi: 10.1109/JSSC.2020.2970709

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S., and Pfeiffer, M. (2015). Fast-
classifying, high-accuracy spiking deep networks through weight and threshold
balancing. 2015 international joint conference on neural networks (IJCNN), Killarney,
Ireland. 1–8.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,
Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-efficient
neuromorphic computing. PNAS 113, 11441–11446. doi: 10.1073/pnas.1604
850113

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W., and Keutzer, K. (2021). A
survey of quantization methods for efficient neural network inference. arXiv. doi:
10.48550/arXiv.2103.13630

Coles, A., and Smith, A. (2007) Greedy Best-First Search when EHC Fails. Available
at: https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume28/coles07a-html/node11.
html (Accessed November 17, 2019)

Kim, D., Ahn, J., and Yoo, S. (2017). A novel zero weight/activation-aware hardware
architecture of convolutional neural network. Design Automat. Test Europe Conf. Exhib.
2017, 1462–1467. doi: 10.23919/DATE.2017.7927222

Kim, C., Shin, D., Kim, B., and Park, J. (2018). Mosaic-CNN: a combined two-step
zero prediction approach to trade off accuracy and computation energy in convolutional

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnins.2023.1285914/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2023.1285914/full#supplementary-material
https://openreview.net/forum?id=7B3IJMM1k_M
https://openreview.net/forum?id=7B3IJMM1k_M
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JSSC.2020.2970709
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.48550/arXiv.2103.13630
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume28/coles07a-html/node11.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume28/coles07a-html/node11.html
https://doi.org/10.23919/DATE.2017.7927222

Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 14 frontiersin.org

neural networks. IEEE J. Emerg. Selected Topics Circuits Syst. 8, 770–781. doi: 10.1109/
JETCAS.2018.2865006

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. University
of Toronto: Toronto.

Kuang, Y., Cui, X., Zhong, Y., Liu, K., Zou, C., Dai, Z., et al. (2021). A 64K-neuron
64M-1b-synapse 2.64pJ/SOP neuromorphic Chip with all memory on Chip for spike-
based models in 65nm CMOS. IEEE Trans. Circuits Syst. II 68, 2655–2659. doi: 10.1109/
TCSII.2021.3052172

Lew, D., Lee, K., and Park, J. (2022). A time-to-first-spike coding and conversion aware
training for energy-efficient deep spiking neural network processor design. Proceedings of the
59th ACM/IEEE design automation conference DAC’22. (New York, NY). 265–270.

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. (2021). A free lunch from ANN:
towards efficient, accurate spiking neural networks calibration. Proceedings of the 38th
international conference on machine learning (PMLR), 6316–6325.

Li, Y., He, X., Dong, Y., Kong, Q., and Zeng, Y. (2022). Spike calibration: Fast and accurate
conversion of spiking neural network for object detection and segmentation. Available at:
http://arxiv.org/abs/2207.02702 (Accessed October 22, 2023)

Li, Y., and Zeng, Y. (2022). Efficient and accurate conversion of spiking neural network
with burst spikes. Proceedings of the thirty-first international joint conference on
artificial intelligence. Vienna, Austria. 2485–2491.

Lin, Z., Shen, J., Ma, D., and Meng, J. (2017). Quantisation and pooling method for
low-inference-latency spiking neural networks. Electron. Lett. 53, 1347–1348. doi:
10.1049/el.2017.2219

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F., et al.
(2014). A million spiking-neuron integrated circuit with a scalable communication
network and interface. Science 345, 668–673. doi: 10.1126/science.1254642

Miao, J., and Li, S. (2017). A design for high speed leading-zero counter. Kuala Lumpur,
Malaysia: 2017 IEEE international symposium on consumer electronics (ISCE), 22–23.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf.
Proces. Syst. 32:1703. doi: 10.48550/arXiv.1912.01703

Rabaey, J. M., Chandrakasan, A. P., and Nikolić, B. (2003). Digital integrated circuits:
A design perspective. 2nd Edn. Upper Saddle River, NJ: Pearson Education.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion of
continuous-valued deep networks to efficient event-driven networks for image
classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). ImageNet
large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252. doi: 10.1007/
s11263-015-0816-y

Sen, S., Venkataramani, S., and Raghunathan, A. (2017). Approximate computing for
spiking neural networks. In design. Automat. Test Europe Conf. Exhib. 2017, 193–198.
doi: 10.23919/DATE.2017.7926981

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in spiking
neural networks: VGG and residual architectures. Front. Neurosci. 13:95. doi: 10.3389/
fnins.2019.00095

Shih, H.-T., and Chang, T.-S. (2020). Zebra: memory bandwidth reduction for
CNN accelerators with zero block regularization of activation maps. Seville,
Spain: 2020 IEEE international symposium on circuits and systems (ISCAS), 1–5.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. arXiv. doi: 10.48550/arXiv.1409.1556

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). Going
deeper with convolutions. 2015 IEEE conference on computer vision and pattern
recognition (CVPR), Boston, MA, USA. 1–9.

Wang, Y., Lin, J., and Wang, Z. (2019). FPAP: a folded architecture for energy-quality
scalable convolutional neural networks. IEEE Trans. Circuits Syst. I 66, 288–301. doi:
10.1109/TCSI.2018.2856624

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1109/JETCAS.2018.2865006
https://doi.org/10.1109/JETCAS.2018.2865006
https://doi.org/10.1109/TCSII.2021.3052172
https://doi.org/10.1109/TCSII.2021.3052172
http://arxiv.org/abs/2207.02702
https://doi.org/10.1049/el.2017.2219
https://doi.org/10.1126/science.1254642
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.23919/DATE.2017.7926981
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/TCSI.2018.2856624

	Neuron pruning in temporal domain for energy efficient SNN processor design
	1 Introduction
	2 Preliminaries
	2.1 Spiking neural networks (SNN)
	2.2 Previous computation reduction approaches

	3 Neuron pruning in temporal domains (NPTD)
	3.1 SNN training method used in the simulations
	3.2 Overview of neuron pruning in temporal domains (NPTD)
	3.3 Greedy search algorithm to find NPTD threshold
	3.3.1 Definition of the search problem
	3.3.2 Search procedure
	3.4 Layer-wise pre-search procedure

	4 NPTD simulation results
	4.1 Classification accuracies and SOPs
	4.2 Analysis on the effects of the layer-wise pre-search

	5 Hardware implementation
	5.1 Overall hardware architecture
	5.2 Hardware implementation results

	6 Conclusion
	Data availability statement
	Author contributions

	References

