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Neuron pruning in temporal 
domain for energy efficient SNN 
processor design
Dongwoo Lew , Hoyoung Tang  and Jongsun Park *

School of Electrical Engineering, Korea University, Seoul, Republic of Korea

Recently, the accuracy of spike neural network (SNN) has been significantly 
improved by deploying convolutional neural networks (CNN) and their parameters 
to SNN. The deep convolutional SNNs, however, suffer from large amounts of 
computations, which is the major bottleneck for energy efficient SNN processor 
design. In this paper, we  present an input-dependent computation reduction 
approach, where relatively unimportant neurons are identified and pruned without 
seriously sacrificing the accuracies. Specifically, a neuron pruning in temporal 
domain is proposed that prunes less important neurons and skips its future 
operations based on the layer-wise pruning thresholds of membrane voltages. 
To find the pruning thresholds, two pruning threshold search algorithms are 
presented that can efficiently trade-off accuracy and computational complexity 
with a given computation reduction ratio. The proposed neuron pruning scheme 
has been implemented using 65  nm CMOS process. The SNN processor achieves 
a 57% energy reduction and a 2.68× speed up, with up to 0.82% accuracy loss and 
7.3% area overhead for CIFAR-10 dataset.
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1 Introduction

Convolutional neural networks (CNN) such as GoogLeNet (Szegedy et  al., 2015) and 
VGG-16 (Simonyan and Zisserman, 2014) have been achieving record-breaking classification 
accuracies in computer vision benchmarks like CIFAR-10 (Krizhevsky, 2009) and ImageNet 
(Russakovsky et  al., 2015). To achieve state-of-the-art accuracy, deeper and larger neural 
network architectures with considerable computational costs are required, which is a large 
burden for hardware implementation. Recently, with a need for running deep neural networks 
on mobile applications under limited power budget, new computational paradigms have been 
actively researched (Esser et al., 2016; Rueckauer et al., 2017).

Unlike other classes of artificial neural networks, spiking neural networks (SNNs) perform 
neural computations using spikes in an event-driven fashion. SNNs use sparse temporal–spatial 
patterns of spikes to convey information. With event-driven temporal data processing, SNNs 
are expected to be implemented with energy efficient hardware. IBM’s TrueNorth (Merolla et al., 
2014) and Intel’s Loihi (Davies et al., 2018) are the typical examples of energy efficient SNN 
hardware, where millions of neurons are implemented with a few hundred mW of power 
dissipation. In terms of functional accuracies, new training methods (Diehl et  al., 2015; 
Rueckauer et  al., 2017; Sengupta et  al., 2019; Li et  al., 2021) are proposed to improve the 
accuracies of SNNs, where CNN architectures and the parameters are deployed to SNNs. 
According to Rueckauer et al. (2017), the accuracies of the convolutional SNNs have reached to 
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FIGURE 1

Image classification tasks in Spiking Neural Network (SNN).

those of CNNs in computer vision benchmarks such as CIFAR-10 and 
ImageNet. In spite of the accuracy improvements, since only small 
portions of neurons are updated in each timestep in SNN, the number 
of computations at each timestep is much lower than those of 
CNN. However, in order to get high recognition accuracies, large 
number of timesteps are still needed, which incur redundant 
computations with latency overheads.

To reduce the amount of computations, efficient conversion 
methods from deep CNN to SNN have been proposed (Diehl et al., 
2015; Rueckauer et al., 2017; Sengupta et al., 2019; Li et al., 2021). By 
re-scaling the pre-trained parameters of CNN, a large number of 
spike-driven computations are reduced. However, as the importance 
differences among the computations are not considered, all the 
computations in SNN are processed with equal efforts and the 
complexity reduction is quite limited. An input-dependent 
approximate computing approach (Sen et al., 2017) is also proposed 
for SNN, where less important spiking neurons are skipped for each 
input spike train. With the inherent error resiliency of neural network, 
large portion of computations can be  skipped. But, the approach 
suffers from large control and computation overheads, which weakens 
the effect of the energy reduction gained from the 
approximate computing.

In this paper, we present an input-dependent computational 
complexity reduction approach, where temporal domain information 
is efficiently exploited to remove the computational redundancies 
that inherently exist in convolutional SNN. In the proposed scheme, 
the relatively less important neurons are first identified, and those 
are removed in the temporal domain by monitoring the changes of 
the neuron’s membrane voltages. Since the approach performs the 
pruning based on the membrane voltages, the overhead in hardware 
is minor. For the search of each layer’s pruning threshold, the 
threshold search process is modeled as a graph search problem, and 
greedy best-first search is used to find the thresholds for a given 
target computing reduction ratio. In addition, a layer-wise pre-search 
procedure is also presented to expedite the overall threshold search 
to automatically find a good starting point of the pruning threshold. 

The SNN processor that supports the proposed input-dependent 
computational reduction technique, has been implemented using 
65 nm CMOS process. The implementation results show that the 
SNN processor shows significant energy reduction with minor 
hardware overhead.

The rest of the paper is organized as follows. In Section 2, the 
preliminaries for SNN architectures and the previous computation 
reduction approaches are introduced. The proposed neuron pruning 
scheme is presented in Section 3, and the experimental and hardware 
implementation results are presented in Section 4 and 5, respectively. 
Finally, conclusions are drawn in Section 6.

2 Preliminaries

2.1 Spiking neural networks (SNN)

Figure 1 shows a typical example of an image classification task in 
SNNs. From input pixel data, Poisson-distributed spike train is 
generated with the rate proportional to pixel intensity, and the input 
spikes are first fed into integrate-and-fire (IF) neurons. The IF neurons 
integrate synaptic weights of incoming input spikes to its membrane 
voltage (Vmem) during each timestep of spike train. When Vmem 
exceeds a predefined threshold voltage (Vth), the neuron fires an 
output spike to the next layer, and simultaneously its Vmem resets. In 
the last layer, there are same number of output neurons as the number 
of output classes. SNN performs the classification task that selects the 
output class neuron that has maximum spike rate. In order to increase 
the accuracies of the classification tasks, previous research works 
(Diehl et al., 2015; Rueckauer et al., 2017; Sengupta et al., 2019; Li 
et al., 2021) try to convert and deploy the trained weights of CNN to 
SNN. By employing the CNN architecture and matching the spike 
rates in SNN to the activation values, SNN have achieved near-lossless 
accuracies over those of CNN’s (Rueckauer et al., 2017; Sengupta et al., 
2019) in various datasets such as CIFAR-10 (Krizhevsky, 2009) and 
ImageNet (Russakovsky et  al., 2015). However, the number of 
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computations, which are needed to catch up the CNN classification 
accuracy, significantly increases (Diehl et  al., 2015; Rueckauer 
et al., 2017).

2.2 Previous computation reduction 
approaches

Although CNN shows excellent classification accuracies, such 
performance comes at the cost of an enormous number of 
computations. To reduce the number of computations, various 
computation reduction approaches have been studied for CNNs. Zero 
prediction (Kim et al., 2017, 2018; Akhlaghi et al., 2018) is one of 
those computation reduction approaches, that aims to predict zeros in 
the output feature map (ofmap) of CNNs with ReLU. Zero prediction 
reduces the number of computations by terminating the partial sum 
computation of the predicted zeros, before the end of the complete 
computation of a pixel in ofmap. In Akhlaghi et  al. (2018), zero 
prediction is executed by first performing the multiply and accumulate 
(MAC) operation of the weights having large absolute values, 
evaluating the partial sum value, and predicting zero based on the 
evaluated intermediate partial sum. This is possible since a partial sum 
is sequentially computed in the time domain by a series of MAC 
operations. In other words, CNNs have temporal domain information 
in hardware, which has been exploited to reduce the number of 
computations in Akhlaghi et al. (2018).

Similarly, SNN has inherent temporal domain information in 
both algorithm and hardware since the information is encoded and 
processed in a time series of spikes (temporal information in 
algorithm), which is processed through physical time in an SNN 
processor (temporal information in hardware). This increase in 
information in the temporal domain also can cause errors in the 
network, where inactivated neurons can fire spikes (Li et al., 2022). 
However, the increase in temporal domain information can also 
be exploited for computation reductions. In a particular timestep, 
when a neuron exceeds its threshold value, the membrane voltages 
(Vmems) of fan-out neurons increase by the weights of the 
respective connections. As the spike-triggered membrane voltage 
updates are repeated during the whole timesteps, it incurs a large 
computational overhead. In this regard, recent conversion methods 
try to reduce the number of timesteps and decrease the 
computational overhead. For instance, burst spikes (Li and Zeng, 
2022) allows efficient information transmission using spikes in 
short period of time, and (Bu et  al., 2022) proposed activation 
function that accounts SNN errors during training to greatly reduce 
the number of timesteps required to achieve comparable accuracies 
to CNNs. On the other hand, an approximate computing scheme 
(Sen et al., 2017) is proposed to skip the neuron updates with a 
minor impact on classification accuracy without modifying the 
training or conversion of SNN. In this approach, the importance of 
neurons is obtained based on their output spike rates, and the 
neuron updates are approximated or skipped for less important 
neurons. However, the approximate scheme (Sen et al., 2017) needs 
large additional memories for storing neuron states as well as 
synapse weight reorganizing process. In order to efficiently take 
advantage of temporal domain information in SNN, a new 
computation-skip scheme (neuron pruning scheme) with small 
overhead is highly needed.

3 Neuron pruning in temporal 
domains (NPTD)

In this section, we  present an input-dependent computation 
reduction approach, where the temporal redundancies in SNN are 
identified and removed with minor accuracy degradation.

3.1 SNN training method used in the 
simulations

Before talking about the pruning techniques, let us describe the 
training method for SNN used in this work. Among numerous 
methods to train SNN, ANN-to-SNN conversion method (Diehl et al., 
2015; Rueckauer et al., 2017; Sengupta et al., 2019; Li et al., 2021) is 
selected in this work as it shows classification accuracy comparable to 
CNNs. A state-of-the-art conversion technique is adopted with Light 
Pipeline (Li et al., 2021) using the implementation of the authors of 
the original paper. While the Advanced Pipeline method (Li et al., 
2021) can achieve higher classification accuracies, Light Pipeline is 
chosen as it has a smaller memory overhead when implemented in 
hardware. Unless otherwise specified, all details regarding the training 
and conversion process are identical to Li et  al. (2021), and the 
timestep used in the simulations is 128 in the following to explain the 
proposed techniques.

Although the proposed pruning technique is applied to the above 
mentioned conversion method as a case example, since temporal 
redundancies exist in almost any of SNNs, the proposed techniques 
can also be  applied to the SNNs obtained through other 
training methods.

3.2 Overview of neuron pruning in 
temporal domains (NPTD)

The Neuron Pruning in Temporal Domain (NPTD) is motivated 
by the observations that the changes of neuron membrane voltages 
are predictable. Figure 2A shows the plot of membrane voltages 
with increasing timestep, which are obtained from the 4th layer of 
VGG-16 with CIFAR-10 dataset. While monitoring the changes of 
membrane voltages, two interesting observations are found, which 
are useful to identify the relatively less important neurons. First, as 
shown in Figure 2A, unlike the positive membrane voltage values 
which are reset after firing spikes, the negative membrane voltages 
of inactive neurons keep decreasing without any reset operations. 
As the neurons with decreasing membrane voltages are not likely 
to fire spikes afterward, they do not have any effect on output 
quality. Those unimportant neurons can be pruned immediately 
after their membrane voltages reach to a pre-decided threshold 
values. Second, as presented in Figure 2A, the membrane voltages 
of the neurons that fire spikes, sometimes go below zero to some 
degree. Accordingly, if the pruning thresholds are set too high, 
even the active neurons can be  pruned, thus degrading the 
classification accuracies. As a case study of Neuron Pruning in 
Temporal Domain (NPTD), NPTD with three pruning thresholds 
(−2, −4, and −6) are simulated, and the results are shown in 
Figure 2B. As shown in the figure, when the pruning thresholds are 
−2, −4, and −6, 70.7, 62.1, and 56.9% of neurons are pruned with 
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3.02, 0.23, 0.01% accuracy losses, respectively. This means that 
different pruning thresholds lead to different points of accuracy 
losses and computation reductions. As the threshold is getting 
smaller (usually negative values), relatively smaller number of 
neurons are pruned with less accuracy loss. Whereas larger 
threshold results in relatively larger number of pruned neurons 
with larger accuracy loss. Therefore, searching a good pruning 
threshold is definitely needed to minimize the accuracy loss of the 
NPTD with a given target computation reduction ratio.

3.3 Greedy search algorithm to find NPTD 
threshold

When applying NPTD, if the pruning thresholds are individually 
assigned to all the neurons, search space becomes prohibitively large 
and the memories to store the pruning thresholds should be large as 
well. Referred from the previous literatures (Bengio et al., 2006; Lin 
et al., 2017; Wang et al., 2019), where layer-wise search algorithms are 
utilized to find optimum design points such as bit-widths of 
quantization or approximation parameters, pruning thresholds of the 
NPTD are searched per layer in this work.

3.3.1 Definition of the search problem
The pruning threshold search problem can be formulated as 

follows: “Given the target computation ratio (α), determine the 
pruning threshold of each layer such that accuracy degradation can 
be  minimized.” As an output of the search, a set of pruning 
thresholds is determined as Pth = …{ }p p pth th th L, , ,1 2, , , , where pth,n 
denotes the pruning threshold of nth layer and L refers to the 
number of layers. When considering the target computation ratio 
(α), as a measure of the number of computations, the synaptic 
operation (SOP) (Merolla et al., 2014) is used. The total number of 
SOPs (C), which means the total number of membrane updates of 
the neurons in a SNN across the timestep T, can be  described 
as follows:
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where s tl ( ) denotes the number of spikes fired in layer l-1 at 
timestep t , fout l,  denotes the number of fan-out synapses from layer  
l-1 to layer l  and nl  denotes the number of neurons in layer l and L 
refers to the number of total layers.

3.3.2 Search procedure
When brute force search is applied to the search space, the time 

complexity is as large as O (nL), where L is the number of total layers 
and n refers the number of possible threshold candidates. Considering 
the prohibitively large time complexity, we adopt the greedy best-first 
search (Coles and Smith, 2007) in our approach. The conceptual 
diagram of the Greedy search is presented in Figure 3. The algorithm 
starts from the initial search point of Pth

init ={p p pth
init

th
init

th L
init
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, , ,
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where each of pth k
init

,  values are very small. Then, we increase pth k
init

,  by 
adding ∆G . After adding ∆G  to each one of L candidates 
independently, we calculate C Lossi

reduct
i
inc/  of L cases, where Cireduct 

means the amount of computation reduction, and Lossiinc denotes the 
corresponding output loss (cross entropy loss) increment over subset 
of the training dataset S  (an identical S  is used during the entire 
search). Then, we find the one that incur largest C Lossi

reduct
i
inc/  with 

pruning threshold increase of ∆G . This process is repeated until 
C Corg/  reaches the target computation ratio α, where Corg  is the 
SOP before applying the proposed NPTD. While the search problem 
is to find the pruning thresholds with minimum accuracy loss at a 
given target computation ratio, the output loss is used instead of 
accuracy during the search. It is because output loss and the 
classification accuracy of the network are closely related, output loss is 
widely used instead of accuracy in previous works (Shih and Chang, 
2020; Gholami et al., 2021). The pseudocode of our greedy best-first 
search is presented in Algorithm 1.

3.4 Layer-wise pre-search procedure

Although the greedy best-first search algorithm can find a set of 
pruning thresholds for NPTD while providing efficient trade-offs 
between accuracies and computational complexity, we still have room 
for improvement in terms of the runtime of the search. This can 
be observed in Figure 4, where the plot of SOP ratio and output loss 
with respect to the number of iterations of the greedy search (i.e., loop 
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(A) Membrane voltages of neurons and three pruning thresholds of case study. (B) The ratios of pruned neurons and accuracy losses with three 
pruning threshold values.
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iteration of line 5 in Algorithm 1) is shown when the initial pruning 
thresholds of all the layers are set to −20 for VGG-16 with CIFAR-100. 
The SOP ratio is computed by dividing the current SOP by the SOP 
without NPTD applied. We can notice from Figure 4 that SOP ratio is 
decreasing during the whole search, however, output loss shows very 
little change before the knee point of the curve. This means that a large 
number of the iterations are performed while output loss increases 
very small, hence this region can be  considered as the quasi-
lossless region.

To reduce the total number of iterations in the greedy search and 
the time spent in this quasi-lossless region, searching the initial 

threshold of each layer with minor output loss change can 
be  considered. To automatically find the set of initial pruning 
thresholds that can significantly reduce the quasi-lossless region with 
minor change on the output loss, we present the layer-wise pre-search 
based on the bisection method (Burden and Faires, 1985). First, 
considering the complexity of the search, the pre-search problem can 
be divided into each of a layer-wise search. A layer-wise approach has 
been selected, since the error of the output layer, which directly affects 
the output loss, is upper bounded by the weighted linear combination 
of layer-wise error (Li et al., 2021). In other words, the layer-wise error 
introduced by the NPTD will have a negligible impact on the output 

{ pth,1, pth,2, pth,3, pth,4, , pth,L }

{ pth,1 + , pth,2, , pth,L }

{ pth,1 , pth,2+ , , pth,L }

{ pth,1 , pth,2, , pth,L+  }

Compute Creducts and Alosss

Largest

{ pth,1, pth,2+  , pth,3, pth,4, , pth,L }

Pth
current :

Pth
next : If  C/Corg < α

L candidates

Creduct/Lossinc

FIGURE 3

Greedy search procedures to find the set of pruning thresholds Pth.

ALGORITHM 1

The greedy best-first search to find threshold Pth.
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loss if the layer-wise error introduced by the NPTD is small enough. 
This can be exploited in the layer-wise search, as finding a pruning 
threshold with minor effect to the output loss (i.e., rough threshold 
with some margin) using a fast layer-wise search will allow the quick 
search of pruning thresholds of the whole network.

The outline of the pre-search procedure for a layer is as followings 
and it is also presented in Figure 5.

 ① Set search interval of the pruning threshold [pth i
A

, , pth i
B

, ] for the 
bisection method.

 ② Using the bisection method, find a pruning threshold that 
results in the output loss that is close to ( )1+ initLoss , where 
Lossinit is the output loss before the search of this layer.

 ③ Perform backward steps until the output loss is smaller than 
( )1+ initLoss , by decreasing the pruning threshold found in 
② with a step size of B .

Figure 5 illustrates the pre-search procedure using the plot of 
output loss ratio with respect to the layer-wise pruning threshold. The 
output loss ratio is calculated by dividing the current output loss by the 
Lossinit  (output loss when the pruning threshold of the layer is the 
initial pruning threshold, which is −32 in this figure).

As shown in Figure 5, starting from the first layer of the network, 
the step ① first sets the search interval for current layer by starting 
from [Pth

global, 0]. Then, both endpoints are reduced by B , until the 
output loss of the right endpoint becomes smaller than ( )1+ initLoss .  
This step is needed since simply setting the search interval to [Pth

global,  
0] can make the bisection method to fail at the beginning. It is 
because setting the pruning threshold to 0 makes so many neurons 
to be pruned, which results in almost no output spike generations, 
thus making the output loss to be a very small. Then, the step ② 
performs bisection for predefined iterations (MI) to find a pruning 
threshold that has output loss close to ( )1+ initLoss . 
Hyperparameter β is the bisection target ratio and it is added as a 
margin to ensure stable bisection search. Without β, fluctuation of 
output loss can introduce multiple roots, failing to find a pruning 
threshold. Lastly, in step ③ of Figure 5, the pruning threshold found 
in step ② gets decreasing to ensure negligible layer-wise error 

introduced by NPTD. After all three steps, pre-search of the preceding 
layer is performed. When the layer-wise pre-search is finished, a set 
of pruning thresholds found is used as the initial pruning threshold 
set of the greedy best-first search. The detailed procedure is described 
as pseudocode in Algorithm 2.

Regarding the hyperparameters used in the pre-search, Pth
global  

should be small enough not to add significant layer-wise error. A good 
starting point is found to be around −32 or − 64. In the case of MI, it 
should be set with consideration of the search interval and the desired 
resolution of the threshold pre-search. For instance, when the desired 
resolution is 1 and Pth

global  is −32 (= − 25), MI of 5 can be used to 
achieve the desired resolution of 1. In case of β, a value between 
0.05 ~ 0.1 is found to be a good balance point between the stability of 
the search and the total time spent for backward steps. For γ, the value 
around 0.01 works well for various conditions. It is noteworthy that 
the value of β has little to no effect to the final results of the pre-search, 
as long as γ is set to a small value (e.g., 0.01). This is because backward 
steps diminish the error increment caused by β.

FIGURE 5

The outline of the pre-search procedure on output loss ratio with 
respect to pruning threshold. The figure is obtained from the second 
convolutional layer (conv1_2) of VGG-16 with CIFAR-100.
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4 NPTD simulation results

In this section, we present the simulation results of the proposed 
NPTD with threshold search algorithms. The simulations have been 
performed using PyTorch (Paszke et al., 2019) and the ANN-to-SNN 
conversion method used is the Light Pipeline proposed in Li et al. 
(2021). Unless otherwise specified, hyperparameters used in the 
simulations are as followings: 0.5, 0.1= ∆ =G  and the number of 
elements in S  is 1,024 for the greedy best-first search. For the layer-
wise pre-search, 64, 6, 0.05, 0.01, 1.0= − = = = ∆ =global

BthP MI    
and the number of images in S  is 2048. The number of elements in S  
is set to a minimum value such that the stability of the threshold 
search is sustained.

4.1 Classification accuracies and SOPs

Table  1 shows the simulation results of the classification 
accuracies and the number of SOPs for VGG-16 and ResNet-20 
on CIFAR-10 and CIFAR-100. Considering the baseline accuracy 
of the networks, results with timesteps over 32 are reported. In 
Table 1, the values in the parenthesis of accuracy and SOP are the 
accuracy drop compared to the baseline accuracy and the ratio of 
the SOP compared to the baseline SOP, respectively. Overall, the 
layer-wise pre-search finds pruning thresholds with SOP ratio 
within the range of 0.5 ~ 0.7 and the SOP reduction ratio is 
generally higher when the timestep becomes larger. The accuracy 
drops are less than 0.6% for all cases. Interestingly, for the case of 

ALGORITHM 2

The layer-wise pre-search to find threshold Pth
init.
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T = 128 and 256 for VGG-16 on CIFAR-100, accuracies increase 
compared to the baseline.

After the layer-wise pre-search, pruning thresholds found by the 
pre-search are used as the initial thresholds of the greedy best-first 
search. Since the target SOP ratio   is set to 0.5, most of the search 
finishes with a final SOP ratio of 0.5 with SOP ratio error of around 0.01. 
It is also very interesting that the accuracy loss of PS + GS is generally 
smaller when the timestep of the networks is larger, which is because 
the model capacity increases as a larger timestep is used for the network. 
The increase of model capacity is upheld by the higher baseline accuracy 
as the timestep gets larger. One notable exception in Table 1 is the case 
of T = 256 for VGG-16 on CIFAR-10, which shows an SOP ratio of 0.41 
right after the layer-wise pre-search (all simulations for this case 
consistently show an SOP ratio less than 0.5). For this case, the greedy 
best-first search is not performed as the target SOP ratio is set to 0.5.

4.2 Analysis on the effects of the layer-wise 
pre-search

In this section, to demonstrate the effectiveness of the layer-wise 
pre-search (PS), analyses on the search runtime, classification 

accuracy, and SOP are performed. While the simulations are 
conducted with parameters explained at the beginning of this section, 
‘GS’ in Table 2 is conducted with initial pruning thresholds of 15 for 
all layers. The reported runtimes are simulated on a single Nvidia 
TITAN RTX and the results are presented in Table  2. The search 

TABLE 1 Classification accuracies and SOP simulation results.

VGG-16, CIFAR-10

T  =  32 T  =  64 T  =  128 T  =  256

Accuracy SOP Accuracy SOP Accuracy SOP Accuracy SOP

Baseline 93.49 2.42E+8 94.97 4.98E+8 95.28 1.02E+9 95.55 2.05E+9

PS 93.49 (0.00) 1.73E+8 (0.71) 94.68 (0.29) 2.78E+8 (0.55) 95.09 (0.20) 5.33E+8 (0.52) 95.03 (0.52) 8.40E+8(0.41)

PS + GS 91.76 (1.73) 1.20E+8 (0.49) 94.05 (0.92) 2.48E+8 (0.49) 94.99 (0.29) 5.03E+8 (0.49) - -

ResNet-20, CIFAR-10

T  =  32 T  =  64 T  =  128 T  =  256

Accuracy SOP Accuracy SOP Accuracy SOP Accuracy SOP

Baseline 94.51 2.71E+8 95.19 5.48E+8 95.52 1.11E+9 95.59 2.23E+9

PS 94.47 (0.04) 1.96E+8 (0.72) 95.04 (0.15) 3.65E+8 (0.66) 95.20 (0.32) 6.70E+8 (0.60) 95.06 (0.53) 1.18E+9 (0.52)

PS + GS 93.08 (1.43) 1.36E+8 (0.50) 93.38 (1.81) 2.81E+8 (0.51) 94.96 (0.56) 5.30E+8 (0.47) 95.05 (0.54) 1.14E+9 (0.51)

VGG-16, CIFAR-100

T  =  32 T  =  64 T  =  128 T  =  256

Accuracy SOP Accuracy SOP Accuracy SOP Accuracy SOP

Baseline 59.86 3.78E+8 71.10 7.70E+8 75.15 1.56E+9 77.23 3.15E+9

PS 59.78 (0.08) 2.39E+8 (0.63) 71.10 (0.00) 4.80E+8 (0.62) 75.28(−0.13) 9.14E+8 (0.58) 77.34(−0.11) 1.68E+9 (0.53)

PS + GS 55.78 (4.08) 1.89E+8 (0.50) 69.50 (1.60) 3.85E+8 (0.50) 74.23 (0.92) 7.83E+8 (0.50) 77.21 (0.02) 1.58E+9 (0.50)

ResNet-20, CIFAR-100

T  =  32 T  =  64 T  =  128 T  =  256

Accuracy SOP Accuracy SOP Accuracy SOP Accuracy SOP

Baseline 73.18 3.92E+8 75.52 7.94E+8 76.55 1.60E+9 76.91 3.21E+9

PS 72.75 (0.43) 2.90E+8 (0.74) 75.32 (0.20) 5.35E+8 (0.67) 76.22 (0.33) 9.40E+8 (0.58) 76.39 (0.52) 1.68E+9 (0.52)

PS + GS 68.91 (4.27) 1.97E+8 (0.50) 73.09 (2.43) 3.97E+8 (0.50) 75.96 (0.59) 8.01E+8 (0.50) 76.18 (0.73) 1.60E+9 (0.49)

Baseline, NPTD not applied; PS, layer-wise pre-search; GS, greedy best-first search.

TABLE 2 The Effects of the layer-wise pre-search on search time and 
accuracies.

VGG-16, CIFAR-100, T  =  128

Accuracy SOP Search runtime

Baseline 75.15 1.56E+9 -

PS + GS 74.23 (0.92) 7.83E+8 (0.50) 1.3 + 25.8 h

GS 73.77 (1.38) 7.82E+8 (0.50) 82.1 h

ResNet-20, CIFAR-100, T = 128

Accuracy SOP Search runtime

Baseline 76.55 1.60E+9 -

PS + GS 75.96 (0.59) 8.01E+8 (0.50) 1.5 + 45.5 h

GS 76.14 (0.40) 8.01E+8 (0.50) 149.4 h

Baseline, NPTD not applied; PS, layer-wise pre-search; GS, greedy best-first search.
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runtime of PS + GS is presented in form of ‘(PS runtime) + (GS 
runtime)’. The application of the proposed layer-wise pre-search has 
dramatically reduced the runtime of greedy search to 31.4 and 30.4% 
for VGG-16 and ResNet-20, respectively, while only adding 1.5 and 
1.0% of pre-search time overhead for VGG-16 and ResNet-20, 
respectively. The pruning thresholds obtained by PS + GS also show 
similar accuracies and SOP reductions compared to GS, showing the 
effectiveness of the proposed PS.

Please note that for VGG-16, using both the pre-search and the 
greedy search shows higher accuracy than only using the greedy 
search, and the reason for this outcome is shown in Figure 6A, 
where the pruning thresholds found by the layer-wise pre-search 
are shown for VGG-16 on CIFAR-100. Before explaining further, 
please recall that the layer-wise pre-search finds the pruning 
threshold on the left side of the knee point of the loss curve as 
explained in Figure 5 (i.e., near the end of the quasi-lossless region). 
In Figure 6A, layer 13 has a smaller pruning threshold found by the 
pre-search than −15. Such outlier layer makes the greedy search 
start from a pruning threshold on the right side of the knee point, 
and it causes the classification accuracy to deteriorate from the 
beginning of the greedy search. On the other hand, for the 
ResNet-20 as shown in Figure 6B, the pruning threshold found by 
pre-search is below −15 for all the layers, and using only the greedy 
search shows slightly higher accuracy.

5 Hardware implementation

This section presents the SNN processor that implements the 
proposed neuron pruning techniques. The baseline architecture is 
designed based on Sen et al. (2017), and the proposed NPTD has been 
added to the baseline. 65 nm CMOS standard cell library has been 
used for the implementation, and the energy results are obtained from 
post-layout simulations using the CIFAR-10 dataset. Considering the 
required on-chip memory size to implement the network to hardware, 
a small convolutional SNN is selected for hardware implementation. 
The network has 3 convolutional layers and 1 fully connected layer, 
arranged as architecture of 48c5-AP2-96c5-AP2-96c5-AP2-10. In the 
network architecture, 48c5 means a convolutional layer with 48 5 × 5 
convolutional filters, AP2 means 2 × 2 average pooling layer, and 10 
means fully connected layer with 10 neurons. In the case of the first 
convolutional layer, it is processed off-chip due to the direct input 
encoding used in Li et al. (2021). The hyperparameter used for the 

pruning threshold search is the same as the ones specified in section 
IV, with exception of 0.3= . The network shows 88.02 and 87.2% 
accuracy without and with the proposed NPTD, respectively, on 
CIFAR-10 with 128 timestep.

5.1 Overall hardware architecture

Figure 7 shows the block diagram of the proposed SNN processor 
which consists of an array of 48 spike firing check (SFC) units and an 
array of 48 membrane voltage update (MVU) units. It also contains a 
set of neuron memories that are membrane voltage memories, bias 
memories, and pruned flag memories. The synaptic weights are stored 
in weight memories, and the global controller orchestrates the overall 
operations. In the proposed architecture, when a spike is generated, 
all the membrane voltages of its fan-out neurons are updated, and 48 
MVU operations are performed in parallel considering the channel 
sizes of the kernels (48 and 96). For example, in case of Conv1 
(48 × 5 × 5c) layer, each neuron has 48 × 5 × 5 fan-out neurons. So, 
when a spike is generated from Conv1 layer, 48-parallel MVU 
computations are performed 25 times to update 48 × 5 × 5 fan-out 
neurons. To support 48-parallel processing, 2 × 48 banks of membrane 
voltage memories are accessed to simultaneously read and write the 
membrane voltages of 48 neurons. Here, half of the memory banks 
read the membrane voltages of 48 neurons, and the other half memory 
banks write the membrane voltages that are previously processed. 
Since the bias memories and weight memories perform only read 
operation per each neuron, doubling the number of banks is not 
necessary to support 48-parallel processing. So, 48 banks are used in 
the architecture for the bias memories and weight memories.

The timing diagram of the proposed architecture is shown in 
Figure 8. First, SFC array loops over neurons in a certain layer L, and 
it adds bias values to membrane voltages. In addition, SFC unit checks 
if the membrane voltages are above Vth. If not, it moves on to the next 
neurons in the layer L. When neurons fire output spikes, MVU unit 
array is activated, and it reads the membrane voltages and the synaptic 
weights for the fan-out neurons in the layer L + 1. As previously 
described, 2 banks of membrane voltage memories are used as a pair 
of ping-pong buffers because write operations are also needed to 
update the membrane voltage values. So, each neuron is updated 
within one clock cycle. If MVU units are busy when output spike is 
fired, the indices of output spikes are stored in the output spike buffer 
and the index is delivered to MVU unit when MVU units are ready. 
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The examples of the pruning thresholds found by the layer-wise pre-search from (A) VGG16 and (B) ResNet-20. Bars with identical color are the 
thresholds from the identical network [i.e., black bars in (A) are pruning thresholds searched from VGG-16 of an identical random seed].
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After updating all the fan-out neurons of the output spikes stored in 
spike buffer, SFC array resumes the operations over the neurons in the 
layer L. When all the neurons in the layer L are processed, the SFC 
unit moves to the next layer L + 1. In the procedure, flag count signals 
inform how many neurons can be skipped at once from the current 

processing neuron, and using the flag count signal, neuron indices and 
the corresponding addresses of memories are generated to skip 
the computations.

In the proposed SNN processor, 11 bits are used to store the 
membrane voltages with a negligible accuracy loss of 0.05% compared 
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to the floating-point baseline. However, larger bit-widths are needed to 
implement NPTD because the pruning threshold Pth can be larger than 
the threshold voltage (Vth). In other words, the proposed NPTD needs 
wide dynamic ranges for the negative membrane voltages to represent 
values down to the pruning thresholds. Since large dynamic ranges are 
only needed for negative values, using additional bits to represent both 
positive and negative membrane voltages can be wasteful. So, dynamic 
fixed-point arithmetic is employed to allow a wider dynamic range for 
the negative values to realize NPTD without adding too much hardware 
overhead. For example, when the magnitude of the Pth of a layer is 5 
times of Vth, 3 bits = ( )( )log / )2 Vth Pth  are shifted when representing 
the negative values, and when the membrane voltage becomes a positive 
value, the number representation changes back to normal. The dynamic 
fixed-point allows a simple yet efficient implementation of the NPTD 
without accuracy loss and additional memory overhead due to 
increasing bit-widths.

In the proposed architecture, although power consumption can 
be improved with the neuron pruning by simply not performing 
the computations of pruned neurons, it cannot increase the 
throughput of the processor. So, to increase the throughput of the 
proposed SNN processor, the pruned neurons are identified ahead 
by counting stored flags using leading one (zero) counter (Miao 
and Li, 2017) and computations of the identified neurons 
are skipped.

5.2 Hardware implementation results

The proposed SNN processor has been Verilog coded, and it is 
synthesized using Synopsys Design Compiler with 65 nm CMOS 
standard cell library. The netlists are placed and routed using 
Synopsys IC Compiler, and Figure 9 shows the layout of the SNN 
processor and its sub-block module. The processor occupies 
5,156 × 4,900 um2 of area, and it consists of 48 sub-blocks and a 
global controller. Each of sub-block has one synaptic weight 

memory, two banks of membrane voltage memories, eight banks 
of pruned flag memories, one bias memory, and MVU and SFC 
units. Figure 10A shows the area breakdown of the SNN processor. 
Approximately 71% of the area is occupied by the memories storing 
synapse weights, membrane voltages, and bias values. In addition, 
the proposed NPTD incurs 7.3% area overhead to the baseline 
architecture. The previous input-dependent pruning scheme (Sen 
et al., 2017) needs approximately 35% overhead to implement the 
pruning scheme, which mainly consists of memory to store the 
target neuron index of each synapse based on our redesigned 
implementation of (Sen et  al., 2017). On the other hand, the 
proposed NPTD needs the memories only for storing 1-bit flag per 
each neuron instead of the indices of target neurons (Sen et al., 
2017). Therefore, the memory area overhead to implement the 
input-dependent pruning scheme is significantly reduced for the 
proposed NPTD. As presented in Figure 10B, the area overhead for 
skipping computations is around 7.3%.

When processing images from the CIFAR-10 dataset, the 
proposed SNN processor can process 1,531 classification tasks 
(frames) per second by consuming 109.1uJ for each frame. Figure 10C 
shows the energy reductions of the proposed NPTD with the 
CIFAR-10 dataset. Using the proposed neuron pruning scheme, a 
significant portion of membrane update computations are skipped, 
and by skipping the membrane updates of the pruned neurons, the 
SNN processor saves 57% of energy with 0.82% accuracy loss. In 
addition to that, the throughput of the processor increases from 
570fps to 1531fps by the proposed NPTD.

Table 3 shows the comparisons with other SNN processors (Sen 
et al., 2017; Deng et al., 2020; Kuang et al., 2021; Lew et al., 2022). 
The previous input-dependent complexity reduction technique has 
been proposed and implemented in Sen et al. (2017). But, Sen et al. 
(2017) has only reported accuracy losses, but not actual accuracies. 
SNN processors with the flexibility of supporting multi-chip based 
SNN processing have been implemented by Kuang et al. (2021) and 
Deng et al. (2020). While these two processors are designed for 

5156 um
49

00
um Synaptic

Weight

Prunedflag

Me
m

br
an

e
Vo

lta
ge

s

Prunedflag

Bi
asSF

C
MV

U

Controllers

Gl
ob

al
Co

nt
ro

lle
r

Sub-
block

FIGURE 9

The layout of the proposed SNN processor.

https://doi.org/10.3389/fnins.2023.1285914
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Lew et al. 10.3389/fnins.2023.1285914

Frontiers in Neuroscience 12 frontiersin.org

SNNs, but also support a variant of ternary ANN and report 
CIFAR-10 accuracies of ternary ANN. In the case of (Lew et al., 
2022), it is an SNN processor specifically designed for temporal 
SNNs with a single spike per neuron, and it uses external DRAM to 
allow the execution of large SNN models. Thanks to the proposed 

NPTD, the lowest energy per image has been achieved by the 
proposed SNN processor. In Table 3, to compare the processors 
implemented using different process technologies, the normalized 
energy consumptions have been obtained using the following 
equation (Rabaey et al., 2003):
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(A) Area breakdowns of the proposed SNN processor. (B) Area comparison with the previous input-dependent pruning scheme. (C) Normalized energy 
benefits with CIFAR-10 dataset.

TABLE 3 Hardware performance comparison.

Sen et al., 2017 [12] Kuang et al., 2021 [25] Deng et al., 2020 [26] Lew et al., 2022 [27] This work

Technology 45 nm 65 nm 28 nm 28 nm 65 nm

Supply voltage - 1.2 V 0.85 V 0.99 V 1.2 V

Frequency 1 GHz 192 MHz 300 MHz 250 MHz 357 MHz

Area 0.34 mm2 107.22 mm2 14.44 mm2 0.9102 mm2 25.26 mm2

Network model - 8 layers (Ternary ANN) 15 layers (Ternary ANN) VGG-16 (Temporal SNN) 4 layers (Rate SNN)

Accuracy (CIFAR-10) - 85.76% 89.5% 91.7% 87.2%

Inference throughput - 181 fps 46,827 fps 327 fps 1,531 fps

Inference energy 

(Normalized to 

65 nm, 1.2 V)

- - 129 uJ (1,385 uJ) 327 uJ (2,589 uJ) 109.1 uJ

Measurement Pre-layout simulation Chip Chip Pre-layout simulation
Post-layout 

simulation
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The normalized energies show even more difference between this 
work and previous works, which further highlights the energy 
reduction effects of the proposed NPTD.

6 Conclusion

In this work, we  present a neuron pruning in temporal domain 
(NPTD) approach, an input-dependent neuron pruning technique that 
efficiently removes temporal redundancies in the convolutional SNNs. The 
proposed NPTD skips less important neuron operations by identifying 
relatively unimportant neurons, based on the membrane voltage of the 
neurons and pre-decided pruning thresholds. The pruning thresholds are 
also searched using the proposed layer-wise pre-search and greedy best-
first search algorithms. With the proposed neuron pruning schemes and 
pruning search algorithms, a target SOP reduction can be reached with 
good accuracy computation trade-offs. The NPTD has also been 
implemented to the SNN processor using 65 nm CMOS process and the 
processor achieves 57% energy reductions and 2.68 × speed ups, with 
0.82% accuracy loss for CIFAR-10 dataset. The proposed input-dependent 
neuron pruning technique can assist the use of SNNs in edge devices, 
particularly for low energy applications with limited hardware resources.
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