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Chemical exchange saturation transfer (CEST)-magnetic resonance imaging (MRI) 
often takes prolonged saturation duration (Ts) and relaxation delay (Td) to reach 
the steady state, and yet the insufficiently long Ts and Td in actual experiments 
may underestimate the CEST measurement. In this study, we aimed to develop a 
deep learning-based model for quasi-steady-state (QUASS) prediction from non-
steady-state CEST acquired in experiments, therefore overcoming the limitation 
of the CEST effect which needs prolonged saturation time to reach a steady 
state. To support network training, a multi-pool Bloch-McConnell equation 
was designed to derive wide-ranging simulated Z-spectra, so as to solve the 
problem of time and labor consumption in manual annotation work. Following 
this, we  formulated a hybrid architecture of long short-term memory (LSTM)-
Attention to improve the predictive ability. The multilayer perceptron, recurrent 
neural network, LSTM, gated recurrent unit, BiLSTM, and LSTM-Attention were 
included in comparative experiments of QUASS CEST prediction, and the best 
performance was obtained by the proposed LSTM-Attention model. In terms of 
the linear regression analysis, structural similarity index (SSIM), peak signal-to-
noise ratio (PSNR), and mean-square error (MSE), the results of LSTM-Attention 
demonstrate that the coefficient of determination in the linear regression analysis 
was at least R2  =  0.9748 for six different representative frequency offsets, the mean 
values of prediction accuracies in terms of SSIM, PSNR and MSE were 0.9991, 
49.6714, and 1.68  ×  10−4 for all frequency offsets. It was concluded that the LSTM-
Attention model enabled high-quality QUASS CEST prediction.
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1 Introduction

Chemical exchange saturation transfer (CEST)-magnetic resonance imaging (MRI) of 
dilute labile protons that undergo their chemical exchange with the bulk water protons 
enables a specific contrast and provides a promising molecular imaging tool for in vivo 
applications (Zaiss and Bachert, 2013; Xiao et al., 2015; Wu et al., 2016; Jones et al., 2018; 
Zaiss et al., 2022). However, the CEST effect is limited by experimental conditions such as 
the amplitude (Sun et al., 2007; Zhao et al., 2011) and duration of RF saturation (Randtke 
et al., 2014; Zaiss et al., 2018). For some CEST-MRI experiments, the CEST effect needs 
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prolonged saturation duration to achieve quasi-steady-state 
(QUASS). The limitation of maximum RF saturation duration 
underestimates the CEST signal (Zhang et al., 2021), which makes 
it difficult to compare the results between different platforms and 
stations (Sun, 2021; Wu et  al., 2022). So the task for a post-
processing strategy to automatically derive the QUASS CEST effect 
from experimental measurements with limited saturation duration 
needs to be solved today. Particularly, Sun conducted a QUASS 
CEST analysis that compensated the effect of finite saturation 
duration (Ts) and relaxation delay (Td) by solving both the labile 
proton fraction ratio and exchange rate from simulated CEST, 
therefore improving the accuracy of CEST-MRI quantification 
(Sun, 2021). Zhang et al. developed a postprocessing strategy to 
derive the QUASS CEST by modeling the CEST signal evolution as 
a function of Ts and Td, allowing robust CEST quantification 
(Zhang et al., 2021). Kim et al. proposed a QUASS CEST algorithm 
that can minimize dependences on Ts and Td by combining multi-
slice CEST imaging with QUASS processing (Kim et al., 2022).

The application of deep learning to the CEST-MRI has led to a 
large number of technical improvements (Glang et al., 2020; Li 
et  al., 2020; Bie et  al., 2022; Huang et  al., 2022; Perlman et  al., 
2022), including shortcut of the conventional Lorentzian fitting for 
in vivo 3 T CEST data (Glang et al., 2020), prediction of the CEST 
contrasts for Alzheimer’s disease (Huang et al., 2022), identification 
of pertinent Z-spectral features for distinguishing tumor 
aggressiveness (Bie et al., 2022), etc. Therefore, this paper aims to 
employ a deep learning technique to predict QUASS CEST (i.e., 
CEST images on prolonged saturation) by training a network on 
the prior knowledge of simulated CEST Z-spectra. With respect to 
the underlying application domain, the sequence-to-sequence 
(Seq2Seq) network is an intuitive approach, in which the LSTM 
(Yu et al., 2019) and the attention mechanism (Vaswani et al., 2017) 
are stated as excellent methods. LSTM is known to solve the 
vanishing gradient problem when a recurrent neural network 
(RNN) is used to work with the sequence input, while the 
disadvantage of LSTM in the latent decomposition training is 
significant (Shi et al., 2022). For this, some modified versions help 
improve the LSTM performance and were successfully applied to 
medical treatment behavior prediction (Cheng et  al., 2021), 
medical event prediction (Liu et al., 2022), and EEG-based emotion 
recognition (Chakravarthi et  al., 2022). Particularly, a Seq2Seq 
with a multi-head attention mechanism instead of recurrence has 
excelled at tasks of time series, obtaining effective information and 
significant spatiotemporal features from the new coding sequence. 
However, the attention mechanism loses the sequential information 
because the used attention mechanism is position-insensitive 
(Zheng et  al., 2021). The principles of the LSTM network and 
attention mechanism were briefly described in Supplementary File 1. 
Looking at the advantages and disadvantages of both algorithms, 
a hybrid model named LSTM-Attention would be  a perfectly 
natural way. In this LSTM-Attention architecture, the LSTM is 
used to obtain the hidden state of the input features, while the use 
of multi-head attention in the encoder layer is to better learn the 
temporal information (Figure 1). In Figure 1, the input embedding 
is used to capture high-dimensional spatial properties of long time 
series. Because position information is not considered in the 
attention layer, we  add “positional encoding” to the input 

embeddings. To this end, different semantic information from 
different sequence positions is incorporated into an embedding 
tensor, compensating for the lack of position information. The 
LSTM had a hidden state dimensionality of 1,024, the number of 
attention heads is 4.

Motivated by the above, this paper aims to build an LSTM-
Attention-based model for QUASS CEST prediction from non-steady-
state CEST (i.e., CEST images with shorter saturation time) acquired 
in experiments, as shown in Figure  2. Simulated Z-spectra with 
shorter and prolonged saturation time was derived from the designed 
Bloch–McConnell equations (Xiao et al., 2023), respectively. Then 
we used the trained model to predict QUASS CEST from non-steady-
state CEST acquired in experiments.

In summary, this work makes the following two key contributions. 
To tackle the problematic and time-consuming task of obtaining the 
labeled training data from experiments, we built a large-scale training 
set based on simulated Z-spectra derived from the designed Bloch-
McConnell equations. We  formulated an LSTM-Attention-based 
model which is trained on simulated CEST Z-spectra to predict 
QUASS CEST image pixel-by-pixel from non-steady-state CEST 
acquired in explements, where the attention mechanism improves the 
predictive ability of LSTM by paying attention to the input weights 
that contribute more to the output.

FIGURE 1

Structure diagram of LSTM-Attention.
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2 Materials and methods

2.1 In vivo MRI experiments

In this vivo MRI experiment, 8-week-old male SD rats (Beijing 
Vital River Laboratory Animal Technology Co., Ltd.) weighing 
250 g were used to generate a tumor-bearing model. All animal 
care and experimental procedures were performed in accordance 
with the National Research Council Guide for the Care and Use of 
Laboratory Animals. For this assessment, a 10 μL suspension of rat 
glioma C6 cells (approximately 2 × 106 cells) was implanted into 
the right basal ganglia (specific injection position: AP + 1, ML + 3, 
DV-5) of the rats using a Hamilton syringe and a 30-gauge needle. 
Two weeks after the implantation of tumor cells, the rats were 
subjected to MRI.

The CEST-MRI experiment was performed using a 7 T horizontal 
bore small animal MRI scanner (Agilent Technologies, Santa Clara, 
CA, U.S.A.) with a surface coil (Timemedical Technologies, China) for 
transmission and reception. Imaging parameters were as follows: 
repetition time (TR) = 6,000 ms, echo time (TE) = 40 ms, 
array = frequency offsets, slice thickness = 2 mm, field of view 
(FOV) = 64 × 64 mm, matrix size = 64 × 64, spatial 
resolution = 1 × 1 mm, averages = 1. To obtain CEST images, an echo 
planar imaging readout sequence was used, where continuous wave 
(CW) RF irradiation was implemented on scanners. The saturation 
times were 1.5 s and 5 s, respectively, with 101 frequency offsets evenly 
distributed from −6 to 6 ppm relative to the resonance of water.

The CEST images of saturation times 1.5 s acquired in this 
experiment were the inputs of trained networks. The CEST images 

with saturation times 5 s acquired in this experiment were the 
reference, which is used to assess the prediction 
performance by comparing the model’s estimates with the 
experimental data values.

2.2 Training dataset

The training of LSTM-Attention for predicting objects requires a 
large dataset with true pixel-level labels in terms of saturation times, 
which is extremely expensive to construct training data in 
experiments. To address this issue, we simulated CEST signals using 
a 7-pool Bloch–McConnell equation (Xiao et  al., 2023) at both 
non-steady and quasi-steady states. This 7-pool model consists of free 
water centered at 0 ppm, amide centered at 3.5 ppm, guanidyl/amine 
centered at 2.0 ppm, hydroxyl centered at 1.3 ppm, nuclear Overhauser 
enhancement (NOE) centered at-1.6 ppm, magnetization transfer 
(MT) centered at-2.4 ppm, and NOE centered at-3.5 ppm. In detail, 20 
dynamic parameters regarding all possible tissue combinations were 
considered. For each dynamic parameter, random variables from the 
uniform distribution with lower bound and upper bound were 
sampled for the training dataset, so we could generate as much data as 
needed with all possible tissue combinations. The sampled variables 
of each parameter interacting with that of each other generated 
350,000 parameter combinations, thus yielding 350,000 paired 
simulated Z-spectra (see Supplementary Figure S1). The simulated 
Z-spectra with saturation times of 1.5 s and 5 s at 101 offsets in the 
range of ±6 ppm were referred to as the training input and output, 
respectively.

FIGURE 2

Flow chart of LSTM-Attention based model for predicting QUASS CEST. The simulated Z-spectra with short saturation time was referred to the training 
input, and the simulated Z-spectra with prolonged saturation time was the training output. Input Z-spectra from experiments with shorter saturation 
times for each image pixel, we can predict QUASS CEST images by their output Z-spectra of each pixel.

https://doi.org/10.3389/fnins.2023.1281809
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fnins.2023.1281809

Frontiers in Neuroscience 04 frontiersin.org

FIGURE 3

Comparisons of the predicted results with experimentally acquired CEST images at frequency offsets-3.48  ppm, −2.40  ppm, −1.56  ppm, 0.96  ppm, 
2.04  ppm, and 3.48  ppm. The column (A) shows the experimentally acquired CEST image with the saturation time of 1.5  s, the column (B) shows the 
experimentally acquired CEST image with the saturation time of 5  s (reference), the columns (C–H) denote the prediction results obtained by MLP, 
RNN, LSTM, GRU, BiLSTM and LSTM-Attention, respectively.

2.3 Evaluation metrics and workstation

Linear regression analysis (Li et al., 2020) was first applied to 
evaluate the proposed model at frequency offsets-3.48 ppm, 
−2.40 ppm, −1.56 ppm, 1.32 ppm, 2.04 ppm, and 3.48 ppm. To evaluate 
the proposed model in the prediction of CEST image at each frequency 
offset, the prediction performance was evaluated by three measures: 
the structural similarity index (SSIM), the peak signal-to-noise ratio 
(PSNR) (Hore and Ziou, 2010), and mean squared error (MSE).

The workstation used in this study is a Lenovo ST558 workstation 
with 32 G memory, a dual-core CPU10 core, and a 2.4 G main 
operating frequency. The experiments are based on PyTorch, and the 
number of epochs is 100. The number of batch size is 256. The 
optimizer is Adam, and the learning rate is 0.0001. We initialize the 
weights using samples from a uniform distribution, and use MSE-Loss 
as the loss function.

3 Results

To validate the proposed model, prediction images were compared 
with the reference from experimental measurements. We applied the 

trained neural networks to predict the CEST images with a saturation 
time of 5 s from experimentally acquired CEST images with a 
saturation time of 1.5 s. For comparison, the LSTM-Attention 
presented comparable performance to that of five popular existing 
networks: the multilayer perceptron (MLP) (Xu et al., 2018), recurrent 
neural network (RNN) (Xu et al., 2018), long short-term memory 
(LSTM) (Yu et al., 2019), gated recurrent unit (GRU) (Xu et al., 2018), 
and BiLSTM (Siami-Namini et al., 2019).

We first conducted an experiment to predict CEST images at 
frequency offsets-3.48 ppm, −2.40 ppm, −1.56 ppm, 1.32 ppm, 
2.04 ppm, and 3.48 ppm, as shown in Figure  3. The region of the 
pseudo color image overlaid on the anatomy image was the region of 
interest (ROI). The results obtained from the considered networks 
were almost equivalent to those obtained experimentally by the 
subjective vision.

Furthermore, we carried out a comparison experiment in terms 
of the absolute error modulus between reference and prediction, as 
illustrated in Figure 4. In this figure, row-plots indicated the absolute 
error modulus at frequency offsets −3.48 ppm, −2.40 ppm, −1.56 ppm, 
1.32 ppm, 2.04 ppm, and 3.48 ppm; columns (A–F) were the absolute 
error modulus from MLP, RNN, LSTM, GRU, BiLSTM and LSTM-
Attention, respectively; the plot (G) denoted the mean values of 
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absolute error modulus at frequency offsets −3.48 ppm, −2.40 ppm, 
−1.56 ppm, 1.32 ppm, 2.04 ppm and 3.48 ppm that obtained by 
considered methods. The results of Figure 4G reveal that the mean 
values of absolute error modulus obtained from the proposed LSTM-
Attention model are smaller than those of other networks at these 
frequency offsets, while there is a difference of one order of magnitude 

between the LSTM-Attention and its counterparts at frequency 
offsets-3.48 ppm, −2.40 ppm, −1.56 ppm, 2.04 ppm, and 3.48 ppm. In 
other words, the CEST image at these frequency offsets obtained by 
the trained LSTM-Attention showed a higher degree of agreement 
with those obtained by the experimental measurements as 
the standard.

FIGURE 4

The absolute error modulus between the predicted images and the experimentally acquired CEST images at frequency offsets-3.48  ppm, −2.28  ppm, 
−1.56  ppm, 1.32  ppm, 2.04  ppm, and 3.48  ppm. The columns (A–F) are the results from MLP, RNN, LSTM, GRU, BiLSTM and LSTM-Attention, 
respectively; the plot (G) denotes the mean values of absolute error modulus obtained by considered six networks.
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An example of the predicted Z-spectra by LSTM-Attention for 
white matter, gray matter, and tumor is shown in Figure 5, which 
consistently provided satisfactory results.

Figure 6 quantitatively demonstrates the considered networks for 
predicting the in vivo CEST signal by plotting the linear regression 
lines and scatter diagrams between the reference and the prediction. 
In this figure, row-plots were the results at frequency offsets 
−3.48 ppm, −2.40 ppm, −1.56 ppm, 1.32 ppm, 2.04 ppm, and 3.48 ppm; 
columns (A–F) denoted the results from MLP, RNN, LSTM, GRU, 
BiLSTM and LSTM-Attention, respectively; the plot (G) denoted the 
coefficient of determination at frequency offsets −3.48 ppm, 
−2.40 ppm, −1.56 ppm, 1.32 ppm, 2.04 ppm, and 3.48 ppm that 
obtained by considered methods. The pixel values correspond to the 
points of the ROI in Figures 3, 4. For each plot, the fitting curve was 
denoted by the blue line and the green line was the 45-degree diagonal. 
The excellent performance of our prediction was confirmed by the 
scatter and linear regression lines, resulting in a very high coefficient 
of determination (R2 ≥ 0.9748) at these frequency offsets.

To set up a comprehensive way to evaluate the performance of the 
prediction models, the SSIM and PSNR from the reference and the 
prediction at each offset (−6 ~ 6 ppm) are considered, as displayed in 
Figure  7. In terms of SSIM, the LSTM-Attention exhibits good 
accuracies at each offset (−6 ~ 6 ppm) and presents results close to 
those of LSTM at-5.04 and 0.96 ppm, while it exceeds the performance 
of other networks in the ranges (−6 ~ −5.16 ppm), (−4.92 ~ −0.72 ppm) 
and (1.08 ~ 4.68 ppm). Similar results are obtained by LSTM-Attention 
in terms of PSNR. Clearly, our model exhibits competitive results for 
these two metrics based on different criteria, providing a mean SSIM 
value of 0.9991 and a mean PSNR value of 49.6714, respectively. 
Figure 8 displays the MSE obtained by considered networks for all 

frequency offsets, and the best result of mean MSE 1.68 × 10−4 is 
obtained by the LSTM-Attention network.

4 Discussions

To some extent, we  developed a general deep learning-based 
approach to predict QUASS CEST using experimentally acquired CEST 
images with shorter saturation times, since the performances of MLP 
and five existing Seq2Seq networks are also evaluated in this study. As 
the results show, the LSTM-Attention network outperforms the MLP, 
RNN, LSTM, GRU, and BiLSTM (Figure 7). It is clear that LSTM-
Attention is able to capture the underlying context better by paying 
attention to the input weights that contribute more to the output. The 
better performance of LSTM-Attention compared to its counterparts is 
understandable for certain types of data such as specific chemical 
groups in the downfield and MT/NOE in the upfield (Figures 4, 6).

In fact, the Z-spectra of a pixel typically behaves short-and long-
range dependencies along the frequency offsets (see 
Supplementary Figure S2). The LSTM-Attention is consistently the 
best model followed by MLP, RNN, LSTM, GRU, and BiLSTM for 
capturing the short-and long-range behavior. In the simplest form, 
fully RNN is an MLP with the previous set of hidden unit activations 
feeding back into the network along with the inputs (Roy et al., 2019). 
Additionally, the LSTM, GRU, BiLSTM, and LSTM-Attention are able 
to overcome RNN’s vanishing gradient problem which happens when 
RNN learns long-range dependencies of inputs (Yang et al., 2022). 
Therefore, the ability of short-and long-range interaction in these 
considered networks performs similarly, as the results above. 
Particularly, the LSTM-Attention augments the non-linear processing 

FIGURE 5

Comparison between the predicted Z-spectra of LSTM-Attention and the experimentally acquired results at one randomly chosen pixel of (A) gray 
matter, (B) white matter and (C) tumor, respectively.
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capability in QUASS CEST prediction by taking advantage of the 
known, observed, and static covariate factors.

In practice, training a deep neural network to predict QUASS 
CEST requires massive samples with ground-truth annotations, 
which is extremely expensive to construct experimentally. To solve 
this problem, we built an automatically labeled dataset based on 
the Bloch–McConnell equations. Briefly, we  considered all the 
possible parameters of the equations when generating the trained 
samples. For each dynamic parameter, a wide range of random 
values was sampled in a uniform distribution with its lower and 
upper bounds, automatically yielding a large set of labeled 
training data.

Further studies would be beneficial for QUASS CEST applications 
at low-field MRI where short saturation time is needed. It could 
be useful to investigate other less visible CEST effects (such as guanidyl 
or amine) in clinical MRI scanners.

5 Conclusion

In summary, we addressed the QUASS CEST predicting problem 
in learning systems and proposed a data-driven predicting scheme 
that benefits from our strategy to reduce the effect of finite RF 
saturation duration on the CEST measurement. The experiment study 

FIGURE 6

Linear regression analysis of the prediction and reference at frequency offsets-3.48, −2.40, −1.56, 1.32, 2.04, 3.48 ppm. The columns (A–F) are the 
results from MLP, RNN, LSTM, GRU, BiLSTM and LSTM-Attention, respectively; the plot (G) denotes the coefficient of determination (R2) between the 
prediction and reference. For the columns (A–F) at each offset, the locations of the red markers are specified by the vectors x and y, where x is the 
pixel values of the experimentally acquired CEST image with the saturation time 5 s (reference) and y is the pixel values of predicted CEST images 
with a saturation time 5 s; the blue line is the linear regression fitting based on the red scatter points of prediction versus reference, the green line 
indicates the 45-degree diagonal.
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FIGURE 7

The SSIM and PSNR obtained from the reference and the prediction at each offset (−6  ~  6  ppm).

compared the proposed model with other approaches, and the 
effectiveness and superiority of the LSTM-Attention model were 
validated. This research can be further expanded to predict problems 
for available clinical MRI scanners.
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