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Introduction: In recent years, more and more attention has been paid to the 
visual fatigue caused by steady state visual evoked potential (SSVEP) paradigm. 
It is well known that the large-scale application of brain-computer interface is 
closely related to SSVEP, and the fatigue caused by SSVEP paradigm leads to the 
reduction of application effect. At present, the mainstream method of objectively 
quantifying visual fatigue in SSVEP paradigm is based on traditional canonical 
correlation analysis (CCA).

Methods: In this paper, we  propose a new SSVEP paradigm visual fatigue 
quantification algorithm based on underdamped second-order stochastic 
resonance (USSR) to accurately quantify visual fatigue caused by SSVEP paradigm 
in different working modes using single-channel electroencephalogram (EEG) 
signals. This scheme uses the fixed-step energy parameter optimization algorithm 
we designed, combined with the USSR model, to significantly improve the signal-
to-noise ratio of the processed signal at the target characteristic frequency. 
We not only compared the new algorithm with CCA, but also with the traditional 
subjective quantitative visual fatigue gold standard Likert fatigue scale.

Results: There was no significant difference (p  =  0.090) between the quantitative 
value of paradigm fatigue obtained by the single channel SSVEP processed by the 
new algorithm and the gold standard of subjective fatigue quantification, while 
there was a significant difference (p  <  0.001***) between the quantitative value of 
paradigm fatigue obtained by the traditional multi-channel CCA algorithm and 
the gold standard of subjective fatigue quantification.

Discussion: The conclusion shows that the quantization value obtained by the 
new algorithm can better match the subjective gold standard score, which also 
shows that the new algorithm is more reliable, which reflects the superiority of 
the new algorithm.
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1 Introduction

Brain-computer interface has now become a hot direction. One of 
the main directions of brain-computer interface is to allow patients to 
communicate with the outside world through paradigm stimulation, 
using only the head, such as brain-computer spelling (Han et  al., 
2018), brain-controlled wheelchair (Diez et al., 2013) applications, etc. 
The paradigm used in these applications is the SSVEP paradigm, but 
in actual use, the SSVEP paradigm will cause obvious visual fatigue, 
which will reduce the information transfer rate, thereby reducing the 
use effect of the application, and even cause serious consequences such 
as reading errors (Cao et al., 2014; Zhao et al., 2021; Zhu et al., 2021; 
Zhang et al., 2022). At the same time, epidemiological studies have 
shown that as many as 90% of digital display users have varying 
degrees of visual fatigue (Coles-Brennan et  al., 2019). Therefore, 
fatigue detection based on SSVEP paradigm is particularly important. 
Traditional visual fatigue detection includes subjective fatigue scale 
detection (Guo et al., 2021), subjective and objective [eye movement 
(Xie et al., 2021) and EEG (Lee et al., 2021)] combined visual fatigue 
detection, etc. In recent years, as visual fatigue is closely related to 
brain state, relevant studies have also pointed out that measuring brain 
state can also evaluate visual fatigue to a certain extent (Li et al., 2017, 
2023; Li W.-K. et al., 2022). Here, nonlinear algorithms are widely used 
(Li R. et al., 2022), which also provides ideas for the algorithm in 
this paper.

Many previous visual fatigue assessment methods are based on 
subjective fatigue scales. In many cases, the scores of these subjective 
scales are regarded as the ‘gold standard’ (Heuer et al., 1989; Hayes et al., 
2007). From an objective point of view, the existing fatigue quantitative 
methods, such as critical flicker frequency (Benedetto et al., 2013; Liu 
et al., 2021), EEG (Lee et al., 2021), and eye movement (Feng and Chen, 
2021; Sugimoto et al., 2022), have a certain effect. Among them, CCA is 
often used to qualitatively or quantitatively analyze the fatigue of EEG 
signals. CCA is a multivariate statistical analysis method, which uses the 
correlation between variable pairs to reflect the overall correlation 
between the two groups of indicators. In order to grasp the correlation 
between the two sets of indicators as a whole, two linear projection vectors 
(a linear combination of each indicator in the two groups) were extracted 
from the two sets of indicators, and the correlation between the two 
vectors was used to reflect the total correlation between the two sets of 
indicators. At present, the commonly used indicators for quantitative 
analysis of visual fatigue in EEG are the amplitude of CCA, the signal-to-
noise ratio of CCA, and the energy band of CCA (Xie et al., 2016; Zheng 
et al., 2020). Not only for the SSVEP paradigm, in the objective detection 
of various types of visual fatigue, researchers use the test data to perform 
some simple and objective quantitative analysis of visual fatigue. However, 
due to the lack of recognized objective gold standards and related 
evaluation indicators in academia, these quantitative analyzes lack 
comparability, and it is difficult for researchers to compare the advantages 
and disadvantages of these quantitative methods (Bier et  al., 2020; 
Hamedani et al., 2020; Hu and Lodewijks, 2020; Zheng et al., 2020; Ali 
et al., 2021; Graves et al., 2022). It is found that the existing objective 
quantification of visual fatigue is often very small and cannot match the 
subjective scale score better. Meanwhile, the existing CCA algorithm is 
aimed at multi-channel EEG data, but now the industry urgently needs 
fatigue assessment for single-channel EEG, such as fatigue driving test 
which is mainly because single-channel detection is low in cost, easy to 
operate, and easy to popularize (Wang Y. Q. et al., 2022). However, single-
channel data are often not obvious enough (Ogino et al., 2019) and need 

to be  strengthened. Therefore, the algorithm in this paper has two 
purposes. One is to process only the single-channel SSVEP signal from 
the perspective of cost saving, the other is to improve the signal-to-noise 
ratio of the processed signal from the perspective of improving energy 
utilization, so as to improve the accuracy of objective quantification of 
SSVEP paradigm fatigue. It not only makes the degree of objective 
quantification more consistent with the subjective scale score, but also 
makes the objective quantitative results more convincing, and better 
reflects the degree of visual fatigue of the subjects from an objective point 
of view, which is helpful to formulate the ‘gold standard’ of objective visual 
fatigue. In summary, this paper proposes a new evaluation model for 
detecting and quantitatively analyzing single-channel EEG signals based 
on underdamped second-order stochastic resonance noise enhancement 
for visual fatigue caused by SSVEP paradigm.

The nonlinear system comprises second-order stochastic 
differential equations is called the underdamped second-order 
stochastic resonance model. When the damping is small, the output 
signal has a large random fluctuation. At this time, the random 
interference of noise plays a leading role, and the burr of the signal is 
large. With the increase of damping, the fluctuation component in the 
output signal is gradually squeezed, and the response of the system is 
enhanced. However, exorbitant damping will make the system output 
state incapable to keep up with the response speed of the input signal 
during the transfer process. At the same time, the amplitude of the 
noise and the driving signal is also greatly filtered out, resulting in 
distortion of the output signal. Therefore, for different input signals, 
there will be  an optimal damping coefficient, which makes the 
underdamped second-order stochastic resonance system have the best 
filtering effect (Yao et  al., 2019). The EEG signal of the light 
scintillation paradigm will respond at the characteristic frequency and 
multiple harmonic frequencies (Liu et  al., 2022). However, if 
researchers want to evaluate visual fatigue, multiple responses will 
interfere with the analysis results. Therefore, in order to improve 
recognition accuracy, it is necessary to study a feature frequency 
extraction technique that uses noise energy to highlight useful 
information. Underdamped second-order stochastic resonance uses 
noise energy to enhance weak signals and suppress noise without 
damaging useful signals. Its output frequency response is amount to a 
set of nonlinear band-pass filters, which is suitable for 
extracting SSVEP.

Next, the second part of the article details the visual fatigue 
quantitative assessment algorithm we use. The third part introduces 
the source of the analog model and the real model and uses the model 
to verify and compare the algorithm. The fourth part discusses the 
advantages and limitations of several algorithms and possible future 
improvements. The fifth part summarizes the performance of USSR.

2 Materials and methods

2.1 Quantization algorithm

2.1.1 Fixed step size energy visual fatigue 
quantification algorithm based on underdamped 
second-order stochastic resonance

The brain produces fatigue after a period of activity, which is 
reflected in the decrease of EEG response amplitude induced by 
SSVEP paradigm (Zheng et  al., 2020). Therefore, objective 
quantification of visual fatigue can start from this aspect. The 
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traditional CCA can quantify visual fatigue to a certain extent, but due 
to noise interference caused by power frequency artifacts, electrode 
drift, etc., the energy available for visual fatigue assessment is weak 
and the signal-to-noise ratio is low. The new fatigue algorithm 
proposed in this paper is based on stochastic resonance. Stochastic 
resonance enhances weak signals and suppresses noise through noise 
resonance, improves signal-to-noise ratio, makes the signal more 
effective, and is more conducive to objectively quantifying 
visual fatigue.

The innovative precise quantization algorithm of visual fatigue in 
this paper is an evaluation model for single-channel EEG signals 
designed by combining the fixed step-energy parameter optimization 
algorithm with the underdamped second-order stochastic 
resonance model.

The differential equations corresponding to the underdamped 
second-order stochastic resonance model are as follows:
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In the formula: x  denotes the signal to be processed; a b> >0 0,  
are system parameters; 0 1< <²  indicates the damping factor; 
s t Acos( ) = +( )2π ϕft  is the input periodic excitation signal; µ t( ) 
represents Gaussian white noise. To bring the expression s t( ) into the 
above expression is:
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In the model designed in this paper, 
a b A f Hz t= = = = = ( )1 1 1 0 05 0, , , . , ,ϕ ε  is white noise with a noise 
intensity of 2, and β is the damping factor. The step size parameter h 
is set to determine the compressed sampling frequency according to 
the sampling frequency and a certain compression ratio before adding 
the data to the stochastic resonance model. This compressed sampling 
frequency is the reciprocal of the step size parameter h. Although step 
size parameter h is not in Formula (2), for the underdamped second-
order stochastic resonance, the equivalent center frequency and 
bandwidth of the output frequency response are also approximately 
positively correlated with the step size h of the numerical calculation. 
The step size of the numerical calculation determines the passband 
range of the stochastic resonance model. Therefore, when using 
stochastic resonance to extract the response amplitude of SSVEP at 
the characteristic frequency, it is necessary to combine the frequency 
range of the analysis signal to select the best step size parameter h to 
achieve better stochastic resonance effect. In this algorithm, according 
to experience and the definition of compression sampling frequency 
and damping factor, the step size parameter h range is set to 1/35–1/3, 
and the damping factor β range is set to 0.05–0.85.

The quantitative model of underdamped second-order stochastic 
resonance will produce different resonance results due to different step 
parameters and damping coefficients. These results are the data after 
enhancing the wanted signal and weakening the noise. In these data, 

it will be  screened again, and the signal that is most accurate for 
quantifying visual fatigue is selected from all the signals that meet the 
resonance optimization results. Finally, following the analysis of 
paradigm visual fatigue by CCA algorithm (Zheng et al., 2020), the 
amplitude of the signal processed by this algorithm at the characteristic 
frequency is defined as the paradigm visual fatigue quantitative value 
of the subject in this specific state.

2.1.2 Flow chart of the innovative algorithm
As shown in Figure 1 is the flow chart of the entire visual fatigue 

accurate quantification algorithm, explained as follows: At the 
beginning of the process, the precise quantization algorithm first 
pre-processes the obtained single-channel EEG signals and groups 
them according to the fatigue level. Then, according to the step size 
parameters (1/35,1/34,...,1/3) and damping coefficient (0.05,0.45,0.85) 
within a certain range set in advance, the obtained signals are 
processed, and the obtained 99 sets of stochastic resonance results are 
screened. Firstly, since the stochastic resonance response amplitude is 
mapped in the range of 0 to 1,000, it is judged whether there is a group 
with the largest amplitude (=1,000) at the characteristic frequency. If 
several groups meet the conditions, the group with the smallest 
average power in these groups is further screened. This group of 
results is the required group and goes back to the previous step. If all 
groups do not meet the condition that the amplitude at the 
characteristic frequency is the largest (=1,000), the group with the 
relative maximum value of the stochastic resonance coefficient at the 
characteristic frequency of these groups is selected as the required 
group. At this time, the only required group is obtained, and the 
stochastic resonance coefficient at the characteristic frequency of the 
group is recorded as the visual fatigue quantification value of the 
subject in a fatigue state defined by this algorithm, and the 
process ends.

2.1.3 Quantitative algorithm of visual fatigue 
based on canonical correlation analysis 
parameters

CCA is different from the stochastic resonance processing 
algorithm only for single-channel EEG signals. It is a general algorithm 
for the multi-channel measurement of EEG indicators. CCA uses the 
correlation between each channel data to analyze the overall data and 
then judges the characteristics of EEG signals in this state.

2.1.4 Statistical method
Statistical analyzes were carried out using SPSS 22.0 (IBM, 

Armonk, United  States). The Pearson correlation test with a 
significance of p < 0.05 was employed to evaluate the Pearson 
correlation and significance of different indicators. Kolmogorov–
Smirnov test was used to test whether the model obeys the normal 
distribution. Levene test with a significance of p < 0.05 was employed 
to evaluate the Homogeneity of variances of the relative indices. 
Kruskal-Wallis H-test with a significance of p < 0.05 was employed 
to test the statistics. Pairwise comparison with a significance of 
p < 0.05 was employed to compare the differences between several 
paired indicators. Besides that, the box diagram of the comparisons 
of five quantitative methods of visual fatigue in details is also 
analyzed and drawn by Origin 2018 (OriginLab, Northampton, 
United States).
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3 Results

In this section, in order to verify whether the USSR can 
reduce the energy spillover at the characteristic frequency and 
improve the signal-to-noise ratio, the USSR is first tested on the 
analog signal model of sinusoidal signal superimposed with white 
noise, and its performance is compared with the original CCA 
method. Then, the USSR was applied to the real EEG recording 
in the SSVEP experiment to evaluate the performance of the 
method in detecting the degree of attention change of 
the participants.

3.1 Analysis of analog signal model

Since the existing fatigue detection algorithm for SSVEP paradigm 
is CCA, the difference between the proposed algorithm USSR and 
CCA in processing signals is compared. In order to verify, a signal 
superimposed by sinusoidal signal and white noise is simulated firstly, 
and then the results of using USSR and CCA are compared, 
respectively.

3.1.1 Settings of analog signal model
The first step is signal generation.

 

y f t f t
f t

1 10 2 1 5 2 2 2 5

2 3 1 25

= ∗ ∗ ∗ ∗( ) + ∗ ∗ ∗ ∗( ) + ∗
∗ ∗ ∗( ) +
sin sin . sin

.

Π Π
Π ∗∗ ∗ ∗ ∗( )sin 2 4Π f t  (3)

 
y A t2 = ∗ ( )η

 c

 y y y= +1 2  (5)

In the above formulas, f 1 = 7.5 Hz, f 2 = 15 Hz, f 3 = 22.5 Hz, f 4 
= 30 Hz, f 1 represents the main frequency component, f 2, f 3, f 4 
represents the harmonic frequency component. A = 1，η t( )  is a 
random variable obeying Gaussian distribution with mean value of 0 
and variance of 1.

3.1.2 Comparison between USSR and CCA
From Figure 2, it can be seen that CCA can effectively identify the 

four frequency components. According to previous research papers, 
the fatigue quantification exploration of SSVEP paradigm is based on 
the energy at the feature frequency of the paradigm. However, from 
USSR analysis, it can be seen that its energy mainly converges at the 
main frequency (feature frequency). In the experimental analysis only 
for the main frequency, USSR can effectively improve the 

FIGURE 1

Flow chart of the innovative algorithm.
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signal-to-noise ratio, which is more conducive to the study of the 
changes in the attention of the subjects in the SSVEP experiment, so 
as to explore the changes in the visual perception of the subjects.

3.2 Analysis of real model

Figure  3 is a schematic diagram of the whole real EEG 
experimental model. It can be seen that the experiment consists of two 
parts: subjective quantification and objective quantification. 
According to the order, there was a subjective Likert scale 
measurement before the experiment, as the fatigue state value before 
the experiment in the subjective detection. Then the EEG experiment 
was started. The experimental stimulation paradigm consisted of 12 

different modes of SSVEP paradigm, and there were 20 trials in each 
mode. Take n trials as fatigue state 1, and m trials as fatigue state 4 as 
Figure 1 explains. When the proposed algorithm applied to the real 
model, n represents 1 to 5 trials, and m represents 16 to 20 trials. The 
first five trials and the last five trials were used as the fatigue state 
values before and after the experiment in the objective detection. After 
the paradigm stimulation, a subjective scale measurement was 
performed again as the fatigue state value after the experiment in the 
subjective detection.

3.2.1 Subjects of real model
All the experiment data is from the database of an existing paper 

(Tian et al., 2022) which we have obtained approval to use it. A total 
of 15 subjects were recruited, aged 26 ± 0.55 years old, without eye 

FIGURE 2

Generation of analog signals and comparison after CCA and USSR processing.

FIGURE 3

Experimental flowchart of a real model.
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diseases, and all subjects had uncorrected visual acuity or corrected 
visual acuity above 1.0. Before the experiment, sufficient sleep and no 
drinking were ensured. All subjects were given informed consent 
according to the Helsinki Declaration and approved by the 
institutional review committee of Xi’an Jiaotong University.

3.2.2 Experimental settings of real model
In a pure black indoor environment, the brightness percentage of 

the display screen was set to 0, 50, and 100%, and the color of the light 
flicker stimulation paradigm used to induce SSVEP was set to black, 
red, green, and blue. Therefore, there are total 12 different paradigm 
environments as shown in Table 1. The aim of setting 12 different 
modes is to investigate whether the quantitative indicators of visual 
fatigue involved in the manuscript are consistent under 
different modes.

For visual fatigue detection, according to the international 10–20 
system, the electrodes were assigned to the occipital region, in PO3, 
PO4, POz, O1, O2, and Oz, respectively. There were a total of 12 
groups of experiments. Subjects in each group were allowed to rest 
until fatigue was relieved. This time was controlled by themselves. To 
avoid other interference, the time was arranged from 8 p.m. to 10 p.m. 
According to the literature of others (Zheng et al., 2020), there were 
20 paradigm stimuli in each group, and the paradigm flicker frequency 
was 7.5 Hz. Before each stimulation, the prompt was 0.5 s, the 
stimulation lasted for 4.0 s, and the rest was 0.5 s after the stimulation. 
The participants randomly selected the experimental order of the 12 
groups to prevent the effect of fixed order on the detection. The 
sampling rate of g.tec (for EEG acquisition and processing) and Tobii 
Pro-fusion (for pupil information acquisition and processing) are 
1,200 Hz and 120 Hz, respectively. Before the algorithm analyzes the 
data, an online band-pass filter with a bandwidth of 2–100 Hz and an 
offline notch filter with a bandwidth of 48–52 Hz are used to eliminate 
artifacts and power line interference, respectively.

3.2.3 Comparison between USSR and CCA
Firstly, the difference between the USSR algorithm proposed in 

this paper and the traditional CCA algorithm in the objective 
quantification of visual fatigue EEG is compared. The data source 
of CCA and USSR are the six-channel EEG data and the 

single-channel (Oz) EEG data of the second experiment of subject 
9, respectively. The traditional CCA is a multi-channel algorithm, 
and the algorithm in this paper is a single-channel algorithm, 
because from the perspective of this paper, the traditional multi-
channel algorithm is to improve the signal-to-noise ratio. The new 
algorithm in this paper can not only achieve this purpose from a 
single channel, but also take into account the advantages of easy 
arrangement and low cost of a single channel. The six channels 
arranged in the experiment can be  used alone. In this model, 
we selected a representative channel Oz for analysis. As can be seen 
from Figure  4, since the paradigm used is an internationally 
accepted light scintillation paradigm, it is convenient for other 
researchers to reproduce, but the light scintillation paradigm will 
induce frequency doubling characteristics other than the 
characteristic frequency. Using CCA analysis, it can be seen that in 
addition to the response at the characteristic frequency (7.5 Hz), 
there are strong responses at the second harmonic (15 Hz), the third 
harmonic (22.5 Hz), the fourth harmonic (30 Hz), and the fifth 
harmonic (37.5 Hz). The USSR analysis shows that there is only a 
strong response at the characteristic frequency (7.5 Hz).

In the objective quantification of visual fatigue, the response value 
at the characteristic frequency is used as the quantitative value of 
visual fatigue (Zheng et al., 2020). Due to the instability of the multi-
frequency response, the response at the multi-frequency will cause 
energy overflow and waste in the CCA analysis, which will also affect 
the accuracy of visual fatigue quantification to a certain extent. 
Therefore, it is urgent to stabilize the EEG response at the characteristic 
frequency and minimize the energy overflow. The USSR algorithm 
proposed in this paper satisfies this requirement well. Using the 
response value at the characteristic frequency obtained by USSR 
analysis as the visual fatigue quantization value can greatly ensure the 
quantization accuracy and improve the objectivity and accuracy of 
visual fatigue quantization based on EEG.

Figures 5, 6 are the comparison box diagram of five quantitative 
visual fatigue methods, of which golden standard (GS) is a subjective 
method and the other four are objective methods. The GS here refers 
to the gold standard, that is, the most subjective scoring method used 
by the academic community to evaluate visual fatigue. GS is evaluated 
by the Likert scale. We score the subjects before and after each group 
of experiments. The pre-experiment scoring is to confirm that the 
subjects have rested well so that the next group of experiments can 
be carried out. If any of the scores before the experiment is not 1 (the 
easiest), we will let the subjects continue to rest their eyes until all 
items are scored 1, which also explains from the side why the GS-C in 
Figures 5, 6 are the same and the mean value is normalized to 0. The 
post-test scoring is to obtain the corresponding score of their visual 
fatigue degree from a subjective point of view, which is also one of the 
most mainstream methods in the academic community. Therefore, 
this paper takes the subjectively obtained visual fatigue assessment 
score as the gold standard for subsequent comparison and analysis. 
The Likert scale used in this experiment has been placed in the 
Supplementary materials.

After subtracting and dimensionless the quantization values of all 
algorithms in the consciousness states (-C) and fatigue states (-F), 
we obtained the following data results, which can also be seen from 
Figure 5 that among the four objective quantitative methods, only the 
quantitative method based on USSR (0.49 ± 0.25) is the closest to the 
GS (1.59 ± 0.62), and it is also superior to the other three CCA-based 

TABLE 1 Twelve modes based on SSVEP paradigm.

Paradigm Detailed settings

1 0% brightness – Green light flicker

2 0% brightness – Blue light flicker

3 0% brightness – Red light flicker

4 0% brightness – Black light flicker

5 50% brightness – Black light flicker

6 50% brightness – Blue light flicker

7 50% brightness – Green light flicker

8 50% brightness – Red light flicker

9 100% brightness – Blue light flicker

10 100% brightness – Black light flicker

11 100% brightness – Red light flicker

12 100% brightness – Green light flicker
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quantitative methods [CCA-A (0.03 ± 0.10), CCA-SNR (−0.01 ± 0.24), 
CCA-Band (0.08 ± 0.11)].

3.2.4 Statistical test of five algorithms
The Pearson correlation test is carried out on the normalized 

fatigue difference obtained by the five algorithms.
It can be seen from Table 2 that the significance of the algorithm 

proposed in this paper (USSR) and the GS is less than 0.01, indicating 

that there is a linear relationship. Then the correlation coefficient is 
0.724, which is between 0.5 and 0.8, showing that there is a medium 
correlation between USSR and GS. The significances of the other three 
common algorithms (CCA-A, CCA-SNR, CCA-Band) and the GS are 
all greater than 0.05, indicating that the other three CCA related 
algorithms have no linear relationship with the GS. Further, the 
correlation coefficients between them are all less than 0.3, indicating 
that they are not correlated. It also further shows that USSR is more 

FIGURE 4

Difference between USSR and CCA in visual fatigue quantification based on EEG comparison.

FIGURE 5

The average performance of 15 subjects in 5 visual fatigue quantification methods under 12 different paradigm environments. -C means consciousness 
state, -F means fatigue state.
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related to the GS than the other three common CCA algorithms in 
terms of fatigue difference.

Next, in order to further analyze the difference of the quantitative 
results of the five different algorithms in the two states of consciousness 
and fatigue, we  dimensionless the fatigue increment of the five 
algorithms in the two states. The formula is as follows:

 
FI =

−
×

AQV at F AQV at C
AQV at C

100%

 (6)

Where FI denotes Fatigue increment, AQV represents 
algorithm quantification value, C means under consciousness 
state, F means under fatigue state. After obtaining the 
dimensionless fatigue increment of the five algorithms, the 
following analysis is performed.

Firstly, the Kolmogorov–Smirnov test is used to confirm the 
normality of the results of FI of the five visual fatigue algorithms. The 
results are as follows (Table 3).

It can be seen that the five sets of data conform to the normal 
distribution, next, the homogeneity of variance is tested by the Levene 
test (Table 4).

The results show that the variance of the five groups of 
experimental data is uneven. Therefore, non-parametric methods are 

FIGURE 6

Comparison of five quantitative methods of visual fatigue in details. -C means consciousness state, -F means fatigue state.

TABLE 2 Pearson correlation test.

USSR CCA-A CCA-
SNR

CCA-
Band

GS Pearson 

correlation

0.724** 0.247 0.269 0.118

Significance 

(bilateral)

0.002 0.374 0.333 0.676

N 15 15 15 15

**p < 0.01.

https://doi.org/10.3389/fnins.2023.1278652
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Tian et al. 10.3389/fnins.2023.1278652

Frontiers in Neuroscience 09 frontiersin.org

used for statistical testing. Since it is a comparison of multiple sets of 
data, Kruskal-Wallis H-test is used (Table 5).

The above results indicate that the overall mean of each group is 
not equal, and pairwise comparison is required,

It can be seen from Table 6 that the three visual fatigue indicators 
related to CCA are significantly different from the results of the new 
algorithm (USSR) and the traditional subjective visual fatigue 
detection method (GS), and there is no significant difference between 
USSR and GS. This shows that the results of the three CCA-related 
fatigue algorithms are very different from the subjective GS results. 
However, from the perspective of objective quantification of EEG for 
visual fatigue, USSR can be well consistent with the subjective GS 
scores. This also proves that the objective quantification algorithm of 
visual fatigue proposed in this paper can well reflect the results 
consistent with the traditional subjective detection, and the accuracy 
of the data is better than the traditional CCA-based objective 
quantification algorithm of visual fatigue.

4 Discussion

4.1 Advantages

It can be seen from the results that the visual fatigue assessment 
model induced by SSVEP paradigm based on the combination of 
SSVEP-based fixed-step energy parameter optimization and 
underdamped second-order stochastic resonance can improve the 
signal-to-noise ratio of EEG signals that objectively quantify visual 
fatigue, so as to more accurately reflect objective visual fatigue. There 
is a big difference between the quantitative degree of the traditional 
subjective method and the objective method. Therefore, compared 
with the traditional subjective method, the credibility of the current 
mainstream objective methods such as CCA is not strong. Compared 
with the traditional subjective and objective quantitative methods, the 
algorithm in this paper can better match the subjective fatigue degree 
of the subjects. There is no significant difference between the 
quantitative results and the visual fatigue degree of the subjective gold 
standard of the subjects, so it has stronger credibility. Through this 
quantitative model, we can express visual fatigue more intuitively 
and clearly.

At the same time, this model only needs single-channel EEG data. 
Compared with the multi-channel EEG data requirements of 
traditional quantitative models (Zhang et al., 2020; Gao et al., 2021; 
Huang et al., 2022), it can greatly reduce the acquisition cost and 
improve the user experience. The accurate and objective quantification 
of visual fatigue based on SSVEP paradigm can also be extended to 
the quantification of visual fatigue under the combination of different 
parameters of the display and different light environments, so as to 

provide more references for the optimization design of the relevant 
parameters of the display. In addition to visual fatigue, the use of EEG 
to detect traditional driving fatigue has also received more and more 
attention from the academic community (Min et al., 2021; Tuncer 
et al., 2021), and the corresponding objective quantification of brain 
fatigue can also be more accurately quantified using the method of 
this paper.

In order to demonstrate the universality of the model proposed in 
this manuscript, the following discussion is conducted. From the 
SSVEP data set named BETA in Tsinghua University (Liu et al., 2020), 
the data of the subjects with a stimulation frequency of 15.8 Hz is 
intercepted. Due to the individual differences in EEG data, some 
subjects with abnormal EEG data are excluded. On the basis of normal 
EEG data, the data of 11 Blocks of nine subjects is used, and compared 
the CCA amplitude (CCA-A) with the new algorithm (USSR) in this 
paper. It is found that even without changing the parameter selection 
range of the USSR, USSR can still improve the signal-to-noise ratio, 
so that visual fatigue could be quantified more obviously.

It can be seen from Figures 7, 8 that the contrast effect of USSR 
and CCA at 15.8 Hz is similar to that of 7.5 Hz stimulation paradigm 
in the manuscript, which can improve the signal-to-noise ratio to a 
certain extent. It can be  proved that compared with CCA-A 
(15.1689 ± 7.9674), USSR (33.6388 ± 19.2536) still has a good SNR 
improvement effect when the paradigm stimulation frequency is 
greater than 15 Hz. In summary, adding more stimuli frequencies 
from datasets above 15 Hz (higher frequencies have lower responses 
in SSVEP) so that the research would be validated for a wide range of 
visual fatigue analyzes.

4.2 Limitations

Although this model can better reflect the objective 
quantification of participants’ visual fatigue that induced by SSVEP 

TABLE 4 Homogeneity test of variances.

Levene 
statistics

df1 df2 Significance

Based on 

mean
9.023 4 70 <0.001***

Based on 

median
8.069 4 70 <0.001***

Based on 

median and 

adjusted df

8.069 4 38.811 <0.001***

Based on 

trim mean
8.621 4 70 <0.001***

***p < 0.001.

TABLE 5 Kruskal-Wallis H-test.

Total N 75

Test statistic 46.794

Degree of freedom 4

Asymptotic significance (2-sided test) <0.001***

***p < 0.001.

TABLE 3 Kolmogorov–Smirnov test.

Algorithms Significance Results

GS 0.996 Normal distribution

USSR 0.272 Normal distribution

CCA-A 0.999 Normal distribution

CCA-SNR 0.269 Normal distribution

CCA-Band 0.374 Normal distribution
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paradigm, there is a limitation in this model, which is the parameter 
optimization method involved in the underdamped second-order 
stochastic resonance algorithm. The fixed step-energy parameter 
optimization model introduced in this paper can better solve this 
problem, but it takes a relatively long time, so only offline analysis 
can be carried out. Because of the high requirement for immediacy 
(Daly et al., 2015), the realization of online analysis needs more 
research. At present, there are two research directions. One is to 
find faster and more efficient parameter optimization algorithms, 
such as ant colony algorithm (Zheng et al., 2017; Wang Z. et al., 
2022), genetic algorithm (Yom-Tov and Inbar, 2002; Garrett et al., 
2003), etc., to replace the fixed range of parameter matrix, to 
achieve the purpose of finding the optimal parameter solution of 
the objective quantitative model proposed in this paper quickly and 
accurately; the other is to set more filter conditions in the data 
preprocessing so that the analysis process can meet the requirements 
of online analysis.

5 Conclusion

In modern society, electronic devices have entered thousands of 
households, and people‘s eye health is becoming more and more 
important. In this paper, a quantitative model for visual fatigue induced 
by SSVEP paradigm based on fixed-step energy parameter optimization 
and underdamped second-order stochastic resonance algorithm is 
proposed. Compared with the traditional related visual fatigue 
quantitative model, the subjective fatigue characteristics of the subjects 
can get a great degree of feedback. The model can be extended from the 
quantitative analysis of visual fatigue caused by SSVEP paradigm to the 
quantitative analysis of visual fatigue of electronic product users. 
Compared with traditional qualitative or quantitative analysis, the results 
obtained by this model are more in line with the real feedback of the 
experimenter. However, this model also has some shortcomings. On the 
one hand, the optimal selection of parameters takes a long time, 
especially since the analysis time caused by the different EEG data of the 

TABLE 6 Pairwise comparison of different algorithm results.

Algorithm 1–
algorithm 2

Test statistic Standard error Standard test 
statistics

Significance Adjust significance

A- SNR −1.267 7.958 −0.159 0.874 1.000

A-Band −4.533 7.958 −0.570 0.569 1.000

A-USSR 23.867 7.958 2.999 0.003** 0.027*

A-GS 44.667 7.958 5.613 <0.001*** <0.001***

SNR-Band −3.267 7.958 −0.410 0.681 1.000

SNR-USSR 22.600 7.958 2.840 0.005** 0.045*

SNR-GS 43.400 7.958 5.454 <0.001*** <0.001***

Band-USSR 19.333 7.958 2.429 0.015* 0.151

Band-GS 40.133 7.958 5.043 <0.001*** <0.001***

USSR-GS 20.800 7.958 2.614 0.009** 0.090

**p < 0.01. ***p < 0.001. A denotes CCA-A, SNR denotes CCA-SNR, Band denotes CCA-Band.

FIGURE 7

Difference between USSR and CCA in visual fatigue quantification based on EEG comparison.
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subjects is also different, so it is not suitable for online detection. On the 
other hand, after comparing the data of six channels, the model selects 
one channel as a sample for analysis, but we  lack the data of other 
channels except these six channels. Therefore, the current channel 
selection may not be the best channel for objectively quantifying visual 
fatigue based on SSVEP. In summary, this model has greatly improved 
the objective quantification of visual fatigue compared with the existing 
methods, and the demand for the number of channels is low. It is an 
algorithm model that meets the needs of this direction.
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