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The human auditory system encodes sound with a high degree of temporal and 
spectral resolution. When hearing fails, existing neuroprosthetics such as cochlear 
implants may partially restore hearing through stimulation of auditory neurons 
at the level of the cochlea, though not without limitations inherent to electrical 
stimulation. Novel approaches to hearing restoration, such as optogenetics, 
offer the potential of improved performance. We review signal processing in the 
ascending auditory pathway and the current state of conventional and emerging 
neural stimulation strategies at various levels of the auditory system.
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1. Introduction

The auditory system is a multi-level sensorineural pathway that transforms acoustic waves 
into neural signals which are experienced as sound. The pathway, in brief, is as follows: sound 
pressure waves enter the outer ear and reach the tympanic membrane; the resulting movement 
of the membrane induces vibration of the middle ear ossicles. The middle ear system 
concentrates the incoming sound waves as mechanical energy to match the impedance 
encountered as it is transferred from the air into the incompressible cochlear fluids of the inner 
ear. Energy transfer within the cochlea induces hair cell depolarization, resulting in auditory 
nerve firing, with the resultant action potential traveling from the cochlear nerve to the 
brainstem nuclei, from whence it ascends along the central auditory pathway to eventually reach 
auditory cortex where the sound is perceived. The central auditory pathway consists of multiple 
levels of nuclei and tracts where the signal is processed as well as influenced by contralateral 
pathways, descending inputs, and non-auditory signals (Flint et al., 2020).

Hearing loss is one of the most pervasive sensory disorders with approximately 430 million 
people affected worldwide. Disabling hearing loss often leads to social isolation, and has been 
associated with depression, incident dementia, and reduced quality of life (Uhlmann et al., 1989; 
Strawbridge et al., 2000; Kramer et al., 2002; Viljanen et al., 2009; Gopinath et al., 2012; All Ears 
International, Vaughan G, 2023). The etiopathology in most cases of sensorineural hearing loss 
(SNHL) is hair cell loss or dysfunction at the level of the cochlea, which may be secondary to a 
variety of mechanisms. Principal among these are age- and noise-related hair cell loss, mediated 
at a cellular level largely by reactive oxygen species (Kamogashira et al., 2015). Rehabilitation is 
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largely accomplished through amplification to overcome hair cell loss. 
However, in cases of severe to profound hearing loss, especially when 
speech perception is significantly reduced, the role for traditional 
hearing aid amplification is limited.

The cochlear implant (CI) has consistently been demonstrated 
to significantly improve hearing, communication, and quality of 
life in individuals with severe to profound SNHL. Cochlear 
implants bypass cochlear dysfunction by delivering electrical 
current from within the cochlear scalae that results in activation 
of spiral ganglion neurons (SGNs) which is then transmitted up 
the ascending auditory pathway. Most adults implanted with a CI 
achieve good hearing performance outcomes, as measured by 
open-set speech perception (Holden et al., 2013). However, the 
performance of cochlear implants in complex noisy environments 
and in response to music is negatively affected by the limited 
number of independent channels achievable with current 
technology, which is inherent to the delivery of current within a 
liquid medium, as well as challenges in encoding sound intensity 
(McDermott and McKay, 1997; Zeng et  al., 2002; Crew et  al., 
2012; Dieter et al., 2020). Additionally, cochlear implants are not 
a feasible option in individuals with absent or non-functioning 
auditory nerves — whether this be  congenital, traumatic, or 
secondary to neoplasm — and may not be  effective for 
dysfunction of higher levels of the auditory pathway. In such 
cases, the only currently available alternative for hearing 
restoration is the auditory brainstem implant (ABI), which 
delivers current at the level of the cochlear nucleus; its use, 
however, is predicated on the integrity of more proximal 
components of the auditory pathway. The performance of ABIs 
has been limited and auditory perception is generally inferior to 
that achieved by cochlear implants (Colletti et al., 2009; Deep and 
Roland, 2020).

Given the limitations of currently available implantable devices 
for hearing rehabilitation, the development of novel approaches for 
the treatment of hearing loss has been an area of active investigation. 
The concept of direct neural stimulation by infrared light has evolved 
into the study of optogenetics in the auditory system (Dieter et al., 
2020). Here, we  review signal processing in the central auditory 
pathway, as well as stimulation potential and limitations. Novel 
hearing restoration strategies are reviewed, with a focus on optogenetic 
stimulation of the auditory pathway. Cochlear gene therapy is another 
potential avenue of treatment, but is beyond the scope of this review.

2. Signal processing

2.1. Cochlea and auditory nerve

After being perpetuated as mechanical energy through the outer 
and middle ear, sound reaches the cochlea, where it is transformed 
into an electrical neural signal at the level of the inner hair cell. Stapes 
movements in the oval window produce fluid waves in the cochlear 
scalae that propagate down the basilar membrane. Shearing forces on 
hair cell stereocilia induced by pressure differentials across the 
cochlear partition lead to the opening or closing of mechanically-
gated ion channels and resultant cellular depolarization or 
hyperpolarization. This process of hair cell mechanoelectrical 
transduction involves the generation of receptor potentials as a result 

of ion flow, with the response consisting of an alternating current (AC) 
component encoding sound frequency and amplitude, as well as a 
direct current “summation potential” (SP) generated by potassium 
flow at the level of the hair cell. The SP may have a positive or negative 
polarity which is measurable and may vary in healthy and disease 
states (Fettiplace, 2017; Hazkizimana, 2023). Indeed, computational 
methods have been developed to isolate the SP component from 
electrocochleography (ECoG) recordings in order to differentiate hair 
cell and auditory nerve pathology (Vasilkov et  al., 2023). The 
aforementioned specializations allow the cochlea to encode sounds 
with a high degree of temporal precision: current changes can 
be detected within microseconds of the onset of a sound stimulus 
(Hudspeth, 1979). Sound frequency is represented by the position of 
hair cells and SGN fibers along the length of the cochlea, which in turn 
is dictated by the physical properties of the basilar membrane – which 
vary apico-basally – and are further fine-tuned by active mechanical 
amplification from the outer hair cells (Johnson et al., 2019). High 
frequencies (up to 20 kHz in humans) are encoded by hair cells at the 
cochlear base, where the basilar membrane is narrow, thick, and stiff; 
low frequencies (≥ 20 Hz) are represented at the apex, where the 
basilar membrane is widest and least stiff (Johnstone et al., 1986). 
Outer hair cells contribute to the precise “tuning” of the basilar 
membrane, amplifying the degree of displacement in a given region 
in response to sounds of that region’s resonant or characteristic 
frequency (CF). The result of this cochlear tonotopic organization is 
our ability to resolve tones that differ in frequency by only 0.2% 
(Hudspeth, 2014). Tonotopy is preserved within SGNs of the auditory 
nerve by their organized hair cell connectivity and other unique 
tonotopic specializations – including morphology and firing features –  
allowing preservation of sound frequency information to 
be transmitted to the cochlear nucleus (Young, 2007). SGN neurons 
respond best (ie, are most sensitive in their responses) to tones at their 
CF – the so-called “place principle.” Notably, however, such place-
coding appears not to be true for SGNs innervating the apical 20% of 
the cochlea. Rather, low-frequency pitch perception relies on the 
timing of action potentials in the auditory nerve, and to this end outer 
hair cell activity is critical in distributing excitation to large numbers 
of sensory cells (Burwood et al., 2022). In addition to place coding of 
the spectral contents of sound, auditory nerve fibers also utilize firing 
rate to encode information about sound intensity and relative timing, 
and phase synchronization (phase locking) to encode temporal 
information (Sachs, 1984). Phase locking –  
which refers to the ability of SGNs to synchronize or “lock” their firing 
to typical and consistent points (phase) within the neuronal response 
to a sinusoidal sound pressure waveform – is key in encoding accurate 
representations of the spectral shape of sounds (Young and Sachs, 
1979). However, phase locking has been shown to occur only at 
simulation frequencies below approximately 3 kHz (Palmer and 
Russell, 1986; Peterson and Heil, 2019). Phase locking also occurs at 
the level of cortical auditory neurons (Peelle et al., 2013).

2.2. Cochlear nucleus

At the level of the pontomedullary junction along the floor of the 
lateral recess of the fourth ventricle, SGNs of the auditory nerve 
branch to innervate two subdivisions of the ipsilateral cochlear 
nucleus: the dorsal cochlear nucleus (DCN) and ventral cochlear 
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nucleus (VCN). The tonotopic organization established in the cochlea 
is again reflected in the cochlear nucleus: neurons whose CFs range 
from high to low are organized from dorsal to ventral in the VCN, and 
from dorsomedial to ventrolateral in the DCN (Osen, 1970). Each of 
the principal cell types of the cochlear nucleus, whose compositions 
vary across the DCN and VCN, receive input from SGNs across the 
entire frequency range (Mugnaini et  al., 1980). These cell types’ 
differing electrical and physical properties, as well as their unique 
patterns of innervation by auditory nerve fibers, contribute to each 
encoding disparate components of the auditory signal (Oertel et al., 
2011). Neural outputs from the cochlear nuclei project to other 
brainstem regions via the dorsal, intermediate, and ventral acoustic 
striae (trapezoid body). Of these, the ventral acoustic striae (VAS) is 
the major component of the ascending auditory system (Masterton 
and Granger, 1988; Sutherland et al., 1998). Upstream targets include 
the medial and lateral superior olivary nuclei (MSO, LSO), the medial 
and lateral nuclei of the trapezoid body (MNTB, LNTB), and the 
inferior colliculus (IC) (Mugnaini et al., 1980). The cochlear nucleus 
is one of the first sites to receive direct modulating signals from 
descending auditory pathways, including from the somatosensory, 
vestibular, and auditory cortices (Osen, 1970; Kandler et al., 2009). 
However, both the cochlea and middle ear muscles have also been 
shown to receive descending input from the auditory brainstem 
(Mukerji et al., 2010; Romero and Trussell, 2022).

2.3. Superior olivary complex

The superior olivary complex (SOC) – whose subdivisions include 
the LSO, MSO, and MNTB – extends from the rostal medulla to the 
caudal pons and is the first site of convergence of auditory input from 
both ears. Tonotopic arrangement of auditory inputs is again 
maintained at this level of the pathway, though neuronal response 
patterns to sound stimuli are more complex and varied (Guinan et al., 
2009; Tabor et al., 2012). Comparisons of ipsilateral and contralateral 
inputs contribute to sound localization ability, with neurons in the 
MSO assessing interaural time differences and those in the LSO 
receiving converging input concerning interaural latency differences 
(Grothe, 2000; Tollin, 2003). Descending projections originating at the 
level of the SOC reach the cochlear nucleus posteroventrally to 
provide cochlear protection from acoustic overexposure and cochlear 
fine regulation which contributes to sound processing in noisy 
environments (Fekete et al., 1984; LePage, 1989).

2.4. Inferior colliculus

The inferior colliculus (IC) is the main center of convergence in the 
auditory midbrain. It receives and integrates diverse preprocessed inputs 
from all major auditory brainstem nuclei, as well as integrating auditory 
and non-auditory inputs. The IC is divided into three subdivisions: a 
central nucleus (ICC), external cortex, and dorsal cortex (Yang et al., 
2020). The external and dorsal cortices receive both auditory and 
non-auditory inputs from descending projections (somatosensory and 
auditory cortices) as well as local inputs from the superior colliculus, 
while the ICC is the dominant region receiving direct ascending inputs 
from the auditory brainstem as well as the contralateral IC. In the ICC, 
tonotopy is again preserved, with neurons (and frequencies) distributed 

in a laminar organization (Merzenich and Reid, 1974; Stiebler and Ehret, 
1985; Malmierca et al., 1995; Schreiner and Langner, 1997; Ress and 
Chandrasekaran, 2013). In addition to its critical role in integrating cues 
and information necessary for sound localization, IC neurons also 
exhibit more complex spectral and spectrotemporal integration 
important for the encoding of natural sounds (Lyzwa and Wörgötter, 
2016). For example, connectivity of ICC neural circuits often cross 
multiple frequency laminae and, as a result, many receptive fields include 
broad frequency inputs as well as inhibitory sidebands that shape their 
sensory coding (Davis, 2005; Chen et al., 2018). Ascending fibers from 
the IC synapse at the medial geniculate body (MGB) of the thalamus.

2.5. Medial geniculate body and auditory 
cortex

The MGB receives most of its auditory input from the ICC, which 
it then distributes to the auditory cortex located within the superior 
temporal gyrus, as well as other non-auditory cortical regions. Ventral, 
dorsal, and medial divisions of the MGB each contain subnuclei 
receiving ascending and descending innervation from the IC and the 
auditory cortex (Winer, 1984). MGB inputs are amplified and further 
processed by local microcircuits, resulting in a refinement of neuronal 
frequency tuning (Liu and Kanold, 2021). The primary auditory cortex 
in turn receives point-to-point input from the ventral division of the 
MGB in a tonotopic manner, with responses further refined through 
processes of lateral connectivity and inhibition (Kato et al., 2017). As a 
result, neurons in the auditory cortex often have more complex 
receptive fields, including multi-peak frequency and harmonic tuning 
(Wang, 2013). Beyond spectral processing, auditory cortex neurons 
also exhibit encoding of both loudness and timing information that is 
more complex than that seen within more peripheral auditory areas 
(Arnal et al., 2015). For example, integration of neuronal signals occurs 
on different timescales in different areas of the auditory cortex, and 
there is evidence for hemispheric variation in temporal processing 
(Arnal et al., 2015). Higher order auditory and association areas beyond 
primary cortex may be involved in important processes like encoding 
of sound pitch (De Angelis et  al., 2018), audiovisual integration 
(Chaplin et al., 2018), and receptive speech/language processing in 
Wernincke’s area (Koelsch and Siebel, 2005). Outputs of the auditory 
cortex are vast and include both corticocortical and corticothalamic 
pathways to regions including the amygdala, hippocampus, visual 
cortex, prefrontal cortex, as well as descending modulatory pathways 
(Saldaña, 1995; Mellott et al., 2014; Plakke and Romanski, 2014).

3. Stimulation strategies and 
limitations

3.1. Electrical stimulation

When hearing loss is beyond remedy by traditional hearing aids –  
for example, is severe to profound in degree, or with 
disproportionately poor speech recognition ability – the only 
widely available option for hearing restoration is a CI. Cochlear 
implants use an external processor use an external processor to 
mimic the spectral decomposition process of the normal cochlea, 
decoding sound stimuli into multi-frequency bands, and then 
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provide electrical current stimulation through implanted 
intracochlear electrodes. Signal processing is accomplished 
through encoding of the speech envelope via continuous 
interleaved sampling (CIS) of input sound and speech waveforms 
(Wilson et al., 1991; Nuttall et al., 2018). CIS offers advantages 
over compressed analog (CA) processing by delivering 
temporally-offset trains of pulses (whose amplitudes are derived 
from the envelopes of filtered waveforms of the input signal) to 
each electrode; this interleaving of pulses reduces the channel 
interactions seen in CA processing (Wilson et al., 1991). Such 
channel interactions – which result from the overlap of electric 
fields from adjacent electrodes to which current is simultaneously 
delivered – may result in distorted neural responses in a CA 
processing strategy. Transmitted current stimulates SGNs 
directly, though with far less selectivity than is accomplished with 
natural cochlear transduction mechanisms. The resulting neural 
activity ascends through the auditory pathway and is interpreted 
by the auditory cortex as sound. This system relies on the 
integrity of both the auditory nerve and the remainder of the 
central auditory pathway. While the majority of CI recipients 
achieve open-set speech perception, challenges persist in the 
cochlear implant’s ability to allow accurate comprehension of 
speech in noise as well as music perception and enjoyment. 
Inherent to the use of electrical stimulation from within a liquid 
medium, current spread in perilymphatic fluids and the resultant 
channel interactions is a well-recognized limitation to CI 
frequency selectivity, which particularly limits listeners’ ability to 
comprehend speech in noise or discern closely spaced frequencies 
(Aronoff et al., 2016). The result of these channel interactions is 
that while modern cochlear implants may have up to twenty-two 
functioning individual electrode channels, the maximum useable 
at a given time is generally regarded to be eight (Friesen et al., 
2001). Signal processing strategies such as CIS have been able to 
overcome these limitations, though with inconsistent 
performance benefits (Wilson et  al., 1991; Mani et  al., 2004; 
Aronoff et  al., 2016). Pitch perception in CI users may also 
be  detrimentally affected by the devices’ temporal encoding 
limitations: while it is likely that low pitches are encoded using 
phase locking by the CI, beyond 300–400 pulses per second (pps) 
higher rates of electrical stimulation are not perceived by listeners 
as corresponding increases in pitch (Carlyon et al., 2010; Tyler 
et  al., 2010). Frequency resolution is also hampered by the 
limitations of cochlear place coding (as previously discussed), 
finite electrode counts, and current spread/channel interactions 
(Young and Sachs, 1979; Sachs, 1984; Palmer and Russell, 1986; 
Peelle et al., 2013; Peterson and Heil, 2019; Burwood et al., 2022). 
These limitations in both temporal and spectral resolution likely 
contribute to the difficulties experienced by CI users in 
perceiving and enjoying music (McDermott and McKay, 1997). 
The concept of place-pitch mismatch is another important 
consideration in this regard: mapping of representative input 
frequency information to inappropriate electrode contacts (which 
is based on the presumptive Greenwood map) may further limit 
speech perception and music enjoyment by CI users (Greenwood, 
1990; Landsberger et al., 2015). Current spread and stimulation 
rate limitations also affect implants’ ability to accurately encode 
stimulus intensity; the dynamic range achievable by electrical 
stimulation is far less than that of a normal acoustically hearing 

ear (20 dB versus >100 dB) (Zeng et al., 2002; Flint et al., 2020). 
As a result, discrimination between higher levels of sound 
intensity is not possible using a CI.

When hearing loss is secondary to a defect or impairment of the 
auditory nerve, an auditory brainstem implant (ABI) is a feasible 
alternative. The ABI similarly relies on electrical current to produce 
neural activation. Implanted at the surface of the cochlear nucleus as a 
flat paddle, the neuronal activation induced by sound that is processed 
and transmitted via the device is even more crude as a result of both 
larger electrode contacts (relative to the size of the target structure) and 
the more nuanced tonotopic and cellular organization at this level of the 
auditory pathway – frequency selectivity is not achieved. ABI 
performance may also suffer from more complex intrinsic temporal 
responses seen in cochlear nucleus neurons, an encoding that is not 
easily reproduced by the implant stimulation. The prototypical 
population implanted with the ABI is patients with neurofibromatosis 
type 2 (NF2), in whom placement is performed concomitant to or 
following vestibular schwannoma removal. Open-set sentence 
perception ability is uncommon, though a majority of recipients able to 
achieve environmental sound awareness through use of the device 
(Colletti et al., 2009; Deep and Roland, 2020). By virtue of the location 
of the cochlear nucleus, placement of the device is also much more 
challenging and error-prone than cochlear implantation: the requisite 
craniotomy is not without attendant risks.

Emerging research has explored electrical stimulation of higher 
regions of the ascending auditory pathway. Direct stimulation of SGNs 
via an auditory nerve implant (ANI) has been proposed, though 
achieving frequency selectivity with an implant at this level of the 
auditory pathway should prove challenging (Dyballa et  al., 2023; 
Nogueira, 2023). Such an implant would not be feasible in patients 
with a compromised auditory nerve (eg, NF2), and surgical access 
would require an approach similar to the ABI. A larger body of 
research has evaluated stimulation at the level of the ICC via an 
auditory midbrain implant (AMI) (Lenarz et al., 2003, 2005, 2006; Lim 
and Anderson, 2003, 2006). The device is designed as a penetrating 
electrode array that is implanted via a lateral supracerebellar 
infratentorial approach through a lateral suboccipital craniotomy. The 
penetrating design is intended to stimulate neurons along the 
tonotopic gradient of the ICC, which is possible in theory due to the 
region’s laminar tonotopy (Malmierca et  al., 1995). In reality, the 
concept of frequency selectivity with a single penetrating electrode is 
likely an oversimplification in the context of the region’s varied 
neuronal composition and cross-laminar neuronal networks, as well 
as cross-tonotopic current spread in a brain area even more densely 
arranged than within the cochlea. In animal models, the AMI has 
been able to achieve a degree of frequency-specific activation as 
recorded in the primary auditory cortex (Lim and Anderson, 2003; 
Lenarz et al., 2005; Lim and Anderson, 2006). Performance of the 
implant in humans remains speculative.

As is exemplified by observed ABI outcomes and the theoretical 
challenges of the ANI and AMI, stimulation of increasingly proximal 
levels of the auditory pathway in a manner that results in an accurate 
neuronal representation of the precise spectral components of sound 
is infeasible with current approaches. The baso-apical tonotopy of the 
cochlea, uniform firing patterns of SGNs, and surgical ease of access 
make this first level of the auditory pathway the most attractive target 
for implantable auditory devices. However, there exist inherent 
limitations to electrical stimulation at the level of the cochlea, 
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rendering an alternative means of SGN stimulation an appealing 
target of research.

3.2. Optical and optogenetic stimulation

Optical stimulation of auditory neurons using infrared light – or 
infrared neural stimulation (INS) – poses the theoretical advantage of 
improved spatial (and thus frequency) resolution. At high intensity 
levels, infrared light is thought to directly stimulate neurons to cause 
depolarization. A photoelectric effect, whereby heating of cochlear 
fluids generates fluid pressure waves akin to acoustic stimuli, may also 
contribute to neuronal responses to light stimulation within the 
cochlea (Thompson et al., 2014). Infrared optical stimulation of SGNs 
has been demonstrated in animal models to achieve high degrees of 
auditory frequency selectivity, though the requisite high energy 
requirements make practical applications largely untenable (Izzo et al., 
2007, 2008; Matic et al., 2011; Richter et al., 2011).

The field of optogenetics involves the study of opsin genes in 
research; more recently, the field has been co-opted for clinical use in 
the restoration of vision, olfaction, and auditory perception. 
Channelrhodopsins (ChR), light-gated channels found in algae, render 
neurons light-sensitive; their expression can be induced in mammals 
by transfection of opsin genes using viral vectors (Arenkiel et al., 2007; 
Tomita et al., 2009). A variety of such opsin genes have been transfected 
in animal models, primarily rodents, often using adeno-associated viral 
(AAV) vectors. Following viral transfection, the proportion and apico-
basal distribution of SGNs with ChR expression has varied, ranging 
from only 20–30% of SGNs to the majority of SGNs throughout all 
cochlear turns (Hernandez et al., 2014; Duarte et al., 2018; Wrobel et al., 
2018). Light pulses delivered via optical fibers implanted in the cochleae 
of experimental animals with ChR expression are able to induce 
optically evoked potentials (oABRs) – the optically-induced correlate 
of the ABR, measured via scalp electrodes. High amplitude oABRs 
reflecting synchronous SGN firing have been recorded in response to a 
variety of stimulation frequencies (Keppeler et al., 2018; Mager et al., 
2018; Wrobel et al., 2018). However, the inherent temporal kinetics of 
ChR and similar opsins still limit the temporal resolution of these 
approaches compared to the fine timing information used by the native 
auditory system. These approaches also continue to suffer from issues 
with dynamic range encoding. For example, multi-channel recordings 
of neuronal clusters in gerbil ICCs in response to acoustic, electrical, 
and optogenetic stimulation of SGNs demonstrated similar dynamic 
ranges with optical compared to electrical stimulation (10.7 dB versus 
10.7/12.2 dB for monopolar/bipolar electrical stimulation), which were 
reduced compared to acoustic stimuli in non-implanted animals 
(32.2 dB). The spectral spread of excitation in response to optogenetic 
stimulation in this study demonstrated near physiologic frequency 
selectivity, which was improved compared to that achieved using 
electrical stimulation (Dieter et  al., 2019). Behavioral correlates of 
optically-induced SGN stimulation have been observed in implanted 
mice (Wrobel et al., 2018). Optogenetic stimulation of more proximal 
levels of the central auditory system (cochlear nucleus) has also been 
shown possible in experimental animals, though is subject to similar 
limitations as electrical stimulation at proximal levels – that is, an 
inability to reproduce cellular specificity within complex receptive 
fields. The extent to which optogenetic stimulation may confer a 
superior representation of the precise spectral, temporal, and intensity 
features of an acoustic signal in humans remains speculative.

In addition to the limitations in stimulation specificity, other 
limitations of an optogenetic approach to hearing restoration arise 
from the use of viral vectors. When mice are transfected with opsin 
genes post-natally, protein expression is typically reduced compared 
to when transfected prenatally (intrauterine) (Duarte et  al., 2018; 
Keppeler et al., 2018; Mager et al., 2018; Wrobel et al., 2018). Off-target 
gene expression is not uncommonly observed (Keppeler et al., 2018; 
Mager et al., 2018). In addition, the mechanism of viral transfection 
in humans – whether feasible via intratympanic injection or 
mandating surgical access to the inner ear – requires consideration.

4. Discussion

The tonotopic organization of the auditory system makes hearing 
restoration via implantable devices feasible; the CI is widely regarded 
as the most successful neural prosthesis in existence. However, 
physiologic limitations which curtail performance make the search 
for an alternative means of hearing restoration alluring. Devices that 
act to stimulate neurons at the level of the cochlea are likely to 
be  most successful due to the increasing complexity of neuronal 
organization encountered at more proximal levels of the auditory 
pathway. Emerging research in the field of optogenetics suggests 
improved spectral selectivity compared to electrical neural 
stimulation. However, the practical feasibility of these approaches for 
hearing restoration in humans is as of yet unknown.
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