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Context association in pyramidal
neurons through local synaptic
plasticity in apical dendrites

Maximilian Baronig and Robert Legenstein*

Institute of Theoretical Computer Science, Graz University of Technology, Graz, Austria

The unique characteristics of neocortical pyramidal neurons are thought to be

crucial for many aspects of information processing and learning in the brain.

Experimental data suggests that their segregation into two distinct compartments,

the basal dendrites close to the soma and the apical dendrites branching out

from the thick apical dendritic tuft, plays an essential role in cortical organization.

A recent hypothesis states that layer 5 pyramidal cells associate top-down

contextual information arriving at their apical tuft with features of the sensory

input that predominantly arrives at their basal dendrites. It has however remained

unclear whether such context association could be established by synaptic

plasticity processes. In this work, we formalize the objective of such context

association learning through a mathematical loss function and derive a plasticity

rule for apical synapses that optimizes this loss. The resulting plasticity rule utilizes

information that is available either locally at the synapse, through branch-local

NMDA spikes, or through global Ca2+events, both of which have been observed

experimentally in layer 5 pyramidal cells. We show in computer simulations

that the plasticity rule enables pyramidal cells to associate top-down contextual

input patterns with high somatic activity. Furthermore, it enables networks of

pyramidal neuron models to perform context-dependent tasks and enables

continual learning by allocating new dendritic branches to novel contexts.

KEYWORDS

synaptic plasticity, dendrites, synaptic clustering, context-dependent computation,

continual learning, unsupervised learning, top-down processing

1 Introduction

The integration of bottom-up sensory input with top-down contextual information

is a core computational principle of the neocortical microcircuit (Gilbert and Li, 2013;

Schuman et al., 2021). In this way, sensory processing in cortex is enriched with behavioral

context such as attention, expectations, and task information. Pyramidal neurons in

neocortical layers 2/3 and 5 are assumed to play a pivotal role in this computation since

the morphological structure of these cells is well-aligned to integrate the two information

streams. Feed-forward input from the thalamus or from areas located lower in the cortical

hierarchy are relayed via layer 4 to the basal dendrites of the pyramidal cells. On the other

hand, top-down input from higher cortical areas targets mainly neocortical layer 1, where

it reaches the apical tuft of these cells (Felleman and Van Essen, 1991; Cauller et al., 1998;

Shipp, 2007). The dendrites of the apical tuft are electrotonically segregated from the basal

dendrites, allowing for an independent integration of these two signals (Schuman et al.,

2021). Their integration within the cell is based on a repertoire of nonlinear dendritic

processes. In particular, the dendrites of layer 5 pyramidal neurons (L5Ps) exhibit several

types of dendritic spikes including NMDA spikes (regenerative processes that depend on
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N-methyl-D-aspartate receptors) and Calcium (Ca2+) spikes

(Spruston, 2008; Major et al., 2013; Stuyt et al., 2022).

This unique architecture has stimulated a number of theories

about the organization of cortical computation and the role of

top-down projections (Rao and Ballard, 1999; Bar, 2003; Lee

and Mumford, 2003; Larkum, 2013; Keller and Mrsic-Flogel,

2018; Acharya et al., 2022). These proposals include computations

based on attention (Bar, 2003), predictions (Keller and Mrsic-

Flogel, 2018), associations (Larkum, 2013), and further extend to

the role of this integration in conscious processing (Aru et al.,

2020). In particular, Larkum (2013) proposed that L5Ps detect

the coincidence of bottom-up activity and top-down activations

indicating context information and associate the activity patterns in

these two information streams. However, it is not well-understood

how synaptic plasticity at the apical dendrites could support such

associations. Experimental evidence points to an organization of

learning where apical inputs from different contexts are segregated

(Cichon and Gan, 2015), presumably due to the spatial clustering

of functionally related inputs on dendritic branches (Kleindienst

et al., 2011; Fu et al., 2012; Takahashi et al., 2012; Wilson et al.,

2016; Kastellakis and Poirazi, 2019). In this article, we ask to what

extent cell-internal signals can give rise to synaptic plasticity rules at

apical synapses that support the formation of context-associations

in pyramidal cells. To investigate this question, we have chosen

a top-down approach. Starting from three main hypotheses on

the properties and role of apical plasticity, we postulate a loss

function that captures the goals of the learning process. These

hypotheses are that the main objectives of plasticity are (1) to

associate contextual input patterns that co-occur with strong basal

activity to the neuron, (2) to cluster co-active synapses at the

apical tuft, and (3) to segregate apical activity induced by different

contextual input patterns. We then derive in a simplified pyramidal

cell model a plasticity rule for apical synapses that approximates

gradient descent on this loss function. We show that the resulting

synaptic plasticity rule relies on the main established cell-internal

signaling mechanisms and variables locally available to the synapse.

We refer to this learning rule as the context-association learning

(CAL) rule. We further investigate the functional properties of

the CAL rule in networks of pyramidal neurons. The results

of computer simulations confirm that the CAL rule provides

the basis for the association of top-down context information

with relevant bottom up input features in pyramidal neurons.

When applied in a network in combination with unsupervised

adaptation of basal synaptic efficacies, this allows the network

to learn a multi-task classification problem. Furthermore, we

show that the network can also learn to solve this problem in

a continual manner, where performance on previously learned

tasks is maintained after new tasks have been acquired by the

network. This continual learning capability is possible because

novel context patterns are associated to the neurons on newly

recruited dendritic branches while previously used branches are

protected from plasitcity.

Our results suggest that cell-internal signaling is a

key component for synaptic plasticity that controls the

integration of bottom up input with top-down contextual

information, enabling context-dependent learning at the

network level.

2 Results

2.1 A simplified pyramidal cell model for
context-dependent computation

We considered an abstract model for a cortical pyramidal

neuron that consists of two sites of dendritic integration: a basal

site and an apical site, see Figure 1A. The apical site receives a

binary context input vector xapical ∈ {0, 1}n
apical

, where napical is the

number of synapses on each branch, at its K dendritic branches.

Each branch k ∈ {1, . . . ,K} computes a local branch membrane

potential uk as

uk =
∑

i

x
apical
i wki, (1)

where i denotes the synapse index and wk ∈ R
napical the branch-

specific synaptic weight vector with each weight wki constrained

between 0 and a maximal weight wmax.

From this local branch potential uk, the probability of a

dendritic NMDA spike is given for each branch by a generalized

sigmoid function (see Figure 1B, inset andMethods)

pk = p(sNMDA
k = 1|uk) = σd(uk). (2)

A similar non-linear transfer function modeling active

dendritic properties has been used in Ujfalussy and Makara (2020),

where the authors found that a strongly supra-linear transfer

function is required for synaptic clustering. An NMDA spike at

branch k is then elicited with probability pk. Due to the non-

linearity σd, depolarization due to synapses within the same

dendritic branch results in a higher apical excitation than the same

input distributed between multiple branches (Figure 1B). More

formally, we denote an NMDA spike in branch k by sNMDA
k

∈

{0, 1} which is drawn from a Bernoulli distribution with mean pk:

sNMDA
k

∼ B(pk).

In the basal compartment, synaptic weights vi are used to

transform basal input vector xbasal ∈ R
nbasal into a basal membrane

potential ub ∈ R according to

ub =
∑

i

xbasali vi, (3)

with synapse index i.

A calcium spike is triggered when sufficient apical activation

coincides with sufficient basal activity (Larkum et al., 1999; Larkum,

2013). In our model, the apical activation is determined by the

number of NMDA spikes generated over all K branches

ua =
∑

k∈K

sNMDA
k . (4)

Formally, the model elicits a Ca2+spike when both the basal

voltage ub and the apical activation ua are above their respective

thresholds θb and nCa

SCa =

{

1, if ub ≥ θb and ua ≥ nCa

0 otherwise.
(5)
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FIGURE 1

Non-linear input integration in our pyramidal neuron model. (A) Schematic illustration. The basal integration site receives sensory feed-forward input

x
basal and integrates it as a weighted sum of inputs in a single compartment. The apical compartment receives context input vector xapical and

integrates it in each of its K branches. (B) Clustered input results in higher apical excitation ea than input scattered on di�erent branches (left circular

inset) due to apical branch non-linearity σd(uk) (right circular inset). (C) Local and global dendritic events in our model. (i) Local synaptic input induces

excitatory post-synaptic potentials (EPSPs). NMDA-spikes sNMDA
k signal branch-wide information, enabling clustering via potentiation of co-active

synapses within the same branch (Brandalise et al., 2022). (ii) Calcium spikes are regenerative dendritic events spreading across the apical dendritic

tree. This mechanism can account for the signaling of information about the total activation of the apical tuft.

The amplitude of this calcium spike is fixed and independent

from the number of dendritic NMDA spikes as long as the

threshold nCa is reached. Hence, our model features different

signals that are considered to act on different spatial scales within

the neuron, see Figure 1C: Synapse-local synaptic input, branch-

wide NMDA spikes, and tuft-wide Ca2+-spikes. The CAL rule

described below combines these sources of information for synaptic

updates.

The neuron output rate r is determined by the basal voltage,

elevated by a scaled contribution of calcium spike SCa via

r = ub + αSCa, (6)

with strength coefficient α. In our network simulations in Sections

2.5 and 2.6, we used a K-winner-take-all architecture which mimics

the impact of lateral inhibition, transforming ub before output rate

r is calculated (seeMethods).

For the analysis of the learning properties of our model, we

would like a quantity that tells us how well the activation of the

apical compartment supports the generation of Ca2+spikes. As such

quantity, we used the expectation of generating a calcium spike,

given that basal activity is above threshold. We term this quantity

the apical excitation ea. It is formally defined as

ea = E[2(ua − nCa)], (7)

where 2 denotes the Heaviside step function 2(s) = 1 if s ≥ 0 and

0 otherwise. For given NMDA spike probabilities at the branches,

this quantitiy can be computed analytically, seeMethods.

2.2 A learning rule for context association

Experimental findings suggest that feed-forward bottom-

up sensory stimuli target preferentially the basal dendrites of

neocortical pyramidal neurons, whereas top-down contextual input

may target the apical dendritic tuft (Gilbert and Li, 2013; Phillips,

2017; Schuman et al., 2021). It has been proposed that the

association between these two distinct inputs through plasticity

mechanisms that depend on the simultaneous basal and apical

activity is a central computational primitive in these cells (Larkum,

2013). Back-propagation of somatic activity to the apical dendrites

appears to be a biological implementation of this coincidence-

based mechanism (Shai et al., 2015). There are many ways how

such association could be implemented through synaptic plasticity

mechanisms. Experimental evidence points to an organization of

learning where apical inputs from different contexts are segregated

(Cichon and Gan, 2015), presumably due to the spatial clustering

of functionally related inputs on dendritic branches (Kastellakis

and Poirazi, 2019; Limbacher and Legenstein, 2020). Given these

findings, our aim was to derive a normative plasticity model that

organizes synaptic inputs on apical dendrites with the following

hypothetical aims:

Objective 1 (association): contextual input patterns that

frequently co-occur with strong basal activity should induce

strong apical activation.

Objective 2 (clustering): co-active synapses at the apical tuft

should cluster on dendritic branches.

Objective 3 (dissociaton): contextual input patterns that

rarely co-occur with strong basal activity should lead to weak

apical activation.

Objective 3 ensures that not all contextual patterns are

associated, which would lead to unspecific apical activation. We

denote this learning principle as Context Association Learning

(CAL) and the resulting plasticity rule as the CAL rule.

To investigate whether a plausible plasticity rule can fulfill

these requirements, we formulated the above objectives in a

mathematical manner through a loss function LCAL. This enabled
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us to derive a rule that performs gradient descent on this loss,

i.e., a rule that updates apical synaptic weights such that the loss

LCAL is decreased, and therefore fulfills the requirement in a

mathematically rigorous manner. The proposed loss functionLCAL

is given by

LCAL = uBPA+ λuBPC+ κ(1− uBP)D. (8)

Here, uBP ∈ {0, 1} denotes the backpropagated activity that

is 1 if the basal activation ub is above a threshold θb and 0

otherwise. The loss components A, C, and D implement the

association-, clustering-, and dissociation-objectives described

above respectively, where the parameters λ > 0 and κ > 0 define

the relative contributions of these components. The association

loss A and the dissociation loss D counteract each other and uBP

acts as gating variable selecting which of the two loss terms to

minimize. A encourages increased apical activation (when uBP

is high) and D encourages decreased apical activity (when uBP

is low). In addition, when a context pattern is associated, the

clustering loss C encourages a clustering of this input pattern. In

particular, the association lossA is given by

A = max

(

nCa −
∑

k

sNMDA
k , 0

)

. (9)

This term evaluates to 0 if at least nCa dendritic branches elicit

an NMDA spike, the threshold for an apical Ca2+ spike and hence

penalizes insufficient NMDA spiking. In the following simulations,

we have chosen nCa = 1 for simplicity if not noted otherwise (we

also conducted experiments with nCa = 2, see Section 2.3, and

nCa = 3, see Supplementary material, Section S3).

The clustering loss C is given by

C =
∑

k

Var(sNMDA
k ). (10)

This term penalizes NMDA spike probabilities that lead to high

variance of NMDA spiking. Since these NMDA spikes are sampled

from a Bernoulli distribution, the variance is low if the spiking

probability is either close to 0 or close to 1.Minimizing this variance

induces distribution of firing activity across few strongly activated

instead of multiple weakly activated branches. The parameter λ

in Equation (8) controls the strength of this clustering objective,

introducing a form of competition between branches (see also

Supplementary material Section S1).

For the dissociation lossD we have chosen

D =
∑

k

σd(uk). (11)

This loss is high for high NMDA spike probabilities. For uBP = 0,

this loss governs the loss function (8) encouraging the plasticity

rule to not associate context input patterns. The parameter κ in

Equation (8) determines the relative influence of the association

and the dissociation term. For small κ , patterns are likely associated

even for infrequent backpropagating activity uBP. The higher κ , the

more backpropagating activity is necessary to associate a pattern.

The influence of this parameter on the weight change is illustrated

in Figure 2A.

The plasticity rule for apical synaptic weights wkj is then

obtained by performing weight updates in the negative direction

of the gradient of the loss function:

1wkj = −η(wkj)
∂

∂wkj
LCAL, (12)

where η(wkj) is a weight-dependent learning rate (see Methods).

We derive in Methods the synaptic efficacy updates from this loss

function, the CAL rule. The update for the j-th synaptic weight at

branch k is given by

1wkj = η(wkj)

[

uBP xjf (uk)
(

1− SCa
)

︸ ︷︷ ︸

fromA

+ λ uBP xjg(uk)
(

2sNMDA
k − 1

)

︸ ︷︷ ︸

from C

(13)

− κ
(

1− uBP
)

xjg(uk)
︸ ︷︷ ︸

fromD

− λreg u
BPhj(uk,wk)

]

,

where f (uk) and g(uk) are non-negative functions that depend only

on the local branch potential. Here, we added to the gradient a

regularization term hj(uk,wk) which reduces weights of inactive

synapses and scales synaptic efficacies to normalize the weights at

each dendritic branch (see Methods). After applying the update,

weights were clipped between 0 and a maximum weight wmax.

We briefly discuss the biological interpretation of this rule.

First, in the case of strong basal activity (uBP = 1), the first and

second line, that originate from minimization of the association

loss A and clustering loss C, dominate. The first line of Equation

(13) increases weights—and thus the expected number of NMDA

spikes—until the Ca2+ spike initiation threshold nCa is reached

and a Ca2+ spike appears (Figure 2Bi). Hence, the Ca2+ spike

determines the plasticity. When a Ca2+ spike is present, the

second line in the update rule (13) becomes most relevant. It

depends on the local branch potential and local NMDA spikes. In

particular, active synapses at branches with a local NMDA spike

are potentiated while others are depressed. On average, the term

(2sNMDA
k

− 1) strengthens synapses at branches that are likely to

produce NMDA spikes while it weakens those on branches which

are unlikely to spike. This favors synaptic clusters as stronger

clusters are reinforced. In effect, activity is concentrated on few

branches (Figure 2Bii), where the number of active branches is

determined by the threshold for Ca2+ spike initiation nCa.

Finally, in the case of weak basal activity (uBP = 0), the third

line of Equation (13) dominates, leading to depression of active

synapses (Figure 2Biii). This term originates from minimization of

the dissociation lossD.

To summarize, we found that the objectives 1–3 can be

achieved by a synaptic plasticity rule that depends on (a) pre-

synaptic activity, (b) the local branch potential, (c) NMDA spikes,

and two more neuron-global signals, that is, (d) somatic activity
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FIGURE 2

Illustration of the CAL rule. (A) Back-propagating activity uBP switches between LTP (from loss A) and LTD (from loss D), balanced by κ . Shown are

expected weight updates E[1wkj] of active synapses for di�erent average levels of uBP in a model with a single dendritic branch k, where all synaptic

weights have the same value wki = w̄. The dependence on the mean synaptic weight w̄ arises from the dependence on the branch potential. The

balance between potentiation and depression is defined by the parameter κ ((i) κ = 0.1, (ii) κ = 0.3, (iii) κ = 0.6). (B) Schematic illustration of weight

updates with CAL. (i) Strong back-propagating activity uBP = 1 in absence of a calcium spike (SCa = 0) results in LTP of depolarized synapses on all

branches, due to the minimization of association loss A. (ii) Strong back-propagating activity uBP = 1 coinciding with a calcium spike (SCa = 1, here

nCa = 1), results in LTP of depolarized synapses on spiking branches and LTD in depolarized synapses on non-spiking branches, due to minimization

of clustering loss C. (iii) Weak uBP = 0 results in dissociation, due to dissociation loss D. (C) Phase plane analysis of weight update dynamics

undergoing CAL. To project the high-dimensional weight updates on a 2D plane, we assigned all weights wkj of activated synapses (xj = 1) on branch

k the same value w̄k . The x and y axes show these synaptic weights w̄1 and w̄2 respectively for a neuron model with two branches. Arrow color is

proportional to the expected weight update E[1w̄j], whereas the arrow length is proportional to its logarithm for visibility (see Methods for details).

We show four trajectories of di�erent initializations, where the dot refers to the initial point and the star to the final weight configuration for (i)

uBP = 0 and (ii) uBP = 1.

backpropagating to the apical tuft, and (e) Ca2+ events. This result

indicates that branch-wide signaling through NMDA spikes and

tuft-wide signaling through Ca2+ spikes (Figure 1C) are sufficient

to achieve the learning objectives.

To better understand the dynamics of this learning rule, we

peformed a phase plane analysis for a neuron with two dendritic

branches, see Figure 2C. In the case of no backpropagating activity

uBP = 0 (panel Ci), all weights of active synapses (synapses j where

xj = 1) converge to a low value, where the NMDA-spike probability

of both branches is negligibly small. If uBP = 1 however (panel

Cii), the initial weights determine whether either active synapses of

branch 1, branch 2, or both branches converge to strong efficacies.

This analysis demonstrates that the learning rule instantiates a type

of competition between branches to become active if uBP = 1. The
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TABLE 1 Network and input setup for the pattern learning scenarios from

di�erent panels of Figure 3.

Parameter Experiment (panel)

1 (A) 2 (C) 3 (D) 4 (E)

Apical input pattern size 12 400 400 600

Active components in apical

input pattern

4 40 40 90

Number of apical input

patterns

5 21 21 40

Number of apical dendritic

branches

5 21 12 12

Ca2+ spike threshold nCa 1 1 1 2

sparse apical connections No No No Yes

clustering loss C is essential for this competition, as the competition

is diminished without it (see Supplementary material Section S1).

2.3 Pattern association with the context
association learning rule

The primary objective of the CAL rule is the association of

activity patterns presented to the apical dendritic branches with

basal activity, such that apical activity that coincides with basal

activity leads to strong apical activation. The objectives defined

above further encourage that this association is performed in a

clustered manner, i.e., the rule should preferentially lead to the

activation of few branches for a given input pattern, where the

number of active branches is determined by nCa.

We investigated the behavior of the rule in four scenarios.

The neuron and input parameters for these experiments are

summarized in Table 1. We first considered an apical arborization

with 5 branches. Synaptic efficacies were initialized randomly from

a Gaussian distribution with mean 0.4wmax and standard deviation

0.1wmax for wmax = 0.25. We defined five apical input patterns

P1, . . . , P5 where each pattern represented the firing activity of

an assembly of 12 afferent neurons, with 4 randomly chosen

neurons being active (x
apical
i = 1) while the remaining neurons

j remained silent (x
apical
j = 0). To avoid highly similar input

patterns, we enforced that not more than one of the active neurons

in one pattern were active in another pattern. Further details

on the generation of patterns can be found in Section 4.7. The

input patterns were sequentially presented as apical input xapical

(Figure 3A), i.e., pattern P1 was first presented 80 times, followed

by 80 presentations of pattern P2, and so on. To analyze the

association behavior of the CAL rule, each presentation was paired

with a constant backpropagating activity uBP = 1, and the CAL

rule (Equation 3) was applied. Figure 3A shows the evolution of

the branch potentials uk and the NMDA spike probabilities pk
of all branches during these presentations. One can observe that

at initial pattern presentations, multiple branches increased their

branch potential. After few presentations however, only one branch

emerged that was strongly activated by the pattern while the other

branches reduced their response. Since we defined nCa = 1 in this

experiment, a single NMDA spike sufficed to elicit a Ca2+ spike.

In the following, we will say that the branch is "tuned" to the

pattern. Note, that due to overlap between patterns, branches

depolarized in response to other patterns than the one they were

tuned to, but the non-linear transfer function σd still ensures low

NMDA spike probability in these cases. One example of a synapse

cluster formation is shown in Figure 3Bi. In the rectangular inset,

synaptic efficacies of branch 1 are compared before (left) and after

(right) tuning to pattern P1 (middle). The synapses which received

high input through P1 underwent LTP, the inactive synapses LTD.

After all 400 pattern presentations (Figure 3Bii), each of the 5

branches tuned to one of the population patterns. This segregation

of patterns can also be observed in the tuningmatrix in Figure 3Biii,

where we show the NMDA spike probability for each branch and

pattern at the end of the experiment. Note that the activation of

apical branches by input patterns is preserved after the presentation

of all patterns even for patterns that have been presented at the

beginning of the learning trial, see also Figure 3A (right). This

continual learning capability was not explicitly defined in our

objectives, but is a side-effect of the clustering of patterns onto

distinct branches. We further discuss this property of the CAL rule

in Section 2.6.

We next asked how the likelihood of backpropagating activity

uBPp affects the tuning of branches. To that end, we set up a scenario

in which a certain probability pBPp was a-priori assigned to each

pattern Pp. Each time a pattern Pp was presented as apical input

x
apical, it was paired with backpropagating activity uBP = 1 with

probability pBPp (otherwise uBP = 0). We increased the number

of patterns and branches for this experiment to 21 to obtain fine-

grained results for multiple levels of uBP. We also presented the

patterns in a random order, so that at each presentation, one of the

21 patterns was randomly chosen from a uniform distribution. This

protocol eliminates bias introduced by the ordering of patterns. To

demonstrate scaling of the update rule to larger input dimensions,

we increased the pattern size to 400 input neurons, of which 40 were

active in each pattern. We further increased the maximum pairwise

overlap between patterns such that up to 40% of active neurons

in a pattern were also active in another pattern, increasing the

difficulty of discriminating patterns. Figure 3Ci shows the tuning

matrix of a single run alongside the assigned probability pBPp to

each pattern Pp. Again, it can be observed that at most one branch

tuned to a pattern and that each branch tuned to at most one

pattern. We observe that a certain level of backpropagating activity

is required to coincide with the presentation of a pattern to allow

any branch to tune to it. This is in alignment with our hypotheses

from Section 2, where we emphasized the coincidence-dependence

of the CAL rule. Only if apical input coincides with elevated somatic

neuron activity, the formation of synapse clusters is initiated. In

Figure 3Cii we show that this effect is consistent across multiple

runs by plotting the average apical excitation ea for various levels of

pBPp over 20 runs. We can see that the CAL rule reliably associates

apical input patterns for high pBPp while no association happens

for low levels of pBPp . Remarkably, the probabililty pBPp not only

determines which clusters are formed, but also the magnitude of

response following re-activation of the branch, which is indicated

by the monotonous increase of the graph. For higher values of the

dissociation coefficient κ , higher probabilities of back-propagating
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FIGURE 3

Pattern learning experiment. CAL induces synaptic cluster formation in apical dendrites. (A) A neuron with 5 dendritic branches sequentially

associates 5 di�erent patterns P1 to P5. (Top) The branch potential uk (top) and NMDA spike probability pk = σd(uk) (bottom) for each branch

k = 1, . . . , 5 are shown. Arrows indicate onset of pattern presentations. Each pattern is presented 80 times. At the end of the trial, each pattern is

presented again 10 times to confirm that the functional synapse cluster still persists. (B) (i) Example tuning of a branch. The rectangular dashed inset

shows the synaptic weights of an apical branch at the first (left) and the last (right) presentation of pattern P1. Synapse size is proportional to e�cacy.

(ii) After all 400 pattern presentations, every branch tuned to a di�erent pattern. (iii) NMDA spike probability of branches in response to patterns

(tuning matrix). The labeling of branches was done post-hoc according to the order of cluster acquisition to improve the visibility of the tuning

matrix. (C) Pattern association depends on probability of backpropagating activtiy pBP
p . (i) Tuning matrix of a single trial with κ = 0.3. Each pattern Pp

was presented alongside samples ûBP from a fixed pre-assigned probability distribution B(pBP
p ) with pBP

p in the interval [0, 1]. (ii) Mean (filled circle) and

variance (whiskers) of apical excitation ea for di�erent values of κ ∈ {0.1, 0.3, 0.7} over 20 independent runs of the experiment shown in (C)i. (D)

Pattern association with more patterns than branches. (i) Tuning matrix of branches for a single trial. pBP
p for each pattern Pp was uniformly distributed

over the interval [0.5, 1]. (ii) Mean apical excitation ea for di�erent levels of pBP
p over 40 independent runs of the experiment shown in panel Di with

κ = 0.3. (E) Tuning matrix in a setup with sequential pattern presentation, sparse connections, Ca2+ spike threshold nCa = 2, and more patterns than

branches. The scatter plot on the right shows the apical excitation ea caused by the presentation of the patterns after training. See main text for

details.
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TABLE 2 Network and input setup for the population coincidence

detection experiment from Figure 4.

Parameter Value

Apical input pattern size 400

Active components in apical input pattern 40

Apical dendritic branches per neuron 10

Number of different contexts 10

Neuron population size 60

Strongly stimulated neurons per context 20

activity are required in order to establish a synaptic cluster. This

result is coherent with the previously discussed role of parameter κ

as trading off the two objectives of association and dissociation (see

Section 2.2).

In the above simulations, the number of branches matched the

number of different input patterns. In a third experiment, we aimed

to investigate the properties of the learning rule in the case where

more patterns than branches occurred, hence not all input patterns

could be represented by synapse clusters on different branches. The

pattern configuration was the same as in the previous experiment,

with 400-dimensional input and 40 active neurons. In contrast to

above experiments, we chose pBPp in the interval of [0.5, 1] to ensure

that all patterns are accompanied by a pBPp -level sufficiently high to

induce tuning (as observed in Figure 3Cii). We show the result of

a single trial in Figure 3Di, where the 8 patterns supported by the

highest pBPp levels induced synaptic clusters on dendritic branches,

whereas some patterns with lower pBPp did not. Again, the average

apical excitation tends to increase with the backpropagating activity

of the pattern, see Figure 3Dii.

We next asked whether these results also hold for a larger

Ca2+ spike initiation threshold nCa and sparse connectivity to

apical branches. In a fourth experiment, we used nCa = 2 (see

Supplementary material Section S3 for a more exhaustive figure

and for an experiment with nCa = 3), and each of the 12

branches received synapses from a sub-set of 10% of the 600 apical

input neurons. We sequentially presented 40 patterns, of which we

randomly chose 20 to be accompanied with uBP = 1, the other 20

with uBP = 0. The tuning of branches to patterns after training

is shown in Figure 3E. Patterns that were presented together with

high uBP = 1 elicited significantly higher mean apical excitation

(mean ea = 0.92) upon presentation after training, compared to

patterns paired with uBP = 0 (mean ea = 0.07). Due to the higher

Ca2+threshold nCa = 2, typically two branches were tuned to a

single pattern (Figure 3E). We also investigated sparse connectivity

in the case of equal numbers of branches and patterns with nCa = 1

in Supplementary material Section S2.

2.4 Population-level coincidence
detection via CAL

In the above experiments, we investigated the single-neuron

learning properties of CAL in detail. We showed how the formation

of synaptic clusters on apical dendrites depends on the coincidence

of basal and apical activity. On a population level, this association

principle allows a pool of neurons to detect whether the distribution

of basal activity across neurons matches the expectation given a

certain context indicated by apical input. Each pyramidal neuron,

after coincidence-based training using CAL, can thereby act as

a coincidence detector by elevating its response if apical and

basal activation coincide. Such coincidence-triggered association

of high-level context with lower-level stimuli was proposed as an

essential principle of cortical organization (Larkum, 2013). These

learned associations can cause elevated neural population response

if context and low-level perceptual stimulus cohere.

To illustrate this principle, we conducted an experiment in

which we simulated a pool of 60 model pyramidal neurons,

subject to plasticity according to our CAL rule (neuron and

input parameters are summarized in Table 2). Each neuron should

thereby learn under which context elevated basal activity was

expected. The experimental procedure is illustrated in Figure 4A:

Upon presentation of a contextual pattern Pp to the apical

dendrites, basal activations ub were sampled from a specific

stimulation distribution Sp. For each Sp, we randomly selected

a sub-population of 20 neurons (in the example from Figure 4A,

among others, neurons 1 and 59 for context 2) receiving high basal

stimulation, sampled from a Gaussian probability distribution with

high mean 0.7. All other neurons received low basal stimulation

during this context, sampled as well from a Gaussian distribution

but with low mean 0.3. For each different contexts P1, P2, P3, a

different sub-set of neurons was selected as strongly stimulated. The

back-propagating activity uBP resulted then from thresholding ub,

via uBP = 2(ub − θb), as described in Section 2.2, with a threshold

θb = 0.5. We plot the resulting probability p(uBP = 1) for the

first 6 neurons in Figure 4B. Before the synapses on apical branches

were trained, the apical excitation ea for each neuron and context

were almost uniform, see Figure 4C. After training, synapse clusters

to contexts were formed on apical compartments of neurons, in

which high basal activity was expected according to stimulation

distribution Sp (Figure 4D, compare with Figure 4B) for context p.

After learning, we tested the coincidence detection capabilities

of the neurons. To that end, we held the context pattern fixed whilst

presenting basal activation levels according to the distributions

from all contexts, see Figure 4E, subpanels i to iii, compare with

Figures 4B, D. Firstly, we can observe that the simultaneous

presentation of context P1 (see Figure 4Ei) at the apical site and

stimulation distribution S1 at the basal site results in high output

rate r for neurons 1, 2, 3 and 4, due to the matching of apical

and basal activity. Secondly, by presenting context P1 together with

a mis-matching basal stimulation distribution S2 or S3, we can

only see high neuron output r in the context-overlapping neurons.

For example, neuron 1 was strongly stimulated in distributions S1

and S2, hence it elicits high firing rate upon stimulation according

to both of these distributions if context P1 is cued. In contrast,

neuron 4 underwent only low stimulation via S2, resulting in low

firing rate if P1 is simultaneously presented with samples from S2,

indicating a mismatch between expected and real basal stimulation.

On a population level, this coincidence detection is visible on the

right hand side of (i–iii) in Figure 4E, where the total population

activity is highest if the basal stimulation during presentation of
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FIGURE 4

Coincidence detection in populations of pyramidal neurons. (A) For each context Pp with p = 1, 2, 3 we selected a sub-set of neurons receiving high

basal stimulation (large arrows), whereas the other neurons received low basal stimulation. (B) Distribution of back-propagating activity uBP resulting

from basal stimulation distributions. Bars show the mean, whishkers show the variance. (C) Apical excitation ea per neuron for each context before

training. (D) Same as (C), but after training with CAL. (E) Output firing rate r during presentation of contexts together with some basal stimulation

distributions after training. (i) left: Neuron output rate r for cued context P1 together with basal stimulation distributions S1, S2 and S3. right:

summation of output rates over the neuron population. If the basal stimulation distribution (S1) matches the cued context (P1), the population

response is highest. (ii, iii) Same as (i), but for contexts P2 and P3 respectively. (F) Coincidence detection mechanism of a single neuron with a single

branch in detail. The heatmap shows the expected output rate r (see Equation 6) for di�erent levels of overlap between a presented context pattern

with the associated context pattern of the branch on the y-axis and di�erent levels of ub on the x-axis. Only if high activity levels in both apical sites

coincide, the neuron responds with a high output rate. The step-like increase in the expected output rate E[r] along the x-axis appears since a

Ca2+ spike can be triggered only when the basal potential ub exceeds the threshold θb = 0.5 (see also Equation 5).

context pattern Pp matches the basal stimulation distribution Sp

applied during training. This way, the neurons can learn to perform

coincidence-detection through the coincidence-based nature of

the CAL learning rule and the coincidence-triggered amplification

from Ca2+ spikes, see Figure 4F.

2.5 The CAL rule enables context-feature
association

We have shown in the previous section that the CAL rule is

well suited to align two separate streams of information: internal

contextual information arriving at the apical and stimulus-driven

information arriving at the basal compartment. We wondered

whether the model can utilize such context-association to solve

multi-task classification problems.

To this end, we considered a simple multi-task classification

problem which we termed the context-dependent feature

association (CDFA) task set. In the CDFA task set, the input

arriving at the basal dendrites represents some encoded perceptual

low-level stimulus, whereas the context holds information about

an attended object class (high-level context). The goal of this task

set is to successfully determine the presence or absence of the

attended object class within the perceptual stimulus. As a guiding

example, we assume that the sensory stimuli encode the values of
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FIGURE 5

Solving a context-dependent classification task by binding contexts to features. (A) Features can be interpreted as di�erent properties of an object,

where each feature is instantiated in one of its values. (B) Classes are defined a priori by specific combinations of features. Features not included in

the class definition (for example “size” for class 1) should be ignored. (C) Positive and negative samples. (i) In a positive sample, all feature values

required for the class given as context are contained in the feature vector. (ii) If one or more feature values in the feature vector deviate from the

required values given by the class in the context, the sample is negative and the target output is 0. (D) Illustration of the network model for the

context-dependent feature association task. The model consists of an input layer that is fully connected to the basal dendrites of a single hidden

layer of pyramidal neurons followed by a fully-connected output layer consisting of a single threshold neuron. The input to the apical dendrites is the

context vector, encoding a class identifier via a random embedding. The task of the network is to detect whether the class represented by the

context is present in the feature vector or not. The network can only solve the task by correctly integrating bottom-up and context input since both

are required to provide a correct answer. Synaptic e�cacies between red axons and apical dendrites of pyramidal neurons are trained by CAL,

whereas synaptic e�cacies between blue axons and basal dendritic site are trained using the Krotov-rule (see main text).

visual features like shape or color (Larkum, 2013). Each feature can

take on one of a number of discrete values. For example, the shape

can be a triangle, a square, or a star, the color can be blue, red,

yellow, etc., see Figure 5A. We define an object class as a certain

combination of feature values, where some features are irrelevant.

For example, the object class “blue star” is defined as inputs where

the feature “color” is “blue” and the feature “shape” is “star”, see

Figure 5B. In the CDFA task set, the input to a network is given

by a feature vector as the bottom-up input together with context

information about an object class and the task is to output 1 if the

feature values contained in the input match those of the indicated

object class (where don’t care features of the object class should be

ignored) and 0 otherwise, see Figure 5C. We refer to samples where

the target is 1 as ’positive’, and to samples where the target is 0 as

“negative”. This setup defines a multi-task classification problem,

where each task is defined by one object class (the context). In each

individual task, one thus has to determine whether a specific set of

TABLE 3 Network and input setup for the context-dependent feature

association experiment.

Parameter Value

Apical input pattern size 60

Active components in apical input pattern 9

Apical dendritic branches per neuron 10

Neuron population size 60

feature values is present in the feature vector (while ignoring some

of the features).

We considered a network consisting of one layer of 60 model

pyramidal cells, each with 10 dendritic branches (see Figure 5D

and Table 3). The pyramidal cell layer projected to a single readout

neuron which should produce the correct output according to the
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CDFA task. The output y of the readout neuron was given by

y = 2(
∑

j

rj − θ), (14)

where θ represents a learned threshold, rj denotes the output of

pyramidal neuron j in the pyramidal layer, and 2 denotes the

Heaviside step function. Similar to the population coincidence

detection experiment from the previous section, this threshold

should allow the network to distinguish between a match or a

mis-match of context and sensory stimulus. In order to facilitate

unsupervised learning at basal compartments (see below), the

neurons in the pyramidal layer implemented a K-winner-take-all

(k-WTA) structure: The basal membrane potential ubj of a neuron j

was set to one if it was among the K largest potentials in the layer,

otherwise 0 (seeMethods; we used K = 6 in our simulations).

The pyramidal cells received as basal input the visual features

encoded in the activity of 600 bottom-up input neurons, see

Methods Section 2.5. The apical input to the neurons consisted

of the context object class, each encoded as a 60-dimensional

random sparse class vector. Note that the object class encoding

does not entail any direct information on relevant features. One

can consider it as a name, such as "Tiger." This name does not

give us a-priori information about the relevant features which could

be “texture=stripes”, “color=orange”, “shape=cat-like” (Larkum,

2013).

The CAL rule only defines weight updates 1wlj (see

Equation 12) for apical synapses, not for the synaptic weights v

in the basal compartment. To train networks of such neurons,

a synaptic plasticity rule for the basal weights v is required as

well. We wondered whether local unsupervised learning of basal

weights together with the CAL rule for apical weights and simple

local supervised adaptation of the readout neuron would suffice

to learn the CDFA task. To that end, we trained the basal weights

v with the biologically plausible local Hebbian learning rule from

Krotov and Hopfield (2019) (the “Krotov-rule”, see Methods).

This unsupervised Hebbian learning was performed in a first step

to establish a suitable feature representation in the pyramidal

layer. Afterwards, associative adaptation of apical weights through

the CAL rule and local supervised learning of the readout was

performed (see Methods). Training of the readout neuron was

performed through gradient descent, where only the threshold θ

was adapted. Note that only the readout threshold θ was trained

in a supervised manner. Hence, supervised learning was local and

restricted to the single readout neuron.

The motivation behind k-WTA-like Hebbian learning of

basal synapses was that this learning paradigm might adapt

basal compartments to become detectors for specific feature

values. Figure 6A (right), shows the cosine similarity between

the learned basal weight vectors and all 60 feature value

encodings (six features with 10 values each) after applying

the Krotov rule to the basal synapses in the pyramidal

layer during the presentation of 1000 randomly chosen

input feature vectors. The network learned an approximately

orthogonal representation of independent features in its basal

weights. Hence, each neuron functioned as a detector for a

specific feature.

Using such representations, we asked whether the CAL rule

was able to exploit statistical correlations between top-down

object class representations and basal activity to associate input

features with object classes and whether simple training of the

readout could solve the CDFA task. To this end, we presented

250 training samples per class to the network, each consisting

of a feature vector f and one object class context c for 100

different object classes. During this presentation, the object class

identifier provided as context matched to the feature vector (target

ŷ = 1) in half the cases, and they did not match in the other

half (ŷ = 0).

The red bars in Figure 6B show the average basal output

ub across all pyramidal neurons during the occurrence of a

specific context cue after unsupervised training of basal weights.

One can observe that neurons 4, 37, and 50 were particularly

strongly activated in that context, indicating object class-relevant

features. The upper and lower blue bar charts show the apical

excitation of the same neurons for that context before and after

training respectively. The CAL rule has boosted apical activation

of those neurons with strong basal activity. If a feature coincided

with a context to which it had previously been associated, the

corresponding neuron exhibited increased activity, thus indicating

a match between the context and the bottom-up input. Thus,

the CAL rule has turned neurons from feature detectors into

coincidence detectors, allowing the network to detect whether the

class-relevant features are present in the basal input or not. This

association through the CAL rule was due to the correlation of

the object context with the particular feature it detected in the

basal input. This mechanism worked despite the presence of “false”

correlations in the data due to negative examples where the context

object class did not match the input feature vector (compare with

Figure 5Cii), although the CAL rule had no information onwhether

the current data sample is positive.

We next analyzed the representation of context patterns on

dendritic branches of modeled pyramidal neurons. As in the

pattern association experiment above, each branch tuned to either

one or no context pattern (Figure 6D). Hence, context patterns

were clustered on dendritic branches. Further, we found that the

majority of patterns activated 3 apical compartments within the

whole pyramidal layer (Figure 6E). Since each object class was

determined by 3 feature values in our task setup, this shows that

the CAL rule established an efficient association between object

classes and features. As feature values can appear in different object

classes, neurons were in general activated in varying contexts,

see Figure 6F. Overall, the activation of branches in response to

contexts was very sparse. In Figure 6G, we show a histogram over

the number of active branches in a given neuron for a given context

(histogram taken over all neurons and contexts). We observe that

no context activated more than a single branch on each neuron,

which is a natural consequence of setting the Ca2+ spike threshold

nCa to 1.

Using the population coincidence mechanism installed by the

CAL rule (also demonstrated in Section 2.4), the readout neuron

was able to solve the CDFA task simply by locally adjusting its

threshold. This was possible since elevated activity in the pyramidal
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FIGURE 6

Analysis of network activity in the CDFA task. (A) Pairwise cosine similarity between basal weights and feature value encodings of the CDFA task after

unsupervised learning with the Krotov rule. Neurons are sorted by the feature index at which their basal weights show maximum similarity. (B) CAL

exploits statistical correlations between context inputs and basal activity. Red bars: average basal output ūb (induced by bottom-up feature vectors,

after k-WTA was applied) across all pyramidal neurons in one specific object context. Blue bars: apical excitation of the same neurons in the same

context before (top) and after (bottom) training. (C) Classification error as a function of the number of object classes for unsupervised training (green)

and an ad-hoc setting (violet) of basal weights. (D) Histogram showing the number of branches which are tuned to 0, 1 or 2 patterns. Nearly every

branch tuned to either one or no context pattern. (E) Histogram showing the number of patterns that activate a certain number of neurons (i.e.,

neurons with ea > 0.5). Most contexts activate 3 neurons, which is expected given the fact that each class is uniquely identified by 3 distinct feature

values. (F) Histogram showing the count of neurons that are activated by a specific number of contexts. (G) Histogram showing how many branches

per neuron are activated over all contexts. No context activates more than 1 branch on any neuron and the activation of neurons is generally very

sparse. Panels B and D-G show statistics for the experiment with 100 object classes.

layer indicated a match between the contextual object class and

the feed-forward features. With 100 object classes, the classification

error of the network was 6.89± 1.32%. We report the classification

error of the model for various numbers of classes in Figure 6C. The

more classes, the more dendritic resources are required to establish

context-feature associations, resulting in exhaustion of capacity for

higher numbers of classes and a consequential increase in mis-

classifications. A simple calculation (see Supplementary material

Section S4) shows that our network setup allows for the storage

of 200 patterns in expectation. Nevertheless, Figure 6C shows that

performance degrades gracefully for up to 400 patterns. As a

baseline, we also considered the behavior of a network with an

“optimal” ad-hoc defined set of basal weights, in which the basal

weight vector of each neuron was manually set to one of the feature

values. This induced a perfectly orthogonal representation of

features in the basal activity of neurons. We can see, that the fuzzy

feature representation from the unsupervised learning algorithm

for basal weights adds a layer of difficulty compared to the ad-hoc

setting of input weights that perfectly decodes the feature values.

This is due to the lack of representation of certain feature values in

the pyramidal layer in the fuzzy representation, resulting in reduced

separability of the classes. We also tested a modified version of the

Krotov rule (termed “Krotov+” in the following), which is still fully

unsupervised but less biologically plausible (see Methods). This
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rule achieved a nearly perfect orthogonal representation of input

feature values. With this more powerful unsupervised learning, the

classification error was 1.44± 0.3%.

2.6 The CAL rule enables continual
learning

Training artificial neural networks on multiple tasks

sequentially with backpropagation can result in “catastrophic

forgetting” (McCloskey and Cohen, 1989). It has been suggested

(Cichon and Gan, 2015; Limbacher and Legenstein, 2020; Sezener

et al., 2021; Acharya et al., 2022) that biological neurons exploit

active dendritic properties to avoid over-writing of previously

learnt information. As we showed already in the pattern association

experiment in Section 2.3, CAL can effectively distribute newly

learnt associations to untuned branches, protecting branches

previously engaged in forming synaptic clusters from re-tuning.

We tested whether this property can be exploited in an incremental

learning scenario of the CDFA task, where new tasks are learned

on top of previously learned ones in a continual fashion. As before,

a task consisted of one object class representation which was

provided as context to the apical branches and the goal was to

classify whether the current input feature vector was consistent

with this object class.

We trained the same network as in Section 2.5 in a three-

stage process: In the first stage, 1, 000 random feature vectors

were generated to train the basal weights in an unsupervised

manner with the Krotov rule as before. This established a stable

feature representation in the basal weights. In the second stage

(“pre-training”), the basal weights were frozen and we trained

the network on 40 different tasks while the CAL rule as well as

training of the readout threshold was enabled. During this stage,

the network could learn to distinguish between positive examples

and negative examples by thresholding the total summed activity

in the pyramidal neuron layer. In the third stage, this threshold θ

was frozen and the network (with CAL still enabled) was trained

on 8 new tasks sequentially. Each of these tasks contained an equal

number of positive and negative examples for a certain new object

class that has not been shown before.

In Figure 7A, each plot was generated after training the network

on a new task. For example, the first plot (top left) shows the test

error on all tasks directly after pre-training. Naturally, the network

was unable to perform well on the upcoming tasks which it has

not seen before. The second plot shows the test error on all tasks

after pre-training followed by training on task 1. The other plots

follow the same scheme. We observe that the model has learned

new classes incrementally and at the same time maintained low

test error on previously trained classes. Note that the readout was

no longer trained in this phase. To do so, the network exploited

statistical properties of the data. Only the neurons with strong

basal activation during presentation of a new task tuned to the new

context. CAL implements this incremental association by forming

synaptic clusters on previously unused branches, see Figure 7B.

Input feature vectors that are consistent with the object class lead to

enhanced activity in the pyramidal layer due to the modulation of

basal activity by the apical dendrites. This enhanced layer activity

is readily detected by the readout with the previously learned

threshold. After training on all tasks, we obtained a test error on all

samples from all test sets of 6.81% ± 10.54% if basal weights were

trained with the Krotov rule and 2.11% ± 6.55% if basal weigths

were trained with Krotov+ (see Supplementary material Section

S5 for a detailed figure). We explain the performance gap by the

cleaner separation of independent feature values by the Krotov+

learning rule. Note, that the basal weights are trained before the first

task and held fixed over the course of incremental task learning,

which forces the network to use only the initially learned internal

feature representation.

3 Discussion

In this article, we investigated what types of synaptic plasticity

rules at apical dendrites could give rise to a computational

function that was proposed to be central to the function of

layer 5 pyramidal cells (Larkum, 2013): The association of top-

down contextual activity patterns with bottom-up sensory features.

Methodologically, we applied a top-down approach by formulating

the learning objectives as a loss function and deriving the

corresponding plasticity rule from them. The resulting CAL rule

thus performs gradient descent on the proposed loss.

Several studies have shown that the computational capabilities

of neurons and neural networks can be significantly extended

when moving from the traditional point neuron model to models

that incorporate the nonlinear dynamics of spatially extended

neurons. This even holds for highly reduced models with only two

(Ferrand et al., 2023) or three (Quaresima et al., 2023) distinct

compartments. Our model is slightly more fine-grained as it

features multiple apical dendritic branches. The computational role

of these branches in our model is to assure reliable storage of all

context patterns while avoiding spurious activations of the apical

region through random context patterns, see also (Legenstein and

Maass, 2011; Limbacher and Legenstein, 2020). Consider the case

that a single branch would be used in experiment 1 (Figure 3A).

As the apical region should be activated by all presented patterns

P1 to P5 after learning (as illustrated on the right of Figure 3A), a

large number of synapses from each of these patterns would have to

be potentiated. In that case, most random context patterns would

activate the apical region. This is true both for a continual learning

setup as in Figure 3Awhere patterns are presented sequentially, and

in a setup where patterns are presented in an intermixed manner

(Figures 3C, D). In contrast, the branch nonlinearity assures that

partial synaptic activation of one or several dendritic branches leads

to weak apical activation, see Figures 1B, 4F.

When a single NMDA spike can elicit a Ca2+ spike (nCa = 1),

we found that each branch typically stores one context patterns.

Hence, the number of patterns that can be reliably stored is

given by the number of branches. One can observe this well in

Figure 6C, where the error increases strongly for more than 200

object classes in the ad-hoc “optimal” basal weight setting. At this

number, it is expected that all branches are used to store context

patterns in our network. Our simulations for nCa > 1 (Figure 3E

and Supplementary material Section S3) indicate that the capacity

is larger in this case. For nCa = 2, the number of associated

patterns (20) exceeded the number of branches (10), but the
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FIGURE 7

Continual learning through context-association learning. (A) Results on CDFA in a continual learning setup averaged over 20 runs. We pre-trained the

readout threshold θ together with the first 40 tasks, then froze θ and trained continually on 8 more tasks. Each subplot shows test accuracy on all

tasks after pre-training followed by continual learning on a certain number of tasks. Bars show standard deviation. (B) Acquisition of a new branch by

an example pyramidal neuron. (i) Some apical dendritic branches already formed synaptic clusters to contexts of previous tasks, the rest were

untuned (schematic presentation). Rectangular inset: Upon presentation of the new context, all branches exhibit low NMDA spike probability. (ii) After

training on the new task, one particular branch formed a synaptic cluster responding to this new context.

model still showed significantly enhanced activity for patterns that

were previously accompanied by strong back-propagating activity,

compared to patterns with low back-propagating activity. We leave

the study of the model capacity in this case for future work.

From the biological perspective, the CAL rule can be

interpreted as a rule that combines synapse-local information

with branch-local information (branch potential and branch-wide

NMDA spikes) and two types of more global signals: somatic

activity and global Ca2+events. An essential ingredient in the CAL

rule is the dependence on NMDA spikes. In particular, synapses

at dendritic branches with frequent NMDA spikes tend to become

potentiated, see line 2 of Equation (13), benefiting the formation

of synaptic clusters. A role of NMDA spikes in LTP has also been

established in experiments (Gambino et al., 2014).

The CAL rule predicts that synapses should not be further

potentiated when Ca2+ spikes appear. This behavior avoids that too

many branches tune to the same contextual patterns, which would

waste dendritic resources and reduce synaptic clustering. To the

best of our knowledge, such plasticity has not been reported for

apical synapses yet. Hence, it can be viewed as an experimental

prediction of this work. Other predictions that arise from the

CAL theory are as follows: First, neurons tune apical dendritic

branches to certain contexts in which they previously showed

increased levels of activity. Second, the back-propagating action

potential acts as a trigger for this mechanism and its absence

during depolarization of the apical dendritic compartment leads to

LTD. We note that a similar effect has been observed in (Sjöström

and Häusser, 2006). And third, neurons recruit untuned apical

dendritic branches in new contexts in order to associate a new

context in a manner that does not interfere with previously learned

associations. The segregated activation of dendritic branches has

been observed in mouse motor cortex (Cichon and Gan, 2015).

However, its sequential recruitment has not been demonstrated so

far. In general, we do not expect that the exact behavior of the CAL

rule can be demonstrated in experiments. Nevertheless, it will be

interesting to see which aspects of its objective can be found in

apical synapses.

A central objective of the CAL rule is to cluster functionally

related synapses on dendritic branches. We showed that this

principle enables continual learning in networks of pyramidal

cells. Models for clustered synaptic plasticity have been developed

by several authors (Poirazi and Mel, 2001; Wu and Mel, 2009;

Legenstein and Maass, 2011; Limbacher and Legenstein, 2020;

Bicknell andHäusser, 2021). These works however did not consider

synaptic clustering in the context of associative learning as we did.

The work by Rao et al. (2022) developed a plasticity rule termed
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Dendritic Logistic Regression that enables the apical compartment

to predict somatic activity. This objective is somewhat related to

our association objective, although we did not attempt to produce a

precise probabilistic prediction as in Rao et al. (2022). The authors

of this paper also did not consider a clustering objective, hence

activity in their model for a given apical activation is distributed

over all branches. If the rule is used to associate contextual patterns,

this leads to interference of these patterns and hinders continual

learning. See Supplementary material Section S6 for a comparison

between Dendritic Logistic Regression and the CAL rule. Plasticity

of apical dendritic synapses has also been proposed as a mechnism

to implement backpropagation in pyramidal neurons (Schiess et al.,

2016). This implements some form of supervised learning which is

a quite different objective from the associative objective proposed

in this work. A local dendritic learning rule for supervised learning

was proposed in Sezener et al. (2021) in combination with dendritic

gating to allow for continual learning. In contrast to the CAL

rule, where the goal is to associate top-down context signals with

basal activity, this model focuses on learning some target output.

Phenomenological models for plasticity in pyramidal cells with

dendrites have been proposed and analyzed recently in several

studies (Bono and Clopath, 2017; Ebner et al., 2019; Wilmes and

Clopath, 2023). It was shown in Bono and Clopath (2017) that

due to different local properties and in particular different levels

of attenuation of the backpropagating action potential at different

dendritic sites, multiple synaptic plasticity mechanisms can coexist

in single cells. Ebner et al. (2019) studied plasticity at distal apical

dendrites in particular. Interestingly, their model predicts that

plasticity is gated by coactive basal and apical activity.

We showed that via the CAL learning rule, apical dendritic

branches can tune to context patterns, allowing the neuron

to amplify its response if the same contextual pattern is

presented again. This way, certain contextual patterns can activate

sub-networks within a network and allow context-dependent

processing of input, similar to a previously proposed algorithm for

multi-task learning in artificial neural networks (Masse et al., 2018),

but in an unsupervised manner.

In conclusion, we have shown that context-association

learning in a simpified pyramidal cell model is possible with

a synaptic plasticity rule that utilizes the main experimentally

reported neuron-internal signals. We have further shown that the

resulting contextual amplification of network activity implements

a coincidence detection mechanism that signals whether sensory

input features match the contextual top-down input. This allows

networks to learn to solve multi-task problems and enables

continual learning.

4 Methods

4.1 Details to neuron model

4.1.1 Apical branch non-linearity
The non-linear transfer function to obtain pk from uk

(Equation 2) is defined by a generalized Richards function of

the form:

p(sNMDA
k |uk) = σd(uk) = A+

K − A

(C + e−B(uk−D))
. (15)

Parameters were chosen as D = 0.7,B = 20 and C = 1. We

define σd(0)
def
= 0 to obtain A = K

1−C−eBD
= −8 · 107. We also set

σd(1)
def
= 1 to obtain K = 1.0025. The output of σd(uk) is clipped

in the interval [0, 1]. Note, that by setting parameter D = 0.7,

we get σd(0.7) = 0.5. We chose this parameter to ensure that the

NMDA spike probability pk < 0.5 if the active neurons in the

presented xapical have less than 70% overlap with the active neurons

of the pattern branch k is tuned to. The derivative of this function

is given by

σ̇d(x) =
B(K − A)e−B(x−D)

(e−B(x−D))2
(16)

4.1.2 K-winner-take-all activation
We modeled layer-wise lateral inhibition using a simple binary

K-winner-take-all (k-WTA) activation. Let HK be the set of K

highest neuron activations ubj of a hidden layer with neurons j. The

k-WTA function for neuron j in this layer is then defined by

qj =

{

1, if ubj ∈ HK

0 otherwise.
(17)

Subsequently, qj was used as laterally inhibited replacement of

ub in the calculation of the apical Ca2+ spike SCa and the neuron

output rate r.

4.2 Details to learning rule visualizations

For the visualizations of CAL in Figure 2A, we calculated

the expected value of the weight updates for a model with a

single branch, where an apical input pattern of size 12 with

4 active components was shown. Parameters were set to κ ∈

{0.1, 0.3, 0.6}, λ = 0.33, λreg = 4, wmax = 1/4 and

nCa = 1. For Figure 2B, the same parameters were used,

except for the number of branches, which was 2 and κ = 0.3.

The starting points for the four trajectories in panel D were

(w̄1, w̄2) = (0.1, 0.08), (0.08, 0.12), (0.2, 0.16), (0.2, 0.18). The black

lines show the trajectories of the weights for 2, 000 evaluations

with a dendritic learning rate of 0.08. We did not sample

dendritic NMDA-spikes, but rather used the expectations of weight

updates to obtain smooth trajectories. The arrow lengths d in

the phase plane analysis are a function of the logarithm of the

norm of 1w, given by d = 1 + ln(maximum(|1w|, 10−6)) −

dmin with dmin = min ln(maximum(|1w|, 10−6)) over

all obtained |1w|. | · | thereby denotes the Euclidean norm,

maximum(x, y) the maximum of x and y, and min the global

minimum.

4.3 Derivation of the context-association
learning (CAL) rule

Our local loss function (from Equation 8) is defined as

LCAL = uBPA+ λuBPC+ κ(1− uBP)D,
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where κ is a balancing constant. We perform optimization on

this loss function via gradient descent. In the following, we derive

the gradient

∂LCAL

∂wlj
= uBP

∂A

∂wlj
+ uBP

∂C

∂wlj
+ κ(1− uBP)

∂D

∂wlj
, (18)

starting with dissociation termD:

D =
∑

k

σd(uk)

=
∑

k

σd(
∑

i

xiwki)

H⇒
∂D

∂wlj
= σ̇d(

∑

i

xiwli)xj

= σ̇d(ul)xj.

For association lossA, we obtain

A = max

(

nCa −
∑

k

sNMDA
k , 0

)

H⇒
∂A

∂wlj
= −

∂sNMDA
l

∂wlj
2

(

nCa −
∑

k∈K

sNMDA
k

)

We cannot directly compute the derivative
∂sNMDA

l
∂wlj

, therefore we

approximate it by the derivative of the NMDA spike probability

∂p(sNMDA
l

)

∂wlj
= xjσ̇d(ul). (19)

We found, that σ̇d(ul) gets very small in regions of low branch

potential ul, resulting in very small weight updates if the branch

responds with low ul to a given input xapical. Hence, we add a small

constant ǫ = 0.08 resulting in

∂A

∂wlj
= −(σ̇d(ul)+ ǫ)xj2

(

nCa −
∑

k∈K

sNMDA
k

)

. (20)

For clustering loss C we obtain

C =
∑

k

Var(sNMDA
k ) (21)

=
∑

k

σd(uk)(1− σd(uk)) (22)

H⇒
∂C

∂wlj
= xjσ̇d(ul)(1− 2σd(ul)). (23)

We define a regularization term, which is added to the weight

update, by

hj(ul,wl) = sNMDA
k

[

wlj(
∑

s

wls − 1)+ wlj(1− x
apical
j )

]

,

where the first term normalizes the branch weights to an L1-norm

of 1 and the second term reduces weights of inactive synapses,

which are ignored by gradients ofA andD. The weight update1wlj

is obtained as

1wlj = η(wlj)

[

uBPxjf (ul)2

(

nCa −
∑

k∈K

sNMDA
k

)

+ λ uBPxjg(ul)
(

2sNMDA
k − 1

)

(24)

− κ
(

1− uBP
)

xjg(ul)

− λreg u
BPhj(ul,wl)

]

,

with f (ul) = σ̇d(ul) + ǫ and g(ul) = σ̇d(ul). We can show that the

first term is a function of the calcium spike SCa as follows. Recall

the definition

SCa =

{

1, if ub ≥ θb and ua ≥ nCa

0 otherwise.
(25)

= 2(ub − θb)2(−nCa + ua) (26)

From uBP = 2(ub − θb) we can re-write the product

uBP2(nCa − ua) = 2(ub − θb)2(nCa − ua) (27)

= 2(ub − θb)
(

1− 2(−nCa + ua)
)

(28)

=




2(ub − θb)− 2(ub − θb)2(−nCa + ua)

︸ ︷︷ ︸

=SCa






(29)

= (uBP − SCa) (30)

= uBP(1− SCa), (31)

since 2(x) · 2(x) = 2(x). The weight-dependent learning

rate η(wlj) implements a soft-bound on weights by scaling down

updates of weights close to the boundaries 0 and wmax:

η(wlj) = ηCAL wmax

(

w2
lj
· (wlj − wmax)

2

(wmax
2 )4

+
1

40

)

, (32)

where apical dendritic learning rate ηCAL is a hyperparameter.

4.4 Details to unsupervised Hebbian
K-winner-take-all learning

For the experiments in Sections 2.5 and 2.6, we applied a

variant of the learning rule from Krotov and Hopfield (2019) with

K-winner-take-all (k-WTA) from Section 4.1.2 to train our basal

weights. This function slightly differs from the WTA activation

function in the original paper, but we empirically observed that the

feature representation learnt by k-WTA better suited this task. The

update of basal weight vji from input neuron i to pyramidal neuron

j for minibatch B was then defined by

1vji = ηbasal
1

max
i,j

|1v̄ji|
1v̄ji (33)

with 1v̄ji =
∑

x∈B

qj(xi − ubj vji) (34)
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where qj was the basal activation ubj of neuron j after applying

k-WTA. As done in the code provided by Krotov and Hopfield

(2019), we decayed learning rate ηbasal linearly from an initial value

of ηbasal0 = 0.02 to 0 through the 80 training epochs, where the

learning rate for epoch n was given by ηbasaln = ηbasal0 (1− n
80 ).

4.5 Details to our extension to
unsupervised Hebbian K-winner-take-all
learning

We found that the feature representation after training with

the k-WTA Krotov-rule (see previous section for details) resulted

in multiple neurons tuning to the same feature value in the input.

We hypothesize, that the reason for this behavior is that the weights

of all K active neurons are updated toward the whole input vector

x, regardless whether some neurons already encode features of the

input. We applied principles from a Bayesian perspective on k-

WTA learning (Legenstein et al., 2017) to extend the learning rule:

1v̄ji = ηbasal
∑

x∈B

qj(xi −

N
∑

l=1

qlwli), (35)

where N is the number of neurons. Intuitively, neural weights are

then only trained on the part of the input which is not yet explained

by other neurons. We refer to this update rule as the Krotov+ rule.

4.6 Apical Excitation

The quantity ea, introduced in Section 2.2 can be calculated

analytically as

ea = EsNMDA
k

∼σd(uk)
[2(ua − nCa)]

= 1 · p(
∑

k∈K

sNMDA
k ≥ nCa)+ 0 · p(

∑

k∈K

sNMDA
k < nCa)

= 1− p(
∑

k∈K

sNMDA
k < nCa)

= 1−

nCa−1
∑

r=0

p(
∑

k∈K

sNMDA
k = r).

Note, that p(
∑

k∈K sNMDA
k

= r) is the probability mass function

of a Poisson-Binomial distribution, a generalization of the Binomial

distribution to events with different probabilities. It is defined by

p(
∑

k∈K

sNMDA
k = r) =

∑

A∈Fr

∏

i∈A

pi
∏

j∈Ac

(1− pj),

where Fr is the set of all subsets of r integers that can be taken

from {1, 2, . . . ,K}. Ac is the complement of A such that Ac =

{1, 2, . . . ,K} \ A (Wang, 1993). Probabilities pi are thereby the

NMDA spike probabilities σd(ui). For n
Ca = 1, easimplifies to

ea = 1−
∏

k∈K

(1− σd(uk)). (36)

4.7 Pattern generation

For all tasks, all apical inputs were randomly pre-generated

patterns by the following process: To generate the n-th of N

population patterns Pn ∈ {0, 1}d of dimension d, we randomly

selected a sub-set of a dimensions which were set to 1, all others to

0. Then, the pairwise cosine-similarity between new pattern Pn and

all n − 1 other patterns was calculated. The pattern was rejected if

this pairwise cosine-similarity exceeded a certain overlap threshold

omax to enhance separability of patterns. If sparse population

activity is assumed with a << d, the expected cosine similarity

between two randomly generated patterns is very low, which is in

accordance with sparse population coding in the brain (Rolls and

Tovee, 1995).

4.8 Details to pattern association learning

In the pattern association learning experiment (Section 2.3), the

model consisted only of apical dendrites, without considering basal

dendrites. We split this experiment into four parts, corresponding

to Figures 3A, C–E.

In the first part (Figure 3A) we showed 5 patterns P1, ..., P5
sequentially to the apical dendrites with 5 branches. The apical

input vector xapical(t) at time step t was thereby set to xapical(t) = P1
for 0 ≤ t < 80, then to x

apical(t) = P2 for 80 ≤ t < 160, followed

by patterns 3, 4 and 5 until time step 399. To improve visibility in

the plot in Figure 3A), we added 20 time steps with x
apical(t) = 0,

followed by a re-presentation of each pattern for 10 time steps with

3 time steps of 0 in between to again improve visibility. We set

back-propagating activity uBP(t) = 1 at each time t, so that only

the association terms of the learning rule were engaged. Patterns 1

to 5 were generated by the generation process described in Section

4.7 with dimensionality d = 12 with a = 4 active dimensions and

overlap threshold of omax = 0.4. The patterns for this experiment

alongside their pairwise cosine similarity are shown in Figure 8.

For the second part, we used 21 branches and 21 patterns

and assigned a mean back-propagating activity level of pBPp in the

interval [0, 1] to each pattern Pp. The assigned levels for each

pattern were distributed with equal spacing between pBP1 = 0

and pBP21 = 1 (see also Figure 3Ci). The patterns were randomly

presented for a total of 8400 time steps, where at each time step t

the apical input was xapical(t) = Pl where l was uniformly drawn

from 1, . . . , 21. We further sampled a binary ūBP(t) ∼ B(pBP
l
)

from a Bernoulli distribution with mean pBP
l
, which was then

given as back-propagating activity uBP(t). We generated patterns

of dimension 400 with 40 active neurons as described in Section

4.7. Weight updates were computed at each time step according

to Equation 13. The dendritic learning rate was set to η = 0.08.

For high input dimensionality we found it beneficial to introduce

sparsity in the weight initialization, which increases the variance of

branch outputs in response to patterns, reducing the time required

for a branch to win the competition. Hence we set 40% of the

synaptic efficacies on each dendritic branch to 0, whereas all other

synapses were initialized from a Gaussian distribution with mean

0.4wmax and standard deviation of 0.1wmax and clipped in the

interval [0,wmax], where wmax =
1
40 .
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FIGURE 8

Patterns from first part of pattern learning experiment. (A) The population patterns used for the pattern learning experiment from Figure 3A. Orange

circles denote active inputs (x
apical
i = 1), gray circles denote inactive inputs (x

apical
i = 0). (B) Pairwise cosine similarity between patterns.

In the third part of the experiment, we modeled 10 apical

dendritic branches, whereas the patterns were the same as in the

previous part of the experiment. pBPp in this experiment were chosen

in the interval [0.5, 1] and (as in the experiment before) assigned

equally spaced to patterns P1 to P21. Total number of time steps,

pattern presentation order and initialization were chosen as in part

two of the experiment described in the previous paragraph.

In the fourth experiment, we set the pattern size and number of

active dimensions in the patterns to 600 and 90 respectively, as well

as enforced 90% of randomly selected connections to each dendritic

branch to constant 0. This way, we modeled sparse connectivity

from apical input neurons (represented by the apical input xapical)

to the dendritic branches. We generated 40 different patterns,

assigned uBPp = 1 to half of the patterns (randomly chosen), and

uBPp = 0 to the other half. We ran the experiment with a Ca2+ spike

threshold of nCa = 2 (for nCa = 3 see Supplementary material

Section S3). Patterns were presented sequentially as in the first

part of the experiment. After all patterns were learnt, we finally

measured the apical excitation ea for 1000 presentations of each

pattern (with CAL disabled).

4.9 Details to population-level coincidence
detection via CAL

In the population coincidence experiment from Section 2.4

and Figure 4, we randomly generated 10 patterns P1, . . . , P10,

as described in Section 4.7, of dimension 400 with 40 active

dimensions per pattern with a maximum overlap of 30%. These

patterns served as context input to apical dendrites. For each basal

stimulation distribution Sp, we randomly selected a specific sub-set

of 20 neurons from the population of 60 neurons. This subset of

neurons was strongly stimulated (ub ∼ N(0.7, 0.2)) whenever we

presented the corresponding context pattern Pp. All other neurons

received weak stimulation (ub ∼ N(0.3, 0.2)). At each time step, we

randomly presented a context Pp together with basal stimulation

according to basal stimulation distribution Sp, for 2000 time steps

in total. The reported values in Figures 4C–E are averages over 10

runs with different apical dendritic branch initializations, but the

same context patterns and the same sub-sets of highly stimulated

neurons for each context.

4.10 CDFA dataset

One sample in the CDFA task (used for experiments in Sections

2.5 and 2.6) is a triplet (f, c, ŷ) with feature vector f ∈ {0, 1}nm,

context c ∈ {0, 1}60 and target ŷ ∈ {0, 1}. Feature vector f

is thereby a concatenation of n = 6 individual feature values

f = concat(f1, ..., fn) of length m = 100, where each feature

value fl is instantiated from a set Fl of 10 different values. Each

of the values is a set-wide unique, pre-generated pattern, whereas

patterns can re-occur in multiple sets. The random patterns for

each set Fl are pre-generated according to the procedure described

in Section 4.7 with pattern dimension 100 and 20 active neurons

per pattern. Despite the above mentioned constraint of uniqueness

of feature value patterns within a set Fl, the overlap between

patterns was not limited. The expected overlap between two

patterns can be computed as expectation of the corresponding

hypergeometric distribution and is ≈ 20% for the above described

pattern configuration. Class vector c is drawn from a pre-generated

set C = {c1, c2, . . . , cK} of K different random patterns, each

representing the identity of a class. The patterns are again sampled

according to the procedure described in Section 4.7, with pattern

dimension 60 of which 9 neurons where active. The maximum

overlap of active neurons between patterns was limited to 40%. We

assign a specific subset of 3 randomly drawn feature values (with

a maximum of 1 from each feature set Fl) to each class k, which

we call class definition Dk. The network does not have access to

this class definition, since this definition gives the solution of which

feature values are related to which class, and instead should be

learned by the network from the data. From the class definition sets

Dk, the feature value sets Fl and the set of class identities C we can

Frontiers inNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnins.2023.1276706
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Baronig and Legenstein 10.3389/fnins.2023.1276706

then generate a data set for training and testing the network. For

generating this data set, we apply the procedure described in the

following. First, we randomly choose a class k. Then we generate

a feature vector fmatching to this class. This is done by setting the

appropriate feature values in f from the class definitionDk. The rest

of the features (which we call don’t care features for this class) are

then randomly set to values from the corresponding feature sets F.

The triplet (f, ck, ŷ = 1) then represents a new positive data sample,

where ck is the k-th pre-generated pattern from C for class k. To

ensure balance between positive (ŷ = 1) and negative (ŷ = 0)

samples, we then choose a random class k̄, ensure that the class does

notmatch to feature vector f (which can happen by chance) and add

this new triplet (f, ck̄, ŷ = 0) as negative data sample to the data set.

The data set for unsupervised training of basal weights was

generated using a slightly different procedure: We generated a

separate data set consisting of 1,000 feature vectors with each

feature value l randomly drawn from the set of values Fl. No

contexts or targets were added and the inputs were not constrained

to resemble any classes. The point of this procedure was to establish

an unbiased feature representation in the basal weights.

4.11 Details to context-feature association

The network model for solving this task (Section 2.5) consisted

of 600 “bottom-up” input neurons, which were fully connected

to the basal compartments of a hidden layer of 60 pyramidal

neurons, followed by a single output neuron, receiving input from

all pyramidal neurons.

The pyramidal cells received as basal input the visual features in

the following way. The value of each feature i (e.g., “shape”, “color”,

etc.) was encoded as a binary vector fi ∈ {0, 1}m of lengthm = 100

which took on a different binary pattern for each distinct value of

the feature (randomly chosen). For example, the “color” feature

vector has different patterns for “red”, “blue”, “yellow”, etc. The

total feature vector f ∈ {0, 1}nm was then the concatenation of the n

individual feature values f = concat(f1, ..., fn). In our simulations,

we used n = 6 features. The apical input to the neurons consisted

of the context object class, each encoded as a class vector c ∈

{0, 1}60 that was a randomly generated unique pattern of exactly

9 non-zero elements.

Each pyramidal neuron was equipped with 10 apical branches,

where each branch in each neuron received the same input xapical ∈

{0, 1}60 from 60 “top-down” input neurons. Hence, the number of

synapses on each branch matched the dimension of xapical, which

was 60. We trained the network in two stages: during the first stage,

we showed a set of random feature value compositions (see also

Section 4.10) to the basal weights of the pyramidal layer using the

bottom-up input neurons. The 1,000 samples were presented for

80 iterations, basal weight updates were calculated in minibatches

of 16 using either the k-WTA-variant of the Krotov learning rule

described in Section 4.4 or the Krotov+ learning rule described in

Section 4.5. This training stage was class agnostic, hence the apical

dendrites did not receive any context input. After this first stage,

the basal weights were held fixed, and we presented training data

consisting of in total 20,000 samples of 100 different object classes,

with context inputs, as described in Section 4.10. Feature vectors f

were presented using the bottom-up input neurons and the context

vectors c via the top-down input neurons. Weight updates to the

apical dendritic synapses, according to the CAL rule (as defined in

Section 4.3), were performed in minibatches of 64 with a dendritic

learning rate of η = 0.06. In addition, we trained the threshold θ

of the output neuron with a cross-entropy loss on the target using

the ADAM optimizer. The Heaviside step function was thereby

replaced by the logistic sigmoid to ensure non-zero gradients. K-

winner-take-all as described in Section 4.1.2 was applied to the basal

outputs with the same K used during training of basal weights. We

measured test accuracy on 5,000 samples held-out for training. For

this performance evaluation, we replaced the binary calcium spike

SCa with its expectation to compute the output rate of neurons, i.e.,

we used SCa = 2(ub − θb)ea. This ensured deterministic network

behvior during test time.

4.12 Details to continual learning

In the continual learning scenario (from Section 2.6)

of the CDFA task, we performed training in a three-stage

process, where the first two stages were equivalent to the

training procedure described in Section 4.11. In the third

stage, the continual learning stage, we showed additional

mini data sets, each of which depicting an individual new

and unobserved task, sequentially without re-presentation of

TABLE 4 Parameters of the pattern learning scenarios from di�erent

panels of Figure 3.

Parameter Experiment (panel)

1 (A) 2 (C) 3 (D) 4 (E)

Sparse connections No No No Yes

λ 0.33 0.33 0.33 0.33

κ 0.3 - 0.3 0.3

Apical input pattern size 12 400 400 600

Active components in apical

input patterns

4 40 40 90

λreg 4 40 40 0.09

Ca2+ spike threshold nCa 1 1 1 2

wmax 1/4 1/40 1/40 0.123

Number of apical input

patterns

5 21 21 40

Number of apical dendritic

branches

5 21 12 12

µinit 0.4wmax 0.4wmax 0.4wmax 0.6wmax

σ init 0.1wmax 0.1wmax 0.1wmax 0.2wmax

ηCAL 0.04 0.04 0.04 0.06

ap. init. sparsity 0% 40% 40% 40%

ap. perm. sparsity 0% 0% 0% 90%

Apical dendritic weights are initialized from a normal distribution with mean µinit and

variance σ init . ηCAL : learning rate for CAL rule (see Equation 33). ap. init. sparsity.: Percentage

of weights per apical branch set to 0 at initialization. ap. perm. sparsity.: Percentage of apical

weights forced to 0 during the entire experiment.
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data from previous data sets. Note, that training on new data

without re-training on previous data is the main difference

between the two related concepts of multi-task learning and

continual learning.

For the continual learning scenario of the CDFA task set

(see Figure 7), a full data set with 11,520 samples, and a data

set with 1,000 samples were generated as described in Section

4.10. The 1,000 samples were only used for the first training

stage, unsupervised training of basal weights, and consisted only

of random feature value compositions (see also Section 4.11).

A further split of the full data set into multiple sub-sets, one

sub-set per task, was required. We performed this split by first

grouping the data samples by context into groups G1, . . . ,G48,

where in each group Gk only data samples with common context

vector ck occurred. Then we merged the samples from the

first 40 groups into an initial data set. This initial data set

was used in the second stage of training, where basal weights

were already frozen, and training of apical synapses with CAL,

together with supervised training of the readout threshold θ were

enabled and applied for 120 episodes with mini-batch size 64.

The remaining 8 groups G41, . . . ,G48 then provided the data sets

for each of the 8 mini-tasks respectively, which were learned

by the network incrementally in the third and last stage of

training, where the readout threshold θ was fixed and only

CAL was active. 20% of the 11,520 data samples were held-out

TABLE 5 Parameters of population-level coincidence detection

experiment.

Parameter Value

λ 0.33

κ 0.3

α 5

apical input pattern size 400

active components in apical input patterns 40

λreg 40

wmax 1/40

ap. weight init. N(0.4wmax , 0.1wmax)

apical dendritic branches per neuron 10

ηCAL 0.08

number of different contexts 10

training epochs 2000

neuron population size 60

strongly stimulated neurons per context 20

high stimulation N(0.7, 0.2)

low stimulation N(0.3, 0.2)

θb 0.5

ap. init. sparsity 40%

N(µ, σ 2) denotes a normal distribution with mean µ and variance σ 2 . ap. weight init.:

initialization of apical weights. ηCAL : learning rate for CAL rule (see Equation 33). Training

epochs: Number of randomly drawn pattern presentations, 2000 epochs with 10 contexts

means that each context pattern was shown on average 200 times in total.

from training, split into subsets as described above, and used

for testing.

TABLE 6 Parameters of the context-dependent feature association

experiment.

Parameter Value

λ 0.33

κ 0.3

λreg 18

α 10

Apical input pattern size 60

Active components in apical input patterns 9

wmax 1/9

ap. weight init. N(0.016, 0.03)

bas. weight initialization N(0, 1)

Apical dendritic branches per neuron 10

ηCAL 0.08

Neuron population size 60

ap. init. sparsity 40%

θ initialization 20

K for K-WTA 6

Classes [10, 450]

Features 6

Values per feature 10

Neurons per feature 100

Active neurons per feature 20

Features defining a class 3

Training samples 250· # of classes

Episodes for unsupervised training of basal weights 80

Unsupervised basal training batch size 16

Training episodes 100

Batch size 64

N(µ, σ 2) denotes a normal distribution with mean µ and variance σ 2 . ap. weight init.:

initialization of apical weights. ηCAL : learning rate for CAL rule (see Equation 33).

TABLE 7 Specific parameters of the continual context-dependent feature

association experiment.

Parameter Value

Total number of classes 48

Thereof used for pretraining 40

Training samples 240· # of classes

Training episodes for pretraining (joint training of first

40 classes)

120

Training episodes for tasks 1 to 8 (continual) 60 per task

All other parameters were chosen as in the CDFA multi-task experiment, see Table 6.

“Training episodes for pretraining” denotes the number of episodes in which the first 40

classes were jointly trained to learn a threshold for the readout neuron (see also main text).

Frontiers inNeuroscience 20 frontiersin.org

https://doi.org/10.3389/fnins.2023.1276706
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Baronig and Legenstein 10.3389/fnins.2023.1276706

4.13 Hyperparameters

We report hyper-parameters for the pattern learning

experiment (Section 2.3 and Figure 3) in Table 4, for the

coincidence detection experiment (Section 2.4 and Figure 4) in

Table 5, hyper-parameters specific to the CDFA task (Section 2.5

and Figures 5 and 6) in Table 6 and to the continual variant of the

CDFA task (Section 2.6 and Figure 7) in Table 7.
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