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Introduction: Severe traumatic brain injury (TBI) is the world’s leading cause of 
permanent neurological disability in children. TBI-induced neurological deficits 
may be  driven by neuroinflammation post-injury. Abnormal activity of SH2 
domain-containing inositol 5′ phosphatase-1 (SHIP-1) has been associated with 
dysregulated immunological responses, but the role of SHIP-1 in the brain remains 
unclear. The current study investigated the immunoregulatory role of SHIP-1 in a 
mouse model of moderate–severe pediatric TBI.

Methods: SHIP-1+/− and SHIP-1−/− mice underwent experimental TBI or sham 
surgery at post-natal day 21. Brain gene expression was examined across a time 
course, and immunofluorescence staining was evaluated to determine cellular 
immune responses, alongside peripheral serum cytokine levels by immunoassays. 
Brain tissue volume loss was measured using volumetric analysis, and behavior 
changes both acutely and chronically post-injury.

Results: Acutely, inflammatory gene expression was elevated in the injured cortex 
alongside increased IBA-1 expression and altered microglial morphology; but to a 
similar extent in SHIP-1−/− mice and littermate SHIP-1+/− control mice. Similarly, 
the infiltration and activation of CD68-positive macrophages, and reactivity of 
GFAP-positive astrocytes, was increased after TBI but comparable between 
genotypes. TBI increased anxiety-like behavior acutely, whereas SHIP-1 deficiency 
alone reduced general locomotor activity. Chronically, at 12-weeks post-TBI, SHIP-
1−/− mice exhibited reduced body weight and increased circulating cytokines. 
Pro-inflammatory gene expression in the injured hippocampus was also elevated 
in SHIP-1−/− mice; however, GFAP immunoreactivity at the injury site in TBI mice 
was lower. TBI induced a comparable loss of cortical and hippocampal tissue 
in both genotypes, while SHIP-1−/− mice showed reduced general activity and 
impaired working memory, independent of TBI.

Conclusion: Together, evidence does not support SHIP-1 as an essential regulator 
of brain microglial morphology, brain immune responses, or the extent of tissue 
damage after moderate–severe pediatric TBI in mice. However, our data suggest 
that reduced SHIP-1 activity induces a greater inflammatory response in the 
hippocampus chronically post-TBI, warranting further investigation.
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Introduction

Despite the fact that the developing brain has a high capacity for 
plasticity, traumatic brain injury (TBI) is one of the largest global 
pediatric health concerns as the leading cause of permanent 
neurological disability and death in children and adolescents (Dewan 
et  al., 2016). Survivors of pediatric TBI often exhibit persistent 
symptoms such as depression, anxiety, learning and memory deficits, 
and social problems, both during the acute post-injury period as well 
as into adulthood (Babikian and Asarnow, 2009; Max, 2014; Stephens 
et al., 2017). The limited recovery after a moderate or severe TBI, in 
both clinical studies and animal models, is likely a consequence of 
additional neuropathology beyond the initial injury site, which may 
evolve over time and be influenced by age at the time of injury (Kolb 
et al., 2000; Anderson et al., 2011).

The lipid phosphatase SHIP-1 is a key regulator of lymphocyte and 
myeloid cell activation in the periphery, and its loss of function is 
associated with several inflammatory diseases (Hibbs et al., 2018). 
SHIP-1 is highly expressed in microglia (Zhang et al., 2014, 2016; 
Marsh et  al., 2022), yet it’s potential regulatory role in 
neuroinflammation in the context of injury or disease states remains 
unclear. Microglia are a distinct component of the innate immune 
system that function as brain-resident mononuclear phagocytes, and 
are highly comparable to macrophages in their function and 
biomarker expression (Donat et al., 2017). In response to brain injury, 
microglia undergo morphological changes and demonstrate both pro- 
and anti-inflammatory responses (Hickman et al., 2013). There is 
increasing evidence to suggest that aberrant microglial responses, 
both proximal and distal to the injury site, promote prolonged 
neuroinflammation that contributes to secondary neuropathology 
after TBI (Raghavendra Rao et al., 2000; Tasker et al., 2005; Wilde 
et al., 2007; Mahajan et al., 2011; Kostandy, 2012; Johnson et al., 2013; 
Loane et al., 2014; Viviani et al., 2014; Girgis et al., 2016; Kinoshita, 
2016; Raghupathi and Huh, 2017). Additionally, depletion of microglia 
after TBI in adult rodent models has been shown to reduce 
neuropathology and improve cognitive outcomes (Rice et al., 2015; 
Henry et al., 2020; Cai et al., 2022). However, the underlying regulators 
of microglial reactivity and plasticity are unclear.

The phosphatidylinositol-3-kinase (PI3K)-serine/threonine-
specific protein kinase (AKT) signaling cascade mediates survival, 
proliferation, differentiation, migration, and metabolism in various 
cell types, including leukocytes (Zhou et  al., 2000; Scheid and 
Woodgett, 2001; Chang et al., 2003; Koyasu, 2003; Xiao et al., 2010; 
Xie et  al., 2014). In hematopoietic cells, this pathway is, in part, 
negatively regulated by SHIP-1 through dephosphorylation of the 
lipid-derived second messenger phosphatidylinositol 
3,4,5-trisphosphate (Hibbs et  al., 2018; Chu et  al., 2021). Loss of 
SHIP-1 activity drives extramedullary hematopoiesis and has been 
implicated in pronounced chronic inflammatory diseases, such as 
inflammatory lung disease, osteoporosis, lupus, and Crohn’s-like ileitis 
(Helgason et al., 1998; Liu et al., 1999; Takeshita et al., 2002; Kerr et al., 
2011; Maxwell et al., 2011; McLarren et al., 2011; Hibbs et al., 2018). 
These findings highlight the critical role of SHIP-1 as a negative 
regulator of immune cell signaling.

Emerging evidence indicates that SHIP-1 helps maintain 
homeostasis in the central nervous system. Microglia and brain 
endothelial cells from humans and mice have been shown to 
express considerable levels of SHIP-1 (Olah et al., 2018; Pedicone 

et al., 2020). Single nucleotide polymorphisms within the human 
SHIP-1 gene INPP5D are strongly correlated with the development 
of Alzheimer’s disease and associated pathology in the aging brain 
(Farfel et al., 2016; Jing et al., 2016; Efthymiou and Goate, 2017; 
Yoshino et  al., 2017; Tsai et  al., 2021; Zajac et  al., 2021). In 
addition, heightened expression of Inpp5d in plaque-associated 
microglia from preclinical Alzheimer’s Disease models implicate 
the SHIP-1 pathway in plaque clearance (Lin et  al., 2021; Tsai 
et  al., 2021). These findings suggest that SHIP-1 may have a 
neuroprotective role in the brain by regulating 
microglial responses.

Given the role of neuroinflammation in the modulation of 
pediatric TBI outcomes, and the significant function of SHIP-1 in the 
regulation of peripheral inflammation, we hypothesized that SHIP-1 
would negatively regulate microglial responses following pediatric 
TBI. To address this hypothesis, SHIP-1-deficient mice underwent 
experimental TBI or sham surgery, and we  examined 
neuroimmunological, pathological, and behavioral outcomes across 
an extended time course post-injury.

Methods and methods

Animals and ethics

Male and female SHIP-1-deficient mice (Inpp5dtm1Dmt) (Liu et al., 
1999) mice on a C57BL/6 background were used (Maxwell et  al., 
2011). For all studies, littermate SHIP-1+/− mice were used as 
controls, as they have previously been extensively characterized as 
exhibiting an identical peripheral inflammatory phenotype to SHIP-
1+/+ mice (Maxwell et al., 2011). In addition, analysis of acute TBI 
responses in SHIP-1+/+ and SHIP-1+/− indicated comparable 
immunological responses to brain injury (Supplementary Figure S1 
and Supplementary Table S1). Mice were generated by breeding 
heterozygous SHIP-1+/− females with homozygous SHIP-1−/− 
males, and genotypes were confirmed by PCR, with the distribution 
of experimental animals shown in Supplementary Table S2. Mice were 
housed in a specific pathogen-free facility in the Precinct Animal 
Center at the Alfred Research Alliance under a 12-h light–dark cycle 
(lights on at 0700), with unrestricted access to food and water. All 
surgical procedures were approved by the Alfred Research Alliance 
Animal Ethics Committee (#E-1881-2019-M and #E-8259-2022-M) 
and were conducted in accordance with the guidelines of the 
Australian Code of Practice for the Care and Use of Animals for 
Scientific Purposes.

Experimental design

SHIP-1+/− and SHIP-1−/− littermate mice underwent sham or 
experimental TBI surgeries using the CCI model at postnatal day 21 
(p21) ± 1 day. Neurobehavioral outcomes were then assessed at 
1-week, 4-weeks, and 12-weeks after surgery. Tissue was collected at 
6 h post-injury for gene expression analysis, and at 1-week and 
12-weeks post-injury for histology and gene expression analysis 
(Figure 1A). Mice were randomized to receive either TBI or sham 
surgery, and all outcome measures and analyzes were conducted by 
investigators blinded to genotype and injury group.
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Controlled cortical impact

Controlled Cortical Impact (CCI) was performed as previously 
described (Tong et al., 2002; Semple et al., 2017). Briefly, mice were 
anesthetized with 4% isoflurane in O2 gas via a nose cone, with 
anesthesia maintained at 1.5–2% isoflurane for the duration of the 
procedure. The head was fixed in a stereotaxic frame, bupivacaine 
(1 mg/kg s.c.) was administered locally to the mid-line of the scalp, and 
buprenorphine (0.5 mg/kg s.c.) was injected to the animal’s flank. A 
unilateral 3.5 mm craniectomy was performed using a fine-tipped 
dental drill (Ideal Micro-drill, Cellpoint Scientific, Gaithersburg, 
United  States). A moderate-to-severe CCI was induced with an 
electric Cortical Contusion Impactor (Custom Design & Fabrication, 
Sandston, United  States) at an impactor velocity of 4.5 m/s and a 
deformation depth of 1.7 mm with a 3 mm diameter tip, to the left 

parietal lobe. Sham mice underwent an identical surgical procedure 
to TBI mice (i.e., anesthesia, surgical preparation, and craniectomy), 
but did not receive the TBI impact. Post-operatively, mice were 
administered subcutaneous sterile isotonic saline to assist with 
rehydration and maintained on heated pads until self-righting, before 
being returned to group-housing with same-sex littermates (mix of 
both TBI and sham). Two SHIP-1−/− animals were excluded as they 
failed to recover following surgery.

Behavior testing

Behavior testing was conducted at 1-week, 4-weeks, and 12-weeks 
post-surgery. Anxiety-like behavior was assessed using the Elevated Plus 
Maze (10 min of testing). General locomotor activity and anxiety levels 

FIGURE 1

TBI increased expression of inflammatory genes at 6  h post-injury. (A) Experimental timeline. (B) Relative expression of the indicated genes in the 
ipsilateral cortex from SHIP-1+/− and SHIP-1−/− mice, at 6  h post-TBI/sham surgeries (B–G). *p  <  0.05 **p  <  0.01, two-way ANOVA main effect of 
injury; n  =  4-6/group. Complete reporting of statistical analyzes is in Supplementary Table S4.

https://doi.org/10.3389/fnins.2023.1276495
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chu et al. 10.3389/fnins.2023.1276495

Frontiers in Neuroscience 04 frontiersin.org

were analyzed using an open-field test (10 min of testing). Gross motor 
functioning and coordination were assessed using the accelerating 
rotarod test over two subsequent days. Working and spatial memory 
were evaluated using the Y-maze (15 min of habituating, 30 min inter-
trial interval, 5 min of testing) and the discrimination index 

 Novel Familiar

Novel Familiar

Time TimeDiscrimination index
Time Time

 − 
=  +

. All tests were 

performed as detailed previously (Sharma et al., 2022), by an investigator 
blinded to the experimental group.

Transcardial perfusion and tissue fixation

Transcardial perfusion and tissue fixation procedures were 
performed as previously described (Gage et al., 2012). Briefly, mice 
were euthanized with sodium pentobarbitone (80 mg/kg i.p.), spleens 
were extracted and weighed, and blood was collected from the right 
atrium for serum isolation. Mice then underwent transcardial 
perfusion with saline (3 mL/min for 5 min) followed by 4% 
paraformaldehyde. The collected brain was post-fixed in 4% 
paraformaldehyde overnight. Brains collected at 1-week post-injury 
were immersed in 30% sucrose for 3–5 days before being embedded 
in Optimal Cutting Temperature (OCT) media (ProSciTech, Kirwan, 
Australia) for sectioning. Brains collected at 12-weeks post-injury 
were immersed in 70% ethanol for 2 days then embedded in paraffin 
for sectioning.

Immunofluorescence

Perfused brains were sectioned from approximately Bregma 
0.7 mm to 3.5 mm. 12 μm thick coronal sections were cut from 
OCT-embedded brains and 8 μm sections were cut from paraffin 
embedded brains. Sections were collected onto Superfrost Plus slides 
(25 × 75 × 1 mm; Thermo Fisher Scientific, Massachusetts, 
United States). Paraffin-embedded brains underwent heat-mediated 
antigen retrieval using a citric acid buffer (0.21% citric acid and 0.05% 
Tween-20), then non-specific binding was blocked on both paraffin- 
and OCT-embedded brains by incubation with Normal Donkey 
Serum for 1 h. The tissue was incubated with antibodies against 
ionized calcium binding adaptor molecule 1 (IBA-1; goat polyclonal, 
AB5076, 1:500, Abcam, Cambridge, United Kingdom), Glial Fibrillary 
Acidic Protein (GFAP; rabbit polyclonal, Z0334, 1:1000, Agilent, 
California, United States) or CD68 (rat polyclonal, AB53444, 1:500, 
Abcam) at 4°C overnight. Subsequently, secondary donkey anti-goat 
Alexa Fluor 488 antibody (1:250; Invitrogen, Massachusetts, 
United  States), donkey anti-rat Alexa Fluor 488 antibody (1:250; 
Invitrogen), or donkey anti-rabbit Alexa Fluor 594 antibody (1:250; 
Invitrogen) were applied and incubated for 1 h at room temperature. 
Sections were then counterstained with Hoechst (1:1000; Sigma-
Aldrich, Missouri, United States) and mounted with glass coverslips 
using fluorescence mounting media (Agilent).

All fluorescent images were captured using the Nikon-TiE 
inverted fluorescence microscope with NIS-Elements (Nikon) 
software. Images were analyzed using FIJI/ImageJ (ver. 1.52p, National 
Institutes of Health, Maryland, United  States). IBA-1, GFAP, and 
CD68 stains were quantified by converting the image to binary and 
the threshold was adjusted to best represent the original 

photomicrograph. The amount of staining was expressed as percentage 
coverage for each region of interest (Sharma et  al., 2022). Image 
quantification methods were identical across all images. Every 6th 
section (~ 360 μm between sections) was analyzed from each brain, 
for a total of 8 slides between Bregma 0.7 to 3.5 mm.

Microglia morphology analysis

Analysis of microglial morphology at 1-week post-injury was 
conducted as described previously (Ryu et al., 2021). In brief, five 
randomly selected IBA-1+ microglia were isolated from the three 
most medial images of the cortex of each brain at the acute time-point. 
Cell branches and soma were traced and skeletonized using 
ImageJ. The number of branches, average branch length and soma area 
were measured for each cell, then the average of all cells for each 
animal were calculated for graphical presentation.

Chronic microglial morphology was analyzed as previously 
published (Morrison et al., 2017; Young and Morrison, 2018; Green 
et al., 2022a,c). Three randomly selected microglia were isolated from 
the ipsilateral hippocampus. The three most medial sections were used 
from each animal; nine cells selected in total for each brain. Microglia 
were skeletonized and analyzed in ImageJ using the ‘analyze skeleton’ 
plugin. The number of branches, number of endpoints, and average 
branch length per cell were calculated.

Cresyl violet staining

Coronal sections were stained with cresyl violet (Sigma-Aldrich, 
Missouri, United States), then dehydrated with increasing ethanol 
concentration, and mounted with DPX mounting medium (Sigma-
Aldrich). Images were captured using the Leica Aperio AT Turbo 
Brightfield slide scanner at 1x magnification (Monash Histology 
Platform, Melbourne, Australia). The volume of pathological tissue 
was quantified using the Cavalieri method of unbiased stereology via 
ImageJ (Marcos et  al., 2012; Sharma et  al., 2022). The volume of 
remaining healthy tissue in the ipsilateral hemisphere was compared 
to the volume of healthy tissue in the contralateral hemisphere for 
each respective region.

Quantitative real-time polymerase chain 
reaction

Fresh brains were collected from SHIP-1+/− and SHIP-1−/− 
mice at 6-h, 1-week and 12-weeks post-sham/TBI, for PCR to evaluate 
inflammatory gene expression. The ipsilateral cortex was processed 
for RNA isolation using a RNeasy mini kit (Qiagen, Hilden, Germany) 
and a QIAcube (Qiagen), as per the manufacturer’s protocol. Eluted 
RNA concentration and purity were determined using a Qiagen 
QIAexpert spectrophotometer. One microgram of eluted RNA from 
each sample was reversed transcribed into cDNA using QuantiTect 
Reverse Transcription kit (Qiagen) and diluted 1:10.

PCR for samples collected at 6-h and 1-week post-injury was run 
in duplicate on a 192-well plate using a Qiagility liquid handling robot 
(Qiagen). cDNA was amplified with the Vii7 Real-Time PCR System 
(Life Technologies, California, United States). Samples collected at 
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12-weeks post-injury were sent to the Monash Single Cell Genomics 
Facility (Monash Healthy Translation Precinct, Melbourne, Australia) 
for more extensive gene expression profiling. TaqMan fast advanced 
gene expression assay (Thermo Fisher Scientific) was used for both 
methods (Supplementary Table S3).

Relative gene expression ratios were calculated using the 2−ΔΔCT 
method and normalized to the geometric mean of the housekeeping 
genes (Ppia and Hprt), as previously shown to be  stable in this 
pediatric TBI model (Zamani et al., 2020). Expression of each gene 
was normalized to sham SHIP-1+/− control mice.

Serum cytokine quantification

Serum cytokines at 12-weeks post-injury were quantified using 
the Bio-Plex Pro Mouse Cytokine 23-plex Assay (Bio-RAD, CA, 
United States) for IL-4, IL-6, IL10, IL-12(p40), G-CSF, IFN-γ, MIP-1α, 
MIP-1β Serum was diluted by 1:4, and 25 μL was loaded into each 
well. The plate was prepared as per the manufacturer’s instruction and 
washed using the Bio-Plex Handheld Magnetic Washer (Bio-RAD). 
The assays were run on the Bio-Plex 200 (Bio-RAD) and fluorescence 
intensity was collected. The calibration curve was analyzed using the 
Bio-Plex manager software (version 5.0, Bio-RAD).

Statistical analysis

Statistical analysis was performed using the GraphPad Prism 
program (ver. 8.2.1, GraphPad Software, Boston, United States) with 
statistical significance reported as p < 0.05. All quantitative data were 
normally distributed based on normality tests (Anderson-Darling, 
D’Agostino and Pearson, Shapiro–Wilk and Kolmogorov–Smirnov); 
thus, two-way ANOVA with Tukey’s multiple comparison tests were 
used to examine the factors of genotype and injury. Where appropriate, 
three-way ANOVA tests were used to examine the factors of genotype, 
injury, and time. In addition, while the study was not designed to 
evaluate sex as a biological variable, we conducted three-way ANOVA 
tests as a preliminary analysis of sex in the context of genotype and 
injury variables; significant differences are reported. Data are 
presented as mean ± standard error of the mean (SEM).

Results

Inflammatory gene expression in the 
ipsilateral cortex was elevated at 6-h 
post-injury but not influenced by SHIP-1 
deficiency

Mice were subjected to CCI or sham surgery at 3-weeks of age and 
assessed at several post-injury time points to determine the effect of 
SHIP-1 deficiency on a range of molecular, cellular, and 
neurobehavioral outcomes (Figure  1A). Gene expression in the 
ipsilateral cortex (Figure 1 and Supplementary Table S4) revealed 
increases in expression of the pro-inflammatory cytokine Tnf and 
chemokine Ccl2 at 6-h post-injury in TBI animals (Figures 1B,C), 
while levels of Il1b were not changed (Figure 1D). In addition, at 6-h 
post-injury, TBI and SHIP-1 deficiency independently increased 

expression of the anti-inflammatory gene Chil3 (Figure 1E). TBI alone 
increased expression of H2ab1 and the astrogliosis marker Gfap 
(Figures  1F,G). Collectively, these studies indicate that TBI alone 
induced increased expression of inflammatory and 
neuroimmunological genes at 6 h post-injury but there was no 
difference between SHIP-1−/− mice and SHIP-1+/− mice.

Microglial numbers and activation were not 
affected by genotype at 1-week following 
brain injury

Previous characterization of SHIP-1-deficient mice revealed 
impaired growth and splenomegaly manifestation as early as 
4–5 weeks of age (Helgason et al., 1998). To confirm that our animals 
displayed a similar phenotype, we examined body weight and spleen 
weight. At 1-week post-injury (i.e., age p. 28), body weight was not 
affected by SHIP-1 deficiency or TBI (Supplementary Figure S2A). 
However, body weight was influenced by sex, specifically in TBI mice - 
where female SHIP-1−/− mice had a lower body weight compared to 
male SHIP-1−/− mice (Tukey’s multiple comparison test, p = 0.0176). 
SHIP-1−/− mice exhibited enlarged spleens (expressed as a ratio of 
body weight) compared to SHIP-1+/− mice, regardless of injury 
(Supplementary Figure S2B).

To investigate how SHIP-1 deficiency affected microglial 
activation at 1-week post-TBI, immunofluorescence staining was 
performed to quantify the expression of the microglial marker IBA-1, 
average number of IBA-1+ microglia, and their morphology (Figure 2 
and Supplementary Table S5). The extent of IBA-1 staining and 
average number of IBA-1+ microglia were significantly increased at 
the injury site, peri-lesional area, dentate gyrus, and dorsolateral 
thalamus of TBI mice when compared with sham-treated mice 
(Figures 2B,C). However, there were no differences between genotypes 
in any of the four regions of interest.

In addition, the morphology of IBA-1+ microglia was analyzed as 
an indicator of cell activation state. A total of 15 cells were examined 
from each animal and the averages of each animal were compared. 
Compared to sham animals, microglia in the cortex of TBI animals 
exhibited reduced branch length and number of branches, indicating 
a more activated state was induced by TBI. Microglial activation was 
further indicated by increased average microglial cell soma size in TBI 
animals (Figures 2D–F). However, there were no differences in branch 
length, branch number, or soma size between genotypes. As expected, 
there were no TBI or genotype-driven effects in any microglial 
morphology outcome measures in the contralateral hemisphere 
regions-of-interest (data not shown). Taken together, the acute 
microglial activation following pediatric TBI was unaltered by SHIP-1 
deficiency as IBA-1 expression, number of microglia and microglial 
morphology were comparable between SHIP-1−/− and 
SHIP-1+/− mice.

Microglia-related gene expression was 
altered by SHIP-1 deficiency, but not TBI, at 
1-week post-injury

To examine immune responses post-injury, expression of 
microglial-related inflammatory genes in the injured cortex was 
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FIGURE 2

Microglial activation, number, and morphology in regions of interest were not affected by SHIP-1 deficiency acutely following TBI. (A) Representative 
images of IBA-1 immunofluorescence staining in the ipsilateral cortex, perilesional cortex, dentate gyrus and dorsolateral thalamus of SHIP-1+/− and 
SHIP-1−/− mice 1-week post-TBI or sham surgery. (B,C) Quantification of IBA-1 staining and the average number of IBA-1+ microglia in 
aforementioned brain regions of indicated mice. (D–F) Morphological analysis of ipsilateral cortical IBA-1+ microglia. **p  <  0.01 ***p  <  0.001 
****p  <  0.0001, Two-way ANOVA main effect of injury; n  =  5-7/group. Solid  =  female, open  =  male. Scale bar  =  100  μm. Complete reporting of statistical 
analyzes is in Supplementary Table S5.
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quantified at 1-week post-injury by PCR (Figure  3 and 
Supplementary Table S6). Expression of inflammatory markers such 
as Cd86, Fcgr3 and Mrc1 were unaffected by injury (Figures 3A–C). 
However, SHIP-1−/− mice exhibited increased gene expression of 
Fcgr3 and Mrc1 (Figures 3B,C). Similarly, Expression of the microglial 
transmembrane protein Tmem119, pattern recognition receptor 
Trem2, and microglial homeostatic marker Sall1 were comparable 
between injury and sham groups (Figures 3D–F). However, SHIP-
1−/− mice had decreased gene expression of Sall1 compared to SHIP-
1+/− mice (Figure 3F). Taken together, the absence of SHIP-1, but not 
TBI, altered the expression of inflammatory and immunological genes 
in 4-week-old mice.

Ship-1 deficiency did not alter acute 
macrophage and astrocyte responses after 
TBI

In addition to microglial responses, innate immune responses in the 
brain including macrophage infiltration (by CD68 immunofluorescence) 
and astrocyte reactivity (by GFAP immunofluorescence) were also 
evaluated at 1-week post-injury in SHIP-1+/− and SHIP-1−/− mice 
(Figure 4 and Supplementary Table S7).

CD68 immunofluorescence staining at the injury site and 
ipsilateral corpus callosum/external capsule was examined to quantify 
macrophage infiltration, as previously observed (Huang et al., 2021). 
While CD68 can label both microglia and macrophages, we interpreted 
this as predominantly macrophages in this context as expression 
appeared to be restricted to amoeboid-like cells in close proximity to 
the lesion site. CD68 immunofluorescence staining was significantly 
increased in both SHIP-1+/− and SHIP-1−/− mice after TBI 

compared to sham animals (Figures 4C,D); however, there were no 
differences in CD68 staining between genotypes within both regions. 
Expression of Ccl2, a gene encoding a chemokine central to monocyte 
recruitment, was quantified at the injury site, and found to be elevated 
after injury (Supplementary Figure S3), but not affected by SHIP-1 
deficiency. Similarly, GFAP immunofluorescence was increased in TBI 
animals at this acute time-point, but no differences were observed 
between genotypes (Figure  4E). This indicates that macrophage 
infiltration and astrocyte reactivity acutely post-injury were not 
affected by the absence of SHIP-1.

Ship-1 deficiency did not alter TBI-induced 
tissue damage or changes in anxiety-like 
behavior, explorative tendency, and 
memory functioning at 1-week post-injury

Cresyl violet staining of brain tissue sections was used to examine 
the extent of tissue damage after TBI (Figure  5 and 
Supplementary Table S8). The remaining volume of healthy tissue in 
the ipsilateral cortex and hippocampus were compared to the volume 
in the contralateral hemisphere (Figure  5B). In the ipsilateral 
hemisphere, the volume of remaining healthy cortical tissue was 
reduced at 1-week post-injury, independent of genotype (Figure 5C), 
while the volume of healthy tissue in the ipsilateral hippocampus at 
1-week post-injury was not affected by either injury or genotype 
(Figure  5D). The acute pathological outcomes in this study were 
consistent with the progressive pathology as previously described 
(Webster et al., 2019b; Sharma et al., 2022, 2023).

SHIP-1+/− and SHIP-1−/− mice also underwent a battery of 
behavior tests prior to tissue collection at 1-week post-injury, to 

FIGURE 3

Acutely post-TBI, the expression of several microglial-related genes was altered by SHIP-1 deficiency. (A–F) Relative expression of the indicated genes 
in the injured cortex of SHIP-1+/− and SHIP-1−/− mice at 1-week post-injury. *p  <  0.05, Two-way ANOVA main effect of genotype; n  =  5-6/group. 
Solid  =  female, open  =  male. Complete reporting of statistical analyzes is in Supplementary Table S6.
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examine whether SHIP-1 deficiency alters TBI-induced behavioral 
deficits commonly reported in this pediatric CCI model (Webster 
et al., 2019a; Sharma et al., 2022). In the Elevated Plus Maze, although 
the amount of time in the open arms was comparable between 
genotypes and injury groups (Figure 5E), the total distance traveled 
by SHIP-1−/− mice was lower (Figure 5F).

In the open-field test, both SHIP-1 deficiency and TBI resulted in 
decreased time spent in the center zone (Figure 5G). Post-hoc testing 
indicated reduced time in center in sham-operated SHIP-1−/− mice 
compared to sham operated SHIP-1+/− mice (Tukey’s multiple 
comparison test, p = 0.0115), as well as, reduced time in center in 
SHIP-1+/− mice with TBI compared to sham-treated SHIP-1+/− 
mice (Tukey’s multiple comparison test, p = 0.0004; Figure  5G). 
However, there were no differences between SHIP-1+/− and SHIP-
1−/− mice post-injury.

Consistent with findings from the Elevated Plus Maze, SHIP-
1−/− mice also displayed reduced explorative tendencies during the 
open-field test as determined by distance traveled (Figure  5H). 
Furthermore, preliminary analysis revealed an influence by sex, as 
distance traveled by sham-treated male mice was lower compared to 
sham-treated female mice (Tukey’s multiple comparison test, 
p = 0.0334; Figure 5H). This reduced activity observed in SHIP-1−/− 
mice was not due to general motor deficits in these animals, as the 
performance during the accelerating rotarod task was unaffected by 

both injury and genotype (Figure  5I). Additionally, all groups 
regardless of injury or genotype showed an increase in rotarod 
performance on the test day compared to the training day (Figure 5I).

In the Y-maze, the discrimination index was calculated to examine 
each animal’s short-term spatial memory performance and ability to 
discern the familiar arm from the novel arms of the maze. Performance 
during Y-maze was comparable between injury groups and genotype 
(Figure 5J). Preliminary assessment revealed an interaction between 
sex and genotype (Figure 5J).

In summary, SHIP-1 deficiency did not exacerbate tissue loss 
1-week following TBI, but independently increased anxiety-like 
behaviors and reduced the explorative tendency. Neither TBI nor 
SHIP-1 deficiency affected motor skills or working memory at 1-week 
post-injury.

At 12-weeks post pediatric TBI, SHIP-1 
deficient mice had exacerbated body 
weight differences, splenomegaly, and 
serum cytokine levels

Due to pro-longed secondary complications following pediatric 
TBI clinically (Neumane et  al., 2021), injury outcomes and 
immunological responses were also assessed chronically post-injury 

FIGURE 4

SHIP-1 deficiency did not alter acute CD68 and GFAP expression at 1-week after TBI. (A) Representative images of CD68 (green) and (B) GFAP (red) 
immunofluorescence staining in the ipsilateral dorsal hemisphere of sham and TBI SHIP-1+/− and SHIP-1−/− mice 1-week post injury. Quantification 
of CD68 staining at the (C) injury site and (D) external capsule, and quantification of GFAP staining at the (E) injury site. **p  <  0.01 ****p  <  0.0001, Two-
way ANOVA main effect of injury; n  =  5-7/group. Solid  =  female, open  =  male. Scale bar  =  1  mm. Complete reporting of statistical analyzes is in 
Supplementary Table S7.
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(12-weeks). Body weight, spleen weight, and serum cytokines were 
examined as a measure of the peripheral inflammatory phenotype 
(Figure  6 and Supplementary Table S9). At 12-weeks post-injury, 

SHIP-1−/− mice had reduced body weight and exhibited 
splenomegaly, independent of injury, likely reflecting their known 
peripheral inflammatory phenotype (Figures 6A,B; Helgason et al., 

FIGURE 5

SHIP-1 deficiency induced anxiety-like behavior and reduced explorative tendency at 1-week post-injury, without altering the extent of brain tissue 
damage. (A) Representative images of brain sections from sham and TBI SHIP-1+/− stained with cresyl violet at 1-week post-injury. (B) Illustration of 
regions of interest. (C) Ratio of healthy (remaining/uninjured) ipsilateral cortex volume to healthy contralateral cortex volume. (D) Volume of healthy 
ipsilateral hippocampus to healthy contralateral hippocampus. (E) Percentage time spent in open arm and (F) total distance traveled during the 
Elevated Plus Maze. (G) Percentage time spent in the center zone and (H) total distance traveled during the open-field test. (I) Latency to fall during the 
rotarod test on the training and testing days. (J) Comparison between time spent in familiar arm and novel arm during the Y-maze. *p  <  0.05 **p  <  0.01 
***p  <  0.005 ****p  <  0.0001; Two-way or three-way ANOVA with Tukey’s post-hoc main effect of injury and genotype (and time, as appropriate); 
n  =  5-17/group. Solid  =  female, open  =  male. Scale bar  =  2  mm. Complete reporting of statistical analyzes is in Supplementary Table S8.
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1998; Liu et al., 1999; Maxwell et al., 2011; Tsantikos et al., 2018). 
Moreover, sex had an impact on body weight and spleen weight. 
Preliminary post-hoc assessment identified a reduction in body 
weight of sham-treated female SHIP-1−/− mice (Figure 6A, Tukey’s 
multiple comparisons test, p = 0.0375), whereas spleen weight was 
elevated post-TBI in female SHIP-1−/− mice (Figure  6B, Tukey’s 
multiple comparisons test, p < 0.0001).

In addition, SHIP-1−/− mice had elevated circulating cytokines 
including G-CSF, IL-4, and IL-6 compared to SHIP-1+/− mice, with 
no differences between sham and injury groups, which is consistent 
with previous studies (Figures 6C–E; Desponts et al., 2006; Haddon 
et al., 2009; Maxwell et al., 2011; Tsantikos et al., 2018). By contrast, 
the concentration of the pro-inflammatory cytokine IFN-γ was 
significantly reduced in TBI mice, whereas IL-12(p40) levels were 
significantly higher in SHIP-1−/− mice (Figures  6F,G). The anti-
inflammatory cytokine IL-10 and chemoattractant MIP-1α showed 
main effects of both genotype and TBI, being significantly reduced in 
TBI animals but increased in SHIP-1−/− mice (Figures 6H,I). Finally, 
the concentration of MIP-1β was also significantly elevated in SHIP-
1−/− mice, in both TBI and sham groups (Figure 6J). Together these 
data indicate that absence of SHIP-1 elevated circulating cytokine 
concentrations, while TBI had an immunosuppressive effect 
chronically post-pediatric brain injury.

Inflammatory gene expression was 
elevated in the hippocampus of SHIP-1-
deficient mice chronically after TBI

To examine whether chronic immune responses post-injury was 
exacerbated by SHIP-1 deficiency, PCR was performed to examine the 
expression of genes related to inflammatory and immune responses 
in the ipsilateral cortex and hippocampus of SHIP-1+/− and SHIP-
1−/− mice chronically post-TBI (Figure  7 and 
Supplementary Table S10). Quantification of Inpp5d expression in the 
cortex confirmed a lack of SHIP-1 expression in SHIP-1−/− mice 
(Supplementary Figure S4). In the ipsilateral cortex, expression of the 
pro-inflammatory genes Cd86 elevated in SHIP-1−/− mice, with 
post-hoc analysis identifying increased expression in sham operated 
SHIP-1−/− mice compared to similarly treated SHIP-1+/− mice 
(Tukey’s multiple comparisons test, p = 0.0006; Figure  7A). Nox2 
expression was elevated in SHIP-1−/− mice (Figure 7B). Interactions 
between injury and SHIP-1 deficiency decreased the expression of the 
anti-inflammatory marker Mrc1, with post-hoc analysis revealing a 
significant reduction in SHIP-1−/− mice compared to SHIP-1+/− 
mice in the TBI group (Tukey’s multiple comparisons test, p = 0.0257; 
Figure 7C). Additionally, expression of the astrocyte activation marker 
Megf10 was unchanged between injury groups, but significantly lower 

FIGURE 6

SHIP-1 deficiency led to reduced body weight, splenomegaly, and elevated serum cytokines at 12-weeks post-injury. (A) Body weights of SHIP-1+/− 
and SHIP-1−/− mice 12-weeks post-TBI or sham surgery. (B) Spleen weight expressed relative to body weight. (C–J) Concentration of the indicated 
cytokines in the serum of aforementioned mice. *p  <  0.05, **p  <  0.01, ***p  <  0.005, ****p  <  0.0001, Two-way ANOVA main effect of injury and genotype; 
(A,B) n  =  10-18/group, (C–J) n  =  5-6/group. Solid  =  female, open  =  male. Complete reporting of statistical analyzes is in Supplementary Table S9.
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in SHIP-1−/− mice compared to SHIP-1+/− mice (Figure 7D). Taken 
together, these results suggest that the expression of inflammatory 
genes in the cortex was altered by SHIP-1 deficiency at 12 weeks 
post-injury.

In the ipsilateral hippocampus, Cd86 expression was comparable 
between injury groups, but was significantly elevated in SHIP-1−/− 
mice compared to SHIP-1+/− mice (Figure 7E). Nox2 expression in 
the hippocampus was elevated in both SHIP-1 deficient mice and TBI 
mice, with a trend towards a significant interaction between SHIP-1 
deficiency and injury (Figure 7F). Moreover, injury alone elevated 
Mrc1 expression in the hippocampus, with no differences between 
genotypes (Figure 7G). Expression of Megf10 within the hippocampus 
was comparable between injury and genotypes (Figure 7H).

Hippocampal expression of the microglial phagocytic gene Cd68 
was elevated by both SHIP-1 deficiency and injury, with post-hoc 
analysis identifying elevated expression in SHIP-1−/− mice after TBI, 
compared to SHIP-1+/− mice in the TBI group and SHIP-1−/− mice 
in the sham group (Tukey’s multiple comparisons test, p = 0.0031; 
p = 0.0055; Figure  7I). On the contrary, gene expression of the 
chemokine receptor Cx3cr1 was reduced in the TBI mice, but overall 
elevated in SHIP-1−/− mice compared to SHIP-1+/− mice (Figure 7J).

Gene expression of the chemokine Ccl2 in the hippocampus was 
increased following injury and SHIP-1 deficiency (Figure  7K). 
Moreover, gene expression of the blood–brain barrier breakdown 
marker Mmp12 was elevated in the hippocampus of TBI mice, with 
no differences between genotypes (Figure 7L).

Expression of the stress hormone Crh was elevated in the 
hippocampus of TBI mice (Figure 7M). Finally, expression of the 

neuroinflammatory marker Tspo, was increased by both injury and 
SHIP-1 deficiency (Figure  7N). In summary, the expression of 
inflammatory genes in the hippocampus chronically post-injury were 
altered by SHIP-1 deficiency and injury.

Microglia did not exhibit an activated phenotype at 12-weeks 
post-pediatric TBI, despite an elevated astrocyte response.

Next, we examined the inhibitory effect of SHIP-1 in chronic glial 
responses by assessing microglia activation, morphology, and 
astrocyte reactivity in SHIP-1−/− mice at 12-weeks following 
pediatric brain injury, given prolonged glial activation following focal 
brain injuries was previously identified in pre-clinical studies (Loane 
et al., 2014; Figures 8 and Supplementary Table S11). At this chronic 
timepoint, IBA-1 immunofluorescence staining and the number of 
IBA-1+ microglia at the ipsilateral injury site, peri-lesional area, 
dentate gyrus and dorsolateral thalamus was comparable between 
injury groups and genotypes (Figures 8B,C). Additionally, there were 
no differences between groups in the extent of IBA-1 staining or 
number of IBA-1 positive microglia in the contralateral hemisphere 
(data not shown).

Since inflammatory gene expression was significantly 
elevated in the hippocampus at 12-weeks post-injury suggesting 
an increase in microglial activation, microglial morphology in 
the ipsilateral hippocampus were examined using single cell 
quantitative analysis (Figure  9 and Supplementary Table S11; 
Morrison et  al., 2017; Green et  al., 2022c). Three cells were 
isolated from each image of the hippocampus, from the three 
most medial images from each animal (Figure 9B). The average 
number of branches, number of branch end points, and average 

FIGURE 7

Interactions were observed between SHIP-1 deficiency and TBI in inflammatory gene and microglial phagocytic gene expression chronically post-
injury, particularly in the hippocampus. (A–D) Relative expression of the indicated genes in the ipsilateral cortex of SHIP-1+/− and SHIP-1−/− mice at 
12-weeks post-injury. (E–N) Relative expression of the indicated genes in the ipsilateral hippocampus of SHIP-1+/− and SHIP-1−/− mice at 12-weeks 
post-injury. *p  <  0.05, **p  <  0.01, ***p  <  0.005, ****p  <  0.0001; Two-way ANOVA with Tukey’s post-hoc main effects of injury and genotype; n  =  3-6/
group. Solid  =  female, open  =  male. Complete reporting of statistical analyzes is in Supplementary Table S10.
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branch length were comparable between sham and injury groups 
and genotypes (Figures 9C–E).

To quantify GFAP+ astrocyte reactivity, GFAP 
immunofluorescence staining in the ipsilateral cortex was increased 
after injury but reduced in SHIP-1−/− mice (Figure 10). Post-hoc 
analysis revealed a reduction in SHIP-1−/− mice post-TBI compared 
to similarly treated SHIP-1+/− mice (Tukey multiple comparisons 
test, p = 0.009; Figure 10). Nevertheless, GFAP staining in the dentate 
gyrus was not affected by injury or genotype at 12-weeks post-injury 
(data not shown). There were no differences in the amount of GFAP 
staining in the contralateral cortex and dentate gyrus (data not 
shown). In summary, chronic IBA-1 expression, number of microglia 
and microglial morphology were not altered by injury or SHIP-1 
deficiency. However, chronic astrocyte reactivity remained elevated 
post-injury, but reduced in the absence of SHIP-1.

SHIP-1 deficiency independently reduced 
explorative tendency and impaired working 
memory during early-adulthood

To examine whether SHIP-1 deficiency affected tissue loss 
chronically post-injury, pediatric post-natal day 21 SHIP-1+/− and 
SHIP-1−/− mice underwent sham or CCI injury, then volumetric 
analysis was conducted to assess remaining healthy tissue at 12-weeks 
post-injury (Figure 11 and Supplementary Table S12). Both SHIP-
1+/− and SHIP-1−/− mice exhibited a significant reduction in 
remaining healthy tissue in the ipsilateral cortex and hippocampus 
compared to sham mice (Figures 11A–C). However, there were no 
differences in tissue volume between SHIP-1+/− and SHIP-1−/− mice 
in either brain region (Figures 11A–C).

At 12-weeks post-injury, SHIP-1+/− and SHIP-1−/− mice 
underwent a battery of behavior tests prior to tissue collection to 
examine chronic behavioral changes following brain injury. Time 
spent in the open arms during the Elevated Plus Maze test was 
comparable between injury groups and genotypes (Figure  11D). 
However, SHIP-1−/− mice had reduced activity compared to control 
SHIP-1+/− mice as determined by distance traveled (Figure 11E).

The time spent in the center during the open-field test was 
comparable between injury groups and genotypes (Figure  11F). 
However, SHIP-1−/− mice exhibited reduced locomotor/exploratory 
activity as determined by distance traveled (Figure 11G). There were 
no differences in the rotarod test scores between injury groups or 
genotypes, and no improvements in their performance across both 
days (Figure 11H). Furthermore, preliminary assessment identified an 
influence of sex in SHIP-1+/− after TBI, as female mice traveled a 
greater distance during the open-field test compared to male mice 
(Figure 11H, Tukey multiple comparisons test, p = 0.0134).

Lastly, SHIP-1−/− mice showed poorer ability to discern the 
novel arm from the familiar arm in the Y-maze test when compared 
to SHIP-1+/− mice (Figure 11J). However, sham and TBI animals 
performed similarly at 12-weeks post-injury (Figure 11J). Together, 
these findings demonstrate that SHIP-1 is important for general 
exploratory/locomotor activity and cognition, but this phenotype was 
not exacerbated by a prior early-life TBI. Collectively, SHIP-1 
deficiency did not impact chronic tissue loss at the cortex and 
hippocampus but led to reduced explorative tendency and impaired 
working memory at 12-weeks post-injury.

Discussion

Previous studies using gene deficient mice have revealed a critical 
regulatory role for SHIP-1 in immune cell signaling, with perturbation 
of the pathway resulting in inflammatory lung and gastrointestinal 
diseases (Helgason et al., 1998; Liu et al., 1999; Takeshita et al., 2002; 
Kerr et al., 2011; Maxwell et al., 2011; McLarren et al., 2011; Hibbs 
et al., 2018). While the expression of SHIP-1 in microglia has been 
reported, its role in regulating inflammatory immune responses in the 
brain has scarcely been explored to date (Zhang et al., 2014, 2016; 
Olah et  al., 2018; Pedicone et  al., 2020; Marsh et  al., 2022). Here 
we evaluated the neuroimmunological, pathological and behavioral 
consequences of SHIP-1 deficiency after experimental pediatric TBI 
(Figure 12). We report that immune responses within the first week 
after a pediatric TBI occurred independently of SHIP-1, and that 
subsequent tissue damage and behavioral changes were predominantly 
TBI-driven. However, SHIP-1 deficiency resulted in exacerbated 
chronic inflammatory responses in the hippocampus following TBI, 
alongside unexpected suppression of astrocyte reactivity and a 
reduction of peripheral inflammatory cytokine levels (Figure 12).

Throughout, SHIP-1−/− mice were compared to SHIP-1+/− 
littermates as the control strain, in place of SHIP-1+/+ or traditional 
C57Bl/6 mice. While deletion of one allele may result in functional 
changes depending on the gene under investigation, we and others 
have previously conducted extensive evaluations to compare SHIP-
1+/− and SHIP-1+/+ across a range of peripheral phenotypes and 
found them to be indistinguishable (see Supplementary Figure S1 and 
Supplementary Table S1; Maxwell et al., 2011; Anderson et al., 2015), 
justifying the use of SHIP-1+/− littermates as the preferred control 
strain in this study.

Immune responses are typically upregulated acutely following 
moderate to severe experimental TBI in rodents (Israelsson et al., 
2009; Turtzo et al., 2014; Witcher et al., 2021), consistent with what is 
observed in patients after TBI (Lenzlinger et al., 2001; Lindblad et al., 
2021; Shultz et  al., 2022). We  observed an acute increase in 
inflammatory gene expression (i.e., Tnf and Ccl2) in the ipsilateral 
cortex of both SHIP-1+/− and SHIP-1−/− mice. These changes in 
gene expression were transient, returning to sham levels by 1-week 
post-injury. While serum cytokine levels were not available at the 
acute time points post-injury for this study, it is expected that this 
would have further confirmed an acute inflammatory response 
(Woodcock and Morganti-Kossmann, 2013). Independent of TBI, 
elevated Fcgr3 and Mrc1 expression in the cortex of SHIP-1−/− mice 
suggests basal changes in microglial phagocytic ability in the absence 
of SHIP-1. Similar alterations have been previously described in SHIP-
1-deficient macrophages (Marzolo et al., 1999; Kamen et al., 2008; 
Kigerl et al., 2009). Reduced Sall1 expression in SHIP-1−/− microglia 
also signifies a transition towards a more phagocytic and inflammatory 
phenotype (Buttgereit et  al., 2016), which together implicates 
SHIP-1 in the regulation of microglial activation.

Acute cellular responses in the brain were also elevated post-
injury, independently of SHIP-1 deficiency. Consistent with past 
studies in TBI (Jin et al., 2012; Loane et al., 2014; Turtzo et al., 2014; 
Green et al., 2022b), the activation of microglia and astrocyte (i.e., 
augmented IBA-1 and GFAP in the injured hemisphere) was evident 
at 1-week post-injury. Contrary to our initial hypothesis, we found 
that SHIP-1 deficiency had no effect on acute microglial activation 
after experimental TBI in pediatric mice. Additionally, while CD68+ 
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FIGURE 8

Chronic microglial activation was not altered by SHIP-1 deficiency or pediatric TBI. (A) Representative images of IBA-1 immunofluorescence staining of 
brain sections of SHIP-1+/− and SHIP-1−/− mice at 12-weeks post-injury. (B) IBA-1 expression in indicated regions of interest. (C) Number of IBA-1 
positive cells in indicated regions of interest. Two-way ANOVA; n  =  5-6/group. Solid  =  female, open  =  male. Scale bar  =  100  μm. Complete reporting of 
statistical analyzes is in Supplementary Table S11.
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macrophages were present in the injured cortex, as expected (Wang 
et al., 2013; Helmy et al., 2014), the extent of macrophage infiltration 
was not affected by SHIP-1 deficiency. This finding is in contrast to 
previous reports of aberrant macrophage infiltration into other 

organs, such as the lung parenchyma and the lamina propria of the 
ileum, in SHIP-1−/− mice (Maxwell et al., 2011; Park et al., 2014).

The effect of SHIP-1 deficiency on acute glial and cellular 
responses at this time-point may have been compensated for by other 

FIGURE 9

SHIP-1 deficiency and pediatric TBI did not alter chronic microglial morphology in the hippocampus. (A) Representative image of IBA-1 staining in the 
hippocampus (B) with three randomly selected microglia isolated from IBA-1-stained images of SHIP-1+/− and SHIP-1−/− mice at 12-weeks post-
injury. The total number of (C) branches and (D) branch end points, and (E) average branch length was quantified by single cell morphological analysis. 
Two-way ANOVA; n  =  4-6/group. Solid  =  female, open  =  male. Scale bar  =  200  μm. Complete reporting of statistical analyzes is in 
Supplementary Table S11.

FIGURE 10

Chronic GFAP expression was reduced by SHIP-1 deficiency post-TBI. (A) Representative images of GFAP staining at the ipsilateral cortex of SHIP-1+/− 
and SHIP-1−/− animals at 12-weeks post-injury. (B) Quantitation of GFAP immunofluorescence staining of the cortex at 12-weeks post-injury. 
*p  <  0.05, **p  <  0.005, ****p  <  0.0001. Two-way ANOVA with Tukey’s post-hoc; n  =  5-6/group. Solid  =  female, open  =  male. Scale bar  =  100  μm. 
Complete reporting of statistical analyzes is in Supplementary Table S11.
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PI3K signaling pathway regulators such as Phosphatase and tensin 
homolog (PTEN), which attenuates glial activation following 
experimental chronic pain (Huang et al., 2015). Alternatively, other 
pathways such as ERK signaling–regulated independently of SHIP-1–
can suppress acute microglial and astrocyte responses (Chen et al., 
2018; Divolis et al., 2019), as well as macrophage infiltration following 
focal brain injury (Huang et al., 2020). The p38α-MAPK pathway may 
also compensate for reduced SHIP-1 inhibition, and has been shown 
to modulate microglial cytokine production after diffuse brain injury 
in rodents (Bachstetter et al., 2013). While a recent study observed no 
changes in ERK or MAPK signaling in microglia after Inpp5d 
knockdown in the context of neurodegenerative disease (Iguchi et al., 
2023), future investigations into how SHIP-1 deficiency affects other 
components of the PI3K signaling pathway in microglia after brain 
trauma may provide further insight into these distinct or 
overlapping mechanisms.

Along with immune activation, pediatric TBI also resulted in 
behavioral deficits including increased anxiety-like behavior, reduced 
explorative activity, and impaired working memory, as previously 
reported in this model (Treble et al., 2013; Semple et al., 2014; Sharma 
et al., 2022). Of note, SHIP-1−/− mice exhibited reduced activity in 

the open-field test regardless of TBI. This genotype-dependent 
hypoactive phenotype was not attributed to a gross motor deficit, as 
all groups had comparable sensorimotor performance on the 
accelerating rotarod. It may, however, be a consequence of exacerbated 
peripheral inflammation, as previously reported in this strain 
(Roongapinun et  al., 2010; Maxwell et  al., 2011), akin to what is 
observed after a peripheral immune challenge in pediatric mice 
(Sharma et al., 2021).

The cognitive impairments and behavioral changes resulting from 
pediatric TBI often emerge during adolescence and adulthood 
(McKinlay et al., 2002; Babikian and Asarnow, 2009; Andruszkow 
et  al., 2014; Max, 2014; Stephens et  al., 2017; Hwang et  al., 2019; 
Neumane et  al., 2021), possibly as a result of neurodegeneration 
associated with chronic neuroinflammation (Ertürk et al., 2016; Ryan 
et  al., 2022). As the PI3K-AKT pathway, regulated by SHIP-1, is 
implicated in neuroimmune responses (Cianciulli et al., 2020; Chu 
et al., 2021), we hypothesized that SHIP-1 deficiency would modify 
the immune response at a chronic time-point after pediatric TBI. At 
12 weeks post-injury, both sham and injured SHIP-1−/− mice 
exhibited reduced body weight, pronounced splenomegaly, and 
elevated circulating cytokines and growth factors compared to 

FIGURE 11

SHIP-1 deficiency did not alter the extent of tissue damage at 12  weeks post-injury but impacted general activity and working memory. 
(A) Representative images of cresyl violet-stained brain sections from sham and TBI SHIP-1+/− mice. Volume of (B) remaining healthy ipsilateral cortex, 
and (C) ipsilateral hippocampus. (D) Percentage time spent in open arms and (E) total distance traveled during Elevated Plus Maze. (F) Percentage time 
spent in the center zone and (G) total distance traveled during open-field test. (H) Latency to fall from the rotarod test. (I) Discrimination index 
calculated (amount of time spent in novel arm versus the familiar arm during the Y-maze). *p  <  0.05, **p  <  0.005, ****p  <  0.0001, Two-way and three-
way ANOVA; (B,C) n  =  5-6/group, (D–I) n  =  11-18/group for behavior. Solid  =  female, open  =  male. Scale bar  =  1  mm. Complete reporting of statistical 
analyzes is in Supplementary Table S12.
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SHIP-1+/− controls, confirming the previously characterized SHIP-
1-deficient phenotype (Maeda et al., 2010; Tsantikos et al., 2018). In 
addition, TBI reduced the levels of IFN-γ, IL-10, and MIP-1α. While 
poorly characterized to date, immune suppression following acute TBI 
and stroke has been attributed to populations of myeloid-derived 
suppressor cells that antagonize pro-inflammatory responses in the 
periphery of TBI animals (Grundy et al., 2001; Agha et al., 2004; Urra 
et al., 2009; Bryk et al., 2010; Vogelgesang et al., 2010; Pillay et al., 
2012; Zhang et al., 2012; Hazeldine et al., 2015; Veglia et al., 2021). 
Further research is required to better understand the effect of chronic 
TBI on systemic inflammation, and the effects of immune changes on 
neurological outcomes.

In the chronically-injured brain, pro-inflammatory gene 
expression was elevated in the absence of SHIP-1, similar to what has 
been observed in microglia associated with Alzheimer’s disease 
(Lambert et al., 2013; Farfel et al., 2016; Jing et al., 2016; Yoshino et al., 
2017). While TBI did not alter cortical gene expression at 12-weeks 
post-injury, markers of elevated oxidative stress, neuroinflammation, 
blood–brain barrier breakdown, and neurodegeneration were 
detected in the hippocampus of TBI animals, consistent with other 
injury models in adult rodents (Lloyd et al., 2008; Boone et al., 2019; 
Hiskens et al., 2021). Of note, several inflammatory genes such as 
Cd68 and Mrc1 were further exacerbated by SHIP-1 deficiency. This 
finding is consistent with recent evidence suggesting that genes 
associated with inflammation and phagocytosis are enriched in the 
hippocampus of Alzheimer’s Disease models with conditional Inpp5d 
knockdown (Sierksma et al., 2020; Castranio et al., 2022). Therefore, 
SHIP-1 may have a distinct role in the regulation of inflammation in 
the hippocampus, and aberrant PI3K activity in the absence of SHIP-1 
may perpetuate a pro-inflammatory response during the chronic 
stages of pediatric TBI.

It should be noted that exacerbated systemic inflammation in 
older SHIP-1−/− mice, as evident by splenomegaly and elevated 

circulating cytokines, may contribute to the ongoing 
neuroinflammation observed in the hippocampus. Inflammatory 
cytokines may penetrate blood brain barrier and compound 
neuroinflammatory responses (Qin et al., 2007; Zhao et al., 2019). 
Additionally, the onset of non-CNS inflammatory diseases such as 
ileitis, may influence microglial responses in the brain (Hanscom 
et  al., 2021a). With increasing evidence of complex bidirectional 
interactions between the brain, gut, and systemic immune system 
(Kumar et al., 2019; Hanscom et al., 2021a,b), further investigation 
into the potential role of SHIP-1 in this context are warranted.

Despite the observed molecular changes, microglial activation 
(quantified by the amount of IBA-1 immunofluorescence, cell number, 
and morphology) was resolved by 12-weeks post-injury independent 
of SHIP-1. These results contrast with previous findings in the adult 
rodent brain, whereby elevated IBA-1 expression has been reported 
for up to 52 weeks post-TBI (Loane et al., 2014; Turtzo et al., 2014; 
Gazdzinski et al., 2020; Henry et al., 2020). Astrocyte reactivity was 
sustained at chronic timepoint consistent with previous reports (Lee 
et al., 2018), but surprisingly, GFAP expression around the injury site 
was reduced in SHIP-1-deficient mice. These glial responses in SHIP-1 
deficient mice may be  influenced by the presence of infiltrated 
regulatory T cells, given that SHIP-1 deficiency has been associated 
with increased proportion of circulating regulatory T cells in mice 
(Kashiwada et al., 2006; Collazo et al., 2009). Indeed, regulatory T cells 
were observed to secrete anti-inflammatory cytokines and suppresses 
glial responses at the cortex following CCI in mice (Krämer et al., 
2019). Therefore, future investigations into how SHIP-1 deficiency 
may influence the adaptive immune response in the injured and 
diseased brain are warranted.

The ongoing neuroinflammation in the hippocampus after 
pediatric TBI likely promoted the extensive tissue loss seen in the 
ipsilateral hemisphere at the chronic time-point post-injury 
(Shinozaki et  al., 2017). Despite elevated neuroinflammation in 

FIGURE 12

Graphical summary of the main findings in this study. SHIP-1+/− and SHIP-1−/− mice underwent sham or TBI surgeries at post-natal day 21. TBI alone 
induced microglial activation and astrocyte reactivity at 1-week post-injury. However, at 12-week post-injury, microglial activation had returned to 
baseline, but astrocyte reactivity remained. Global SHIP-1 deficiency had no effect on microglial activation, but based on previous findings, it likely 
resulted in systemic inflammation which may have impacted general activity and working memory. Chronic systemic inflammation may also 
exacerbate hippocampal inflammation and suppress astrocyte reactivity at 12-weeks post-injury.
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SHIP-1−/− mice, the volume of tissue loss remained comparable 
between knockout and control mice. However, the number and 
functionality of neurons around the injury site and hippocampus at 
this time-point was not examined. Further investigation into neuronal 
survival and activity may elucidate whether SHIP-1 plays a role in the 
balance between neurodegeneration and neurogenesis chronically 
post-TBI.

Of note, the pronounced tissue loss exhibited by TBI mice did not 
correspond to changes in anxiety-like behavior, general activity, motor 
functioning, or working memory at 12-week post-injury. However, 
previous studies in rodent models of TBI have shown idiosyncratic 
results for these outcome measures, such as differing changes in 
anxiety-like behavior and activity that are likely influenced by 
impaired GABA signaling in the injured brain (Pandey et al., 2009; 
Wakade et al., 2010; Schultz et al., 2011; Budinich et al., 2013; Amorós-
Aguilar et al., 2015; Sierra-Mercado et al., 2015; Parga Becerra et al., 
2021). In addition, motor functioning and memory has been reported 
to be impaired during the chronic stages of TBI; however, sex has been 
identified as a variable that influences performance of these tasks 
(Ertürk et al., 2016; Tucker et al., 2016). Several other aspects such as 
neuroinflammatory responses post-TBI may also be influenced by sex, 
as female rodents often exhibit greater anti-inflammatory responses 
in the brain (Moore et al., 2009; Doran et al., 2018). While historically, 
preclinical TBI researchers have typically used males only, 
we  incorporated both male and female littermates in each 
experimental group. One limitation of the experimental design is that 
the number and distribution of males and females in each group were 
uneven due to breeding outcomes, thus not sufficient for sex to 
be considered statistically as a biological variable. Despite this, we did 
see some evidence suggestive of potential sex differences from 
preliminary sub-group analyzes, which warrant further investigation 
to elucidate the effects of sex on immune responses and behavioral 
changes post-TBI, in both the presence and absence of SHIP-1 activity.

Another limitation of our approach was the inability to distinguish 
between the intrinsic effect of SHIP-1 loss in the brain relative to the 
influence of peripheral inflammatory responses associated with 
SHIP-1 deficiency. At 12-weeks post-injury, SHIP-1−/− mice in both 
sham and TBI groups exhibited reduced general activity during open-
field tests and memory deficits in the Y-maze. It is unclear whether 
these behavioral changes are a result of altered glial responses or 
attributed to their peripheral inflammatory cytokine infiltration into 
the brain (Moore et  al., 2009; Bourgognon and Cavanagh, 2020). 
Although a global knockout model allows for the examination of the 
contribution of the systemic immune system to TBI responses, it is 
imperative for future studies to incorporate a cell-specific conditional 
knockout or utilization of bone marrow transplants to further 
understand the role of SHIP-1 and PI3K-AKT signaling in microglia 
in vivo. Cell-specific analysis of gene and protein expression changes 
in isolated microglia may also provide novel insight into the precise 
responses of these immune cells.

Conclusion

Together, our findings suggest that SHIP-1 activity in the brain is 
involved in regulating chronic inflammation in the hippocampus after 
severe pediatric TBI, as well as potentially interacting with peripheral 
immune systems. However, SHIP-1 did not play a critical role in 

regulating microglial activation and immune responses after injury. 
Expression of microglial-associated inflammatory and phagocytic 
genes were elevated in the absence of SHIP-1, warranting further 
characterization through conditional SHIP-1 depletion in microglia 
or ex-vivo experiments at the steady-state brain, injured, and diseased 
brain. Such future studies would further delineate the role of SHIP-1 in 
regulating microglial responses in health and disease, with the 
ultimate goal of manipulating this system for potential therapeutic 
benefit in individuals affected by TBI.
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Glossary

ANOVA Analysis of Variance

AKT Protein Kinase B

CCI Controlled Cortical Impact

CCL2 Chemokine (C-C motif) Ligand 2

ΔΔCT Comparative CT Method

CNS Central Nervous System

Crh Corticotrophin-releasing Hormone

CSF Colony Stimulating Factor

CX3CR1 C-X3-C Motif Chemokine Receptor 1

DAPI 4′,6’-Diamidino-2-phenlindole

GFAP Glial Fibrillary Acidic Protein

IBA-1 Ionized Calcium-binding Adapter Molecule 1

IGFBP7 Insulin Growth Factor Binding Protein 7

IL Interleukin

LPS Lipopolysaccharide

Megf10 Multiple Epithelial Growth Factor (EGF) Like Domains 10

MHC II Major Histology Complex Class II

MIP Macrophage Inflammatory Protein

MMP Matrix Metallopeptidase 12

NADPH Reduced Nicotinamide Adenine Dinucleotide Phosphate

PI3K Phosphoinositide 3-kinase

PI(3,4)P2 Phosphatidylinositol 3,4-biphosphate

PI(4,5)P2 Phosphatidylinositol 4,5-biphosphate

PI(3,4,5)P3 Phosphatidylinositol 3,4,5-triphosphate

PTEN Phosphatase and Tensin Homolog

PCR Real-time Quantitative Reverse Transcription Polymerase Chain Reaction

SALL1 Spalt Like Transcription Factor 1

SHIP-1 Src homology 2 domain-containing inositol polyphosphate 5-phosphatase 1

SLC1A2 Excitatory Amino Acid Transporter 2

TBI Traumatic Brain Injury

TGF Transforming Growth Factor

TNF Tumor Necrosis Factor

TSPO Translocator Protein
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