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Spiking neural networks (SNNs), which are composed of biologically

plausible spiking neurons, and combined with bio-physically realistic auditory

periphery models, o�er a means to explore and understand human auditory

processing-especially in tasks where precise timing is essential. However, because

of the inherent temporal complexity in spike sequences, the performance of SNNs

has remained less competitive compared to artificial neural networks (ANNs).

To tackle this challenge, a fundamental research topic is the configuration of

spike-timing and the exploration of more intricate architectures. In this work,

we demonstrate a learnable axonal delay combined with local skip-connections

yields state-of-the-art performance on challenging benchmarks for spoken

word recognition. Additionally, we introduce an auxiliary loss term to further

enhance accuracy and stability. Experiments on the neuromorphic speech

benchmark datasets, NTIDIDIGITS and SHD, show improvements in performance

when incorporating our delay module in comparison to vanilla feedforward

SNNs. Specifically, with the integration of our delay module, the performance

on NTIDIDIGITS and SHD improves by 14% and 18%, respectively. When paired

with local skip-connections and the auxiliary loss, our approach surpasses both

recurrent and convolutional neural networks, yet uses 10× fewer parameters for

NTIDIDIGITS and 7× fewer for SHD.

KEYWORDS

axonal delay, spiking neural network, speech processing, supervised learning, auditory

modeling, neuromorphic computing

1. Introduction

Artificial neural networks (ANNs) have excelled in speech-processing tasks, relying on

optimization algorithms, deep architectures, and powerful feature extraction methods like

MFCC. Nevertheless, these typical feature extraction methods do not fully replicate the

biologically realistic model of cochlear processing (Wu et al., 2018a,b). Additionally, both

ANNs and rate-based Spiking Neural Networks (SNNs) struggle with spiking inputs from

biologically inspired cochlear models due to their sparse distribution and high temporal

complexity (Wu et al., 2021). The high energy consumption of ANNs further limits

their deployment in mobile and wearable devices, hindering the development of sound

classification systems (Davies et al., 2018; Wu et al., 2018b). Thus, there is a growing demand

for bio-inspired SNN architectures capable of handling the outputs of bio-physically realistic

cochlear models.
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Despite considerable progress in translating insights from non-

spiking ANNs to SNNs (Wu et al., 2021; Xu et al., 2023a,b)

and the emergence of enhanced architectures (Xu et al., 2018,

2021, 2022) along with sparse training methods (Shen et al.,

2023), the primary application has applied to static datasets

or non-stream datasets. While earlier research (Mostafa, 2017;

Hong et al., 2019; Zhang et al., 2021) has shown encouraging

results on such datasets using temporal encoding algorithms,

their potential for large-scale time-series datasets remains a

question. Contrastingly, noteworthy advancements has been made

by algorithms that directly handle event-driven audio tasks with

a temporal dimension (Wu et al., 2019, 2020; Zhang et al., 2019;

Blouw and Eliasmith, 2020; Yılmaz et al., 2020). A notable method

is the refinement of spike timing precision in models and the

exploration of intricate architectures that meld both ANN insights

and biological understanding. SNNs, which incorporate adjustable

membrane and synaptic time constants (Fang et al., 2021; Perez-

Nieves et al., 2021), as well as advanced and optimized firing

thresholds (Yin et al., 2021; Yu et al., 2022), have shown substantial

promise, especially in integrating precise spike timing to achieve

top-tier classification accuracy. Although past methods have

placed significant emphasis on the importance of spike-timing,

believing that information is intricately embedded within the

spatio-temporal structure of spike patterns (Wu et al., 2018c), there

has been a conspicuous gap in research concerning the specific

effects of event transmission, notably axonal delay (Taherkhani

et al., 2015). Neurophysiological studies (Carr and Konishi, 1988;

Stoelzel et al., 2017) highlight axonal delay’s potential role in

triggering varied neuronal responses. It is worth noting that axonal

delay is a learnable parameter within the brain, extending beyond

the realm of synaptic weights (Seidl, 2014; Talidou et al., 2022).

Neuromorphic chips such as SpiNNaker (Furber et al., 2014), IBM

TrueNorth (Akopyan et al., 2015), and Intel Loihi (Davies et al.,

2018) facilitate the programming of the delay module.

These developments have spurred the exploration of jointly

training synaptic weights and axonal delay in deep SNNs. While

earlier research mainly centered on fixed delays with trainable

weights (Bohte et al., 2002) and the concurrent training of synaptic

weights and delays in shallow SNNs featuring a single layer

(Taherkhani et al., 2015; Wang et al., 2019; Zhang et al., 2020),

there has recently been a degree of investigation into the joint

training of the synaptic weights and axonal delays in deep SNNs

(Shrestha and Orchard, 2018; Shrestha et al., 2022; Sun et al.,

2022, 2023a; Hammouamri et al., 2023; Patiño-Saucedo et al.,

2023). Our prior effort (Sun et al., 2022) stands as one of the

initial successful attempts in applying this method to deep SNNs,

achieving promising results in tasks characterized by high temporal

complexity.

In this current work, we focus on spiking spoken word

recognition tasks, namely NTIDIDIGITS (Anumula et al., 2018)

and SHD (Cramer et al., 2020). These tasks are temporally complex

(Iyer et al., 2021) and are encoded as spikes through an audio-

to-spiking conversion procedure inspired by neurophysiology. In

pursuit of enhancing these tasks, we introduce a learnable axonal

delay mechanism to govern the transmission process and achieve

precise synchronization of spike timing. Alongside the axonal delay

module, we delved into various intricate structures, showcasing

their synergy with the delay module. Specifically, we propose

a novel local skip-connection mechanism designed to mitigate

information loss during the reset process, an endeavor that relies

heavily on the precise availability of spike timing information.

Additionally, we integrate an auxiliary loss to curb unwarranted

neuron membrane potentials upon firing. Our results underscore

the seamless integration of these intricate components with the

delay modules, resulting in substantial performance enhancements.

Our methods achieve state-of-the-art performance while requiring

fewer parameters, as demonstrated by our experimental studies.

The rest of the paper is organized as follows. We provide

a detailed description of the proposed methods in Section 2. In

Section 3, we demonstrate the effectiveness of our algorithms

on two event-based audio data-sets and compare them with

other SNNs and ANNs. We conclude and discuss future work in

Section 4.

2. Materials and methods

In this section, we begin by introducing the spiking neuron

model utilized in this work. After that, we present the Variable

Axonal Delay (VAD) and Local Skip-Connection methods. The

introduction of the Variable Axonal Delay is loosely inspired

by neurophysiology, as we argue that the variation of delays

observed in the biological system could be advantageous for

aligning temporal information on a millisecond time scale. As a

result, transient sensory inputs can be condensed into specific spike

bursts corresponding to their transience. Next, we introduce the

concept of a local skip-connection architecture, which holds the

potential to mitigate information loss during the reset mechanism,

thereby enhancing the dynamic behavior of the neuron model.

Finally, we demonstrate that the suppressed loss further enhances

performance, improving the network’s discriminative capabilities

for target differentiation.

2.1. Spiking neuron model

An SNN employs a spiking neuron as the basic computational

unit with input and output in the form of spikes, maintaining an

internal membrane potential over time. In this paper, we adopt the

Spike Response Model (SRM) which phenomenologically describes

the dynamic response of biological neurons.

Consider an input spike, sl−1
j (t) = δ(t − t

(l−1)
j ). Here t

(l−1)
j

denotes a firing time of pre-synaptic neuron j in layer l − 1 and δ

the spike function. In the SRM model, the incoming spike sl−1
j (t)

is converted into spike response signals by convolving with the

spike response kernel ǫ(t) and is then scaled by the synaptic

weight to generate the Post Synaptic Potential (PSP). Likewise, the

refractory period can be represented as (ν ∗ slj)(t) which describes

the characteristic recovery time needed before the neuron regains

its capacity to fire again after having fired at time t. The neuron’s

membrane potential, is the sum of all PSPs and refractory response

uli(t) =
∑

j

W l−1
ij (ǫ ∗ sl−1

j )(t)+ (ν ∗ sli)(t) (1)
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where uli(t) is the membrane potential of neuron i and W l−1
ij is the

synaptic weight from neuron j to neuron i.

A firing output is generated wherever ui(t) crosses the

predefined firing threshold θu. This generation process can be

formulated by a Heaviside step function 2 as follows

sli(t) = 2(uli(t)− θu). (2)

2.2. Variable axonal delay (VAD) module

As shown in Figure 1, a VAD is added to the output of each

spiking neuron in layer l. Let N be the number of neurons at layer

l, thus, the set of spike trains sl(t) can be represented as follows

sl(t) = {sl1(t), ..., s
l
N(t)} (3)

The forward pass of the delay module can be described as

sld(t) = δ(t − d̂l) ∗ sl(t) (4)

Where d̂l is the set of learnable delays {d̂1, d̂2, .., d̂N} in layer l,

and sl
d
(t) is the spike trains output by the delay module. From the

system point of view, limiting the axonal delay of each neuron to

a reasonable range can speed up the training convergence. Thus,

we clip the delay to the specified range during training and round

down after each backpropagation.

d̂l = Min(Max(0, round(d̂)), θd) (5)

Here, the θd refers to the upper bound of the time delay of the

spiking neuron.

2.3. Local skip-connection as
compensation for loss of information due
to reset

The structure of the local skip-connection within a given

layer is depicted in Figure 2. In mapping from input spikes to

output spikes, The SRM utilizes a refractory kernel to characterize

the refractory mechanism, represented by the equation ν(t) =

−αrθu
t
τr
exp(1− t

τr
)2(t). One challenge that persists is identifying

the ideal refractory scale αr for specific tasks. If the refractory

scale is too small, its effect is diminished, while an overly large

refractory scale risks information loss at certain time junctures.

To address this, our study introduces the concept of a local skip-

connection. This design compensates for information lost during

the reset mechanism in a dynamic fashion. Our results show that

this connection can operate effectively using the same refractory

scale, offering a solution to the intricate task of selecting an optimal

refractory scale for various tasks. The output membrane potential

of the local skip-connection can be formulated as

ûli(t) =
∑

j

V l
ij(ǫ ∗ sld,j)(t)+ (ν ∗ ŝli)(t) (6)

V l
ij is the locally connected synaptic weight from neuron j to

neuron i at the same layer. Unlike a skip connection, the local skip-

connection adds an extra layer of processing to the output spikes

generated in layer l. It then directs these locally processed output

spikes, denoted as ŝl with the same index as the original output

spikes sl
d
, to follow the same axon line within layer l. As a result,

both the local spike trains ŝl and the original output spikes sl
d
utilize

the same weights W l
ij and are channeled to the succeeding layer.

This can be equivalently expressed as sl = sl
d
+ ŝl.

2.4. Loss layer

The loss of an SNN compares the output spikes with the ground

truth. However, in classification tasks, decisions are typically made

based on the spike due to the absence of precise timing. Considering

the spike rate over the time interval T, the loss function L can be

formulated as follows:

L =
1

2
(

∫ T

0
s̃(τ ) dτ −

∫ T

0
snl (τ ) dτ )2 (7)

Here, L measures the disparity between the target spike train s̃(t)

and output spike train snl(t) at the last layer nl across the simulation

time T. Given the lack of precise spike timing in our tasks, we

measure the output spikes through the integration of snl (t) over T.

For different task scenarios, the target firing rate is set as
∫ T
0 s̃(τ )dτ .

To further exploit temporal information in classification, an

auxiliary loss termed the suppressed loss LMem is introduced:

LMem(t) =
1

2
· (snl (t) ·Mask · (unl (t − 1t)− uθ ))

2 (8)

This loss function is designed to reduce the firing probability of

incorrect neurons right when they activate. Compared to previous

lateral inhibition methods using learnable or fixed kernels, this loss

function achieves a winner-takes-all effect by acting as a regularizer.

Importantly, this loss is only applied to false neurons. Here, the

spike train snl and membrane potential unl are functions of time.

Moreover, unl (t − 1t) refers to the membrane potential right

before a spike occurs. When a neuron is activated, indicated by

snl (t) = 1, its potential is referred to as unl (t − 1t). This value

is then subtracted from a predetermined membrane potential uθ ,

controlled by the suppressing factor λu and defined as uθ = λuθu.

Lastly, to ensure that the suppressed membrane potential loss is

limited only to undesired (or false) neurons, a mask Mask ∈ R
C

is employed, where C is the number of target neurons:

Mask =

{
0 True Class

1 False Classes
(9)

2.5. Backpropagation

The surrogate gradient algorithm in combination with

the Backpropagation-Through-Time (BPTT) (Werbos, 1990) in

SNN has shown excellent performance on temporal pattern

recognition tasks.
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FIGURE 1

Illustration of the flow chart of the axonal delay. The output spike is delayed by d̂.

In this work, we discretise the temporal dimension with the

sampling time Ts such that t = nTs where n denotes the time step

of the simulation. We also define (Ns+1)Ts as the total observation

time. For the Heaviside step function, we adapt the SLayer function

(Shrestha and Orchard, 2018) to formulate the proxy gradient,

which is defined as

f̂
′

s = τscale exp(−|u(t)− ϑ |/τϑ ) (10)

Here, τscale and τϑ are two parameters that control the sharpness of

the surrogate gradient. Similarly, the gradient of the axonal delay is

given by

∇
d̂l
E = Ts

Ns∑

n=0

∂L[n]

∂ d̂l
(11)

Using the chain rule and noting that the loss at time-step n depends

on all previous timesteps, we get

∇
d̂l
E = Ts

Ns∑

n=0

n∑

m=0

∂sl
d
[m]

∂dl
∂L[n]

∂sl
d
[m]

= Ts

Ns∑

n=0

n∑

m=0

sl
d
[m]− sl

d
[m− 1]

Ts

∂L[n]

∂sl
d
[m]

(12)

Here, the finite difference approximation
sl
d
[m]−sl

d
[m−1]

Ts
is

used to numerically estimate the gradient term
∂sl

d
[m]

∂dl
. As

part of the backpropagation process, the gradient of delay is

propagated backward, and then the delay value is subsequently

updated. Similarly, we also formulate the gradient term of the

suppressed loss.

∂LMem

∂unl
= snl ·Mask · (unl − uθ ) (13)

As shown in Figure 2, beginning from the input layer, the spike

trains compute forward and the error propagates backward.

3. Experiments and results

In this section, we first evaluate the effectiveness of the

proposed delay module and novel architecture on two event-based

audio datasets: NTIDIDIGITS and SHD. Additionally, we assess

the impact of the novel auxiliary loss in boosting performance.

Finally, we compare our results with several state-of-the-art

networks, including feedforward SNNs, recurrently connected

SNNs (RSNNs), and Recurrent Neural Networks (RNNs).

3.1. Implementation details

The experiments are conducted using PyTorch as a framework,

and all reported results are obtained on 1 NVIDIA Titan XP GPU.

Each network and proposed architecture is trained with the Adam

optimizer (Kingma and Ba, 2014) and has the same training cycle.

The simulation time step Ts is 1 ms, and the firing threshold θu is set

at 10 mV. The chosen response kernel is ǫ(t) = t
τs
exp(1− t

τs
)2(t),

and the refractory kernel is ν(t) = −αrθu
t
τr
exp(1 − t

τr
)2(t). The

time constant of the response kernel τs and refractory kernel τr is

set to 5 for NTIDIDIGITS and 1 for SHD datasets. The suppressed

factor λu is set to 0.995 to suppress the membrane potential of

the firing undesired neurons below the threshold. For the proxy

gradient, we adopt the Slayer (Shrestha and Orchard, 2018). Table 1

lists other hyperparameters used.

The following notation is used to describe the network

architecture: “FC” stands for a fully-connected layer, “VAD”

means Variable Axonal Delay module, “Local” denotes the

local skip-connection architecture, and LMem implies the use

of the suppressed loss in addition to the spike rate loss. For

example, Input-128FC-VAD-Local-128FC-VAD-Local-

Output + L_{Mem}indicates that there are two dense layers

with 128 neurons, each implementing the VAD and Local module.

The loss is measured by the spike rate and suppressed membrane
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FIGURE 2

Flow chart illustrating the proposed methods. In the forward pass, the input spikes are mapped by the SRM, axonal delay module, and local

skip-connection to the output spikes. The error consists of the spike rate loss from the last layer and the suppressed loss from the false neuron’s

membrane potential. The spiking layer consists of the Spiking neuron model and membrane potential layer. The error gradients are passed backward

through time to update the weight and axonal delay parameters.

TABLE 1 Detailed hyper-parameter settings.

Hyper-parameter N-TDIDIGITS18 SHD

Batch size 128 128

Learning rate 0.1 0.1

Time constant τs 5 1

Time constant τr 5 1

Membrane threshold θu 10 10

Refractory scale αr 2 2

Delay threshold θd 128 64

Suppressed factor λu 0.995 0.995

potential. Table 2 summarizes the abbreviations for different

architectures and methods.

The number of spikes generated from the last layer is compared

to the desired spikes in dedicated output nodes, serving as the

TABLE 2 Name and corresponding network structure. L2 denotes the l2

regularizer for delay values.

Name Network structure

D128-SNN Input-128FC-VAD-128FC-VAD-Output

DL128-SNN
Input-128FC-VAD-Local-128FC-

VAD-Local-Output

DL128-SNN-Dloss
Input-128FC-VAD-Local-128FC-VAD-

Local-Output + LMem

DL256-SNN-Dloss
Input-128FC-VAD-Local-256FC-VAD-

Local-Output + LMem

DL128-SNN-Dloss-L2
Input-128FC-L2(VAD)-Local-128FC-L2(VAD)-

Local-Output + LMem

primary loss measurement. In order to implement the suppressed

membrane potential loss function, the model is pre-trained for

20 epochs to generate the target spike trains used for LMem

definition. For a fair comparison, all the experiments are run for

5 independent trials, and the average performance and standard

deviation are reported.
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FIGURE 3

(A) Raster plot of Spiketrains of input from a single sample (label 0) of the NTIDIDIGITS dataset. The y-axis represents the channels of the cochlear

model while the x-axis indicates the time. (B) An Illustration of one raw example (word “six”) from the SHD dataset.

TABLE 3 Comparison of classification and parameter count of proposed

methods on the NTIDIDIGITS and SHD Test sets.

Dataset Method Params Accuracy
(%)

N-TDIDIGITS18

GRU-RNN (Anumula et al.,

2018)†
0.11M 90.90

Phased-LSTM (Anumula

et al., 2018)†
0.61M 91.25

ST-RSBP (Zhang and Li,

2019)

0.35M 93.90

SrSc-SNNs-IP (Zhang and

Li, 2021)

0.61M 95.07

DL128-SNN-Dloss 0.06M 95.22

SHD Feed-forward SNN (Cramer

et al., 2020)

0.09M 48.1

RSNN (Cramer et al., 2020) 1.79M 83.2

RSNN with adaption (Yin

et al., 2020)

0.14M 84.40

Heterogeneous RSNN

(Perez-Nieves et al., 2021)

0.11M 82.78

RSNN with attention (Yao

et al., 2021)

0.14M 91.08

DMUC (Sun et al., 2023b)† 0.24 M 91.48%

CNN (Cramer et al., 2020)† 1.01M 92.40

RadLIF (Bittar and Garner,

2022)

3.9M 94.62

DCLS (Hammouamri et al.,

2023)∗
0.21M 95.07

SNN with delays

(Patiño-Saucedo et al.,

2023)

0.1M 90.04

DL128-SNN-Dloss 0.14M 92.56

DL256-SNN-Dloss 0.21M 93.55

†Non-SNN implementation.
∗Channel reduction. Bold values are the best results.

TABLE 4 Ablation studies for di�erent architecture and learning methods.

Dataset Network Params Accuracy
(%)

NTIDIDIGITS

Input-128FC-

128FC-11

26,251 78.52

Input-128FC-Local-

128FC-Local-11

59,275 79.36

D128-SNN 26,507 92.99

DL128-SNN 59,531 94.70± 0.35

DL128-SNN-Dloss 59,531 95.22± 0.08

DL128-SNN-Dloss-

L2

59,531 94.85± 0.08

SHD

Input-128FC-

128FC-20

108,820 67.05

Input-128FC-Local-

128FC-Local-20

141,844 65.55

D128-SNN 109,076 85.73

DL128-SNN 142,100 91.52± 0.84

DL128-SNN-Dloss 142,100 92.56± 0.56

DL128-SNN-Dloss-

L2

142,100 92.44± 0.09

3.2. Datasets

Tests are performed on the speech classification datasets

NTIDIDIGITS and Spiking Heidelberg Digits (SHD). Both

datasets represent events in the form of spikes, containing

rich temporal information that is naturally suited to be

directly processed by an SNN. These datasets are considered

benchmarks, allowing us to focus on the architecture and

learning algorithm of the SNN without considering the spike

generation method.
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3.2.1. NTIDIDIGITS
The NTIDIDIGITS (Anumula et al., 2018) dataset was created

by playing the TDIDIGITS (Leonard and Doddington, 1993) to the

64 response channel silicon cochlea. The dataset includes single

digits and connected digit sequences, all of which contain the

11 spoken digits (“oh,” and the digits “0” to “9”). For the n-way

classification problem (single digits), there are a total of 55male and

56 female speakers with 2,463 training samples, and 56 male and

53 female speakers in the testing set with a total of 2,486 samples.

As shown in Figure 3A, the time resolution is in ms level and the

channel ranges from 0 to 63.

3.2.2. SHD
The SHD is the spiking version of the Heidelberg Digits (HD)

audio dataset that is converted by a biologically inspired cochlea

model (Cramer et al., 2020). There are 8,156 and 2,264 spoken

samples for training and testing, respectively. It contains 10-digit

utterances from “0” to “9” in English and German, with a total of

20 classes presented by 12 speakers. Figure 3B shows an example

of this audio spike stream. Each sample duration ranges from 0.24

to 1.17 s. Here, the time is resampled to speed up the training (Yin

et al., 2020). Each channel has at most 1 spike every 4ms and shorter

samples are padded with zeros.

3.3. Overall results

This section demonstrates the benefits of the proposed

innovations and assesses the effects of the VAD, Local skip-

connection, and Suppressed loss individually to validate their

impact on boosting performance. The basic SNN consists of 2

hidden layers, followed by the VADmodule, Local skip-connection

in each layer, and the suppressed loss module in the readout layer’s

membrane potential (Figure 2).

1) NTIDIDIGITS. As shown in Table 3, non-spiking

approaches such as GRU-RNN and Phased-LSTM (Anumula

et al., 2018) achieve 90.90 and 91.25% accuracy, respectively.

However, these RNNs rely on the event synthesis algorithm

and cannot fully exploit sparse event-based information. Zhang

and Li (2019) directly train the spike-train level features with

recurrent layers through the ST-RSBP method, and Zhang and Li

(2021) further propose the SrSc-SNNs architectures that consist

of three self-recurrent layers with skip-connections, training this

SNN using backpropagation-based intrinsic plasticity, achieving

state-of-the-art (SOTA) performance. We show that with the

proposed VAD module, local skip-connection, and suppressed

loss, our method achieves 95.30% accuracy with a mean of 95.22%

and a standard deviation of 0.08%, making it the best result in

this classification task. Furthermore, our model uses the least

parameters and is 10× smaller compared to the second-best result.

2) SHD. For this dataset, we compare our methods with recent

advancements. In Cramer et al. (2020), the single feed-forward SNN

and Recurrent SNN are both trained using BPTT. Their results

show that the recurrent architecture outperforms the homogeneous

feed-forward architecture in this challenging work, underscoring

the potential advantages of intricate SNN designs. Several studies

have ventured into specialized SNN architectures. For instance,

some explore the effectiveness of the heterogeneous recurrent SNNs

(Perez-Nieves et al., 2021), while others delved into attention-

based SNNs (Yao et al., 2021). As detailed in Table 3, our proposed

method produces a competitive performance of 92.56% in a two-

layer fully connected network of 128 neurons each. Notably, this

performance is competitive compared to these results that employ

the same data processing methods and network architecture.

Patiño-Saucedo et al. (2023) introduce axonal delays in tandem

with learnable time constants, enabling a reduction in model size

to a mere 0.1 M while preserving competitive performance.

Additionally, RadLIF (Bittar and Garner, 2022) combines an

adaptive linear LIF neuron with the SG strategy, achieving a

performance of 94.62%. This achievement is realized through

the utilization of three recurrent spiking layers, each containing

1024 neurons. On the other hand, DCLS, introduced in

Hammouamri et al.’s research (Hammouamri et al., 2023),

capitalizes on several key innovations. It incorporates learnable

position adjustments within the kernel, employs advanced data

augmentation techniques (like the 5-channel binning), and

incorporates batch normalization methods. As a result, DCLS

achieves an accuracy of 95.07% using two feedforward spiking

layers, each comprising 256 neurons. Given the sizeable 700-

input channel, we mitigated extensive parameter expansion by

augmenting the neural network’s second layer from 128 to

256 neurons. This strategic adjustment significantly improved

performance, yielding a 93.55% accuracy rate.

3.4. Ablation study

Wedelve into the contributions of VAD, Local skip-connection,

and Suppressed loss via a comprehensive ablation study (refer

to Table 4). Evaluating each method individually on two fully-

connected feed-forward SNNs provides the following insights:

• VAD: When incorporated, there is a marked enhancement

in the accuracy across datasets. Specifically, with the delay

module embedded (in the D128-SNN setup), we obtain

gains of 14.47% and 18.68% for NTIDIDIGITS and SHD,

respectively. Importantly, despite these advancements, the

parameters remain nearly unchanged. This is attributed to our

adoption of channel-wise delays, implying that the increase

in parameters corresponds only to the number of channels

in each layer. As an illustration, with the SHD dataset, the

integration of VAD results in an increment ofN parameters in

each layer, with N being set to 128 in our experimental setup.

• Local skip-connection: Its standalone application (reflected

in the Input-128FC-Local-128FC-Local-11 design) does not

bolster accuracy notably. For the SHD dataset, the outcome

is even slightly detrimental. However, this method increases

the number of trainable parameters. This can be likened to the

addition of an extra feedforward layer, resulting in a parameter

increment of N × N for each layer.

Combining VAD and Local skip-connection in the DL128-

SNN design yields significant benefits. We clinch state-of-the-art
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FIGURE 4

Distribution of time delay on (A) NTIDIDIGITS, (B) SHD. The initial distribution are all 0. From the left to right: First layer, second layer.

accuracy levels for both datasets. This highlights that the enhanced

flexibility provided by VAD truly shines when paired with a richer

parameter landscape, as provided by the Local skip-connection.

Lastly, supplementing the above with the suppressed loss, Dloss,

results in stellar performance: 95.22% for NTIDIDIGITS and

92.56% for SHD.

3.5. Axonal delay improves the
characterization learning ability

In this section, we begin by offering a visual representation of

the axonal delay distribution (refer to Figure 4) for both datasets.

Subsequently, we employ an L2 regularizer on the delay to curtail

the magnitude of delay values, effectively reducing the number of

delayed time steps.

Utilizing the NTIDIDIGITS dataset as an illustrative example,

Figure 4A reveals a delay distribution in the first layer that

consistently encompasses both long and short delay neurons. This

may imply that certain neurons focus on the initial portion of

the input, whereas others concentrate on the latter segment of

the input features. To understand the dynamics of the VAD, we

inspect the cumulative spike count at the input of the network

and compare it to the cumulative spike count at the true decision

neuron for four different models, as depicted in Figure 5. For

illustrative purposes, we select four different English-speaking

digit utterances: “1”, “6”, “7”, and “10”. The figures clearly show

that the model without delay gradually increases its prediction

as the input spikes come in and starts to do so as soon as

input spikes start arriving. Conversely, for the other three models

equipped with delay modules, the decision to increase spike count

in the true neuron is delayed but then increases more quickly

and reaches a higher level. This phenomenon arises from the

different neurons introducing varying delays to the spikes, thereby

providing the terminal neuron with multi-scale information. This

may be interpreted as the VAD-enabled network aggregating all

information in the spoken word before triggering a decision using

all that information simultaneously. Moreover, we can observe that
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FIGURE 5

Illustration of 4 distinct English examples (“1”, “6”, “7”, and “10”). The cumulative spike count of the input is plotted on the right y-axis (represented by

the blue line), while the true neurons’ cumulative spike count is on the left y-axis. Four models are showcased:: No delay, D128-SNN, DL128-SNN,

and DL128-SNN-Dloss.

the models with delay typically have a total of 60 time step latency,

which can be measured after the input is over. This is not only

related to the delay itself but also to the choice of loss evaluation.

As Shrestha et al. (2022) discussed, the spike-based negative log-

likelihood loss results in early classification, even 1400 time steps

faster than spike-rate based loss evaluation for NTIDIDIGITS

datasets. However, the DL-128-SNN-Dloss generates the highest

number of spikes for the true neuron compared to the othermodels,

demonstrating its superior ability to learn characterizations.

Subsequently, the L2 loss is employed to confine the range

of delay values to provide a more uniform distribution. This

leads to a reduction in delay values for some neurons (see

Figure 6), aiming to reduce the total latency and investigate whether

shorter delays contribute to a better classification system. This is

achieved by applying the L2 regularizer to
∑N

i=1 d̂i. Nevertheless,

as demonstrated in Table 4, the inclusion of the additional L2

loss results in a performance decline. This could indicate that

the learned distributions achieved through these architectures

may already be optimal within the current delay threshold,

denoted as θd.

3.6. Local skip-connection as
compensation for loss of information in
reset mechanism

The positive impact of local skip-connections on the reset

mechanism becomes evident when modulating the refractory

scale, symbolized as αr . We conduct a comparative analysis of

performance between two distinct configurations: one labeled as

VAD, which encompasses solely the delay model, and the other

designated as VAD+Local, which additionally incorporates local

skip-connections. As shown in Figure 7, the Local skip-connection

maintains high performance across a wider range of refractory

scales αr , while the performance with only the VAD module starts

to decline with high values. This observation aligns with our

earlier conjecture that larger values of αr may induce information

loss, as the neuron’s potential struggles to recover efficiently. In

contrast, the presence of local connections mitigates this loss by

dynamically triggering spiking events among local neurons. Thus,

our Local skip-connection diminishes sensitivity to parameter

selection, potentially providing more flexibility to train SNNs for
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FIGURE 6

Application of the L2 regularizer on the distribution of time delay for (A) NTIDIDIGITS, (B) SHD. The initial distribution are all 0. From the left to right:

First layer, second layer.

FIGURE 7

The influence of the di�erent refractory scale αr on accuracy is examined under “VAD” and “VAD+Local” architecture. “VAD” refers to the

performance of using only the VAD module, while “VAD+Local” represents the performance using both VAD and local skip-connections. (A)

NTIDIDIGITS dataset. (B) SHD dataset. For this experiment, we use two dense layers with 128 neurons.
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varied tasks, indicating that a consistent alpha value can be effective

for different tasks.

4. Conclusion

In this study, we introduce several innovative components

aimed at enhancing the performance of Spiking Neural Networks

(SNNs): the learnable axonal delay module, combined with a local

skip connection architecture, and augmented with an auxiliary

suppressed loss. The variable axonal delay module plays a pivotal

role in aligning spike timing, thereby enhancing the network’s

capacity for representation. The local skip-connection mechanism

compensates for the information loss during the reset process.

This enhances network dynamics and reduces the sensitivity to

refractory scale tuning, making it more versatile. The inclusion

of the suppressed loss works to suppress erroneous neuron firing,

facilitating the SNN in making more accurate label distinctions.

Importantly, these methods can be seamlessly integrated into the

existing framework through the use of backpropagation algorithms.

We demonstrate that the proposedmethods boost performance

on two benchmark event-based speech datasets with the fewest

parameters. Our methods highlight the immense potential of

employing them in tandem with a cochlear front-end that encodes

features of auditory inputs using spikes, creating a robust bio-

inspired system. Our work emphasizes the importance of delving

into different dynamic SNN architectures and learning algorithms

for tasks involving datasets with rich temporal complexity.

In future work, it will be interesting to investigate the spike

count distribution per layer and the total computational cost.

Additionally, more exploration could be focused on latency by

studying the influence of different loss evaluations and dynamic

caps for axonal delays. Since current work mainly focuses on

cochlear features with a bio-inspired approach, it would also be

intriguing to apply these methods to visual tasks that involve

inherent temporal information.
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