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Objective: Subthalamic deep brain stimulation (STN-DBS) is a neurosurgical 
therapy to treat Parkinson’s disease (PD). Optimal therapeutic outcomes are 
not achieved in all patients due to increased DBS technological complexity; 
programming time constraints; and delayed clinical response of some symptoms. 
To streamline the programming process, biomarkers could be used to accurately 
predict the most effective stimulation configuration. Therefore, we investigated 
if DBS-evoked potentials (EPs) combined with imaging to perform prediction 
analyses could predict the best contact configuration.

Methods: In 10 patients, EPs were recorded in response to stimulation at 10  Hz for 
50  s on each DBS-contact. In two patients, we recorded from both hemispheres, 
resulting in recordings from a total of 12 hemispheres. A monopolar review was 
performed by stimulating on each contact and measuring the therapeutic window. 
CT and MRI data were collected. Prediction models were created to assess how 
well the EPs and imaging could predict the best contact configuration.

Results: EPs at 3  ms and at 10  ms were recorded. The prediction models 
showed that EPs can be combined with imaging data to predict the best contact 
configuration and hence, significantly outperformed random contact selection 
during a monopolar review.

Conclusion: EPs can predict the best contact configuration. Ultimately, these 
prediction tools could be  implemented into daily practice to ease the DBS 
programming of PD patients.
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1. Introduction

Deep brain stimulation (DBS) is an effective neurosurgical therapy 
for Parkinson’s disease (PD), where a lead is implanted into the 
subthalamic nucleus (STN) or the internal globus pallidus (GPi), to 
deliver electrical stimulation via an implanted neurostimulator 
(Benabid et al., 1991; Limousin et al., 1998; Coenen et al., 2008; Kalia 
et  al., 2013; Schuepbach et  al., 2013). Initial programming can 
be  based on electrophysiological recordings made from the leads 
during implantation surgery (Chen et al., 2022; Darcy et al., 2022; 
Hirschmann et al., 2022; Shah et al., 2022). Programming is often 
guided by a monopolar review assessment where the best therapeutic 
DBS-contact is identified via systematic evaluation of the clinical 
response (e.g., rigidity assessment of wrist contralateral of stimulated 
hemisphere) elicited when stimulating on each contact separately as 
cathode with the anode on the implantable pulse generator. After a 
monopolar assessment, the programmer has a clinical response 
threshold (CRT), side effect threshold (SET) and a therapeutic window 
(TW) for each contact, where CRT is the stimulation intensity at 
which clinical effects can be observed. The SET is the stimulation 
intensity at which nontransient side effects are observed. Lastly, the 
TW is the difference between SET and CRT. Often, the programmer 
will select the contact with the widest TW to initiate programming.

Even with accurate lead positioning during surgery, programming 
is time-consuming, depends highly on programmer expertise, and can 
be exhausting for the patient. With the advent of directional leads and 
multiple independent current-controlled (MICC) devices, the 
programming parameter space has increased tremendously, leading 
to reduction in side effects but also to increased programming time 
and complexity (Ten Brinke et  al., 2018; Vitek et  al., 2020). 
Additionally, a recent study now showed that the coverages of DBS for 
PD are rapidly increasing and are predicted to keep increasing in the 
future (Meng et al., 2023).

A more objective data-driven DBS programming strategy could 
help solve this problem. One approach is the use of imaging, where 
one can visualize the lead in reference to its surrounding nuclei. 
Imaging is also used to visualize the spread of electrical stimulation 
induced by DBS, such as the electric field (EF), to guide programming 
(Hemm et al., 2005; Åström et al., 2009; Nguyen et al., 2019; Lange 
et al., 2021). When pooling individual patient data, one can create 
so-called clinical ‘sweet spots’, which are probabilistic stimulation 
maps predictive of good motor outcomes (Dembek et al., 2019) and 
are already being used to guide programming (Phibbs et al., 2014; 
Nordenström et al., 2022).

Alternatively, the use of EEG-based evoked potentials (EPs) to 
guide DBS programming could complement other electrophysiological 
methods as well as imaging-based approaches. We previously showed 
that EP amplitudes are significantly affected by stimulation direction 
and depth, and that a short-latency peak at three milliseconds (P3) is 
correlated to the distance to dorsolateral STN, while a long-latency 
peak at ten milliseconds (P10) is correlated to the substantia nigra 
(Peeters et al., 2023a). In a follow up study, we showed that these EPs 
can be used to predict clinical outcomes assessed using a monopolar 
review, complementary to existing imaging approaches (Peeters 
et al., 2023b).

In a recent study, Shah et al. (2022), reported on the use of STN 
local field potential (LFP) recordings and imaging data to predict the 
best therapeutic contact to stimulate a DBS patient using a contact 

prediction analysis. They concluded that the model prediction 
approach using features derived from LFP recordings could be a useful 
way to optimize DBS programming in PD patients. Based on these 
analyses, we now performed an additional analysis using the dataset 
containing EEG-based EPs and imaging data reported on in Peeters 
et al. (2023b) to construct a prediction model and then we performed 
a similar prediction analysis to investigate if EEG-derived biomarkers 
could be used to objectively program DBS patients.

2. Materials and methods

2.1. Patients

PD patients who met the ‘UK PD Society Brain Bank Clinical 
Diagnostic Criteria’ and had undergone STN-DBS surgery and were 
implanted with directional leads [Vercise Cartesia®, Boston Scientific 
(BSC, Valencia, CA, USA)] at least 3 months prior to enrollment were 
included in the study (Gibb and Lees, 1988; Broggi et al., 2003). All 
patients provided oral and written informed consent. The study was 
approved by the Ethics Committee Research UZ/KU Leuven (S62373) 
and was registered on ClinicalTrials.gov (NCT04658641). The study 
was conducted in accordance with the Declaration of Helsinki, the 
Belgian law of May 7th, 2004 on experiments on the human person 
and in agreement with Good Clinical Practice guidelines.

2.2. DBS stimulation during EEG recordings 
and monopolar review assessment

Patients were asked to refrain from PD medication intake 
overnight. One hemisphere was tested while stimulation in the other 
was off. First, the highest intensity that did not induce side effects was 
determined when stimulating on the clinical contact configuration 
(monopolar cathodic pulse, with anode on the case, 130 Hz frequency 
and 60 μs pulse width). Then, one DBS-contact was randomly selected1 
and the frequency was decreased to a frequency of 10 Hz to enable EP 
recordings up to 100 milliseconds following each pulse (monopolar 
cathodic pulse, with the return electrode on the case and 60 μs pulse 
width). EPs were recorded at 10 Hz for 50 s (yielding a total of 500 
epochs) at the highest intensity that did not induce side effects as 
defined on the clinical contact configuration. Every DBS-contact was 
stimulated separately, as well as the segmented contacts in ring mode. 
A 64-channel Active-Two BioSemi system (Amsterdam, the 
Netherlands) was used for all recordings (16,384 Hz sample rate, 
3,200 Hz cut-off frequency low-pass filter), which were referenced to 
the vertex EEG channel. Three additional EEG channels were added: 
one on the skin over the implantable pulse generator to serve as the 
trigger channel for EP alignment and two on the left and right mastoid 
to record the stimulation artifact, on which the artifact template was 
based, used to reduce the stimulation artifact. Details on the artifact 
reduction method and preprocessing pipeline can be found elsewhere 
(Peeters et al., 2023a).

1 www.random.org
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At least one month after the EEG recordings, patients were invited 
back for a double-blinded monopolar review, where both the patient 
and the clinician performing clinical evaluations were blinded to the 
contact used for stimulation while the programmer was responsible 
for the changes in the DBS system. The monopolar review session was 
always performed by the same clinician and programmer throughout 
the study. The clinical response threshold (CRT) was defined as the 
stimulation intensity that alleviated rigidity in the contralateral wrist 
and the side effect threshold (SET) was defined as the intensity where 
side effects started to appear. Rigidity was assessed according to the 
Movement Disorders Society Unified Parkinson’s Disease Rating Scale 
(part III – Section 3.3) (Heldman et al., 2011). The therapeutic window 
(TW) was then defined as the difference between SET and CRT. Of 
note, the correlation between this monopolar review data and the EP 
data in this patient cohort has already been published elsewhere 
(Peeters et  al., 2023b). The monopolar review was assessed at a 
frequency of 130 Hz, a pulse width of 60 μs for every DBS-contact 
separately, as well as the segmented contacts in ring mode. The 
intensity was increased in steps of 0.5 mA.

2.3. Imaging

Lead-DBS, an open-source image processing pipeline (version 
2.5.3, Berlin, Germany) (Gross et al., 2006; Horn et al., 2018) was used 
for postoperative lead reconstruction analysis (lead position and 
orientation). We used a published neuroanatomical sweet spot (motor 
improvement) approach for all imaging analyses (Dembek et al., 2019). 
We calculated the electric field (EF) at stimulation intensities of 1 mA 
for each DBS-contact using FastField (Baniasadi et al., 2020). We then 
calculated the sweet spot overlap of the EF by multiplying the electric 
field with the binary mask of the neuroanatomical sweet spot (centers 
the dorsolateral STN and covered dorsal parts of both sensorimotor 
STN and associative STN and surrounding white matter) (Dembek 
et al., 2019) and then summed all EF values that lay inside the sweet spot.

2.4. Contact prediction analysis

MATLAB 2022a (Mathworks Natick, MA, USA) was used for all 
processing and statistical analyses. Details on EP processing can 
be found in a previous publication (Peeters et al., 2023a). To investigate 
if selecting a contact based on EEG information [i.e., amplitudes of a 
3-millisecond peak (P3) and a 10-millisecond peak (P10)], imaging 
information (i.e., EF sweet spot overlap) or combined EEG- and 
imaging information can fasten the process of selecting a contact 
based on a monopolar review assessment, we  calculated contact 
predictions using a leave-one-out analysis. For EEG-based contact 
prediction, we used linear mixed models to predict the relationship 
between P3 and P10 peaks and clinical measures (i.e., TW, CRT, and 
SET). For imaging-based contact prediction, we used linear mixed 
models to predict the relationship between the EF sweet spot overlap 
to TW, CRT, and SET. Finally, for EEG- and imaging-based contact 
prediction, we used linear mixed models to predict the relationship 
between both P3 and P10 peaks, and the EF sweet spot overlap to TW, 
CRT, and SET. Each time, one hemisphere was left-out of the linear 
mixed model calculation and the TW, CRT, and SET predictions were 
calculated using data from the left-out hemisphere. The distribution 

of the linear mixed model residuals were investigated as a validation 
tool for these linear mixed models and were found to be distributed 
normally (not shown). Furthermore, the contact predictions for TW, 
CRT, and SET were based on either EEG data or imaging data, or a 
combination thereof, were also investigated per hemisphere to 
evaluate the contact ranking per hemisphere included in the study.

Next, the predictions from the models were compared to the true 
CRT, SET and TW measured during the monopolar review. To do this, 
we first ranked the contacts based on the predictions from the leave-
one-out analysis described above from best (i.e., widest predicted TW, 
lowest predicted CRT, highest predicted SET) to worst (i.e., narrowest 
predicted TW, highest predicted CRT, lowest predicted SET) for each 
individual hemisphere. Based on the model ranking, we then selected 
the top one ranked contact and calculated the probability that the 
‘truly’ best contact, based on the clinical monopolar review outcome, 
was among this selection. Thereafter, we selected the top two ranked 
contacts and calculated the probability that the truly best contact 
matched this selection. We  repeated this procedure including 
incrementally more contacts until all contacts were included in the 
selection. The final selection with all contacts gives by definition a 
100% chance of the truly best contact being included in the selection. 
This is termed the cumulative chance of predicting the best contact. 
Lastly, the area under the curve (AUC) was calculated to quantify if 
either EEG-based information or imaging-based information, or 
combined EEG- and imaging-based information could predict the 
best contact configuration for DBS programming with values varying 
between 0 (no predictive value of model) and 1 (perfect predictive 
value of model). As mentioned above, we also investigated the contact 
performance in predicting the contact with the widest TW, lowest 
CRT and highest SET ranked from best to worst per hemisphere based 
on the three above described models. For this, we  calculated the 
normalized mean EEG-based contact prediction. A higher rank are 
hypothesized to indicate a contact with a wider TW, a low stimulation 
intensity for CRT and a high stimulation intensity for SET.

3. Results

Ten PD patients were included in the study. In two patients, 
we recorded from both hemispheres, yielding 12 tested hemispheres 
in total. The age, gender, dominant hemibody, levodopa equivalent 
daily dose (LEDD), disease duration and relevant study-related data 
are summarized in Table 1.

The predictions resulting from the linear mixed models are 
illustrated in Figure 1 as the overall probability of identifying the 
contact with the truly best TW, CRT and SET. When performing a full 
monopolar review assessment (i.e., eight contacts and two segmented 
contacts in ring mode), the programmer has a 100% chance of 
choosing the contact with the truly widest TW, lowest CRT and 
highest SET (Figure 1, dashed lines). However, when testing three 
randomly selected contact configurations during a monopolar review, 
the probability of choosing the contact with the truly widest TW, 
lowest CRT and highest SET is only 30%. If we performed a monopolar 
review on the top three contact configurations suggested by the 
EEG-based prediction models (Figure 1A, solid lines), the probability 
to find the contact with the truly widest TW increases to 90%, lowest 
CRT increases to 50% and highest SET increases to 50%. Next, if 
we  performed a monopolar review on the top three contact 
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configurations suggested by the image-based prediction models 
(Figure 1B, solid lines), the probability to find the contact with the 
truly widest TW increases to 58%, lowest CRT increases to 50% and 
highest SET increases to 58%. Lastly, if we performed a monopolar 
review on the top three contact configurations suggested by the 
combined prediction models (Figure 1C, solid lines), the probability 
of finding the contact with the truly widest TW increases to 67%, 
lowest CRT increases to 42% and highest SET increases to 58%.

The AUC of the dashed line (i.e., chance the programmer has of 
selecting the best contact configuration if they perform a monopolar 
review with an increasing number of randomly selected contacts) is 
always 0.5. The AUCs calculated for the EEG-based, imaging-based 
and EEG- and imaging-based contact predictions were always greater 
than 0.5, indicating that all models outperform testing on randomly 
selected contact configurations (see Figure 1 for AUC values). Next, 
for TW predictions, we found that the EEG-based model (AUC of 
0.84) outperformed the model with only imaging data (AUC of 0.74) 
and the combined model (AUC of 0.78). Furthermore, for CRT 
predictions, we found that the imaging model (AUC of 0.67) slightly 
outperformed the EEG-based model (AUC of 0.63) and the combined 
model (AUC of 0.66). Lastly, for SET predictions, we found that the 
EEG-based model (AUC of 0.77) outperformed the imaging model 
(AUC of 0.73) and the combined model (AUC of 0.73).

Figure 2 shows the contact performance (in predicting contact 
with widest TW, lowest CRT and highest SET) ranked from best to 
worst per hemisphere based on EEG, imaging and a combined model. 
The normalized mean EEG-based contact prediction indicates that the 
better ranks predict a wider TW, a low stimulation intensity for CRT 
and a high stimulation intensity for SET. Similar findings are observed 
for the imaging-based contact prediction and the combined EEG- and 
imaging-based contact prediction for the prediction of TW and 
SET. For CRT, we observe an increase in stimulation intensity between 
rank 4 and 5. This is because the same CRT value was often noted for 
multiple contacts in one hemisphere, and they were all assigned a 
different rank. This resulted in small changes in CRT values predicted 

by the models and hence, not a straight increasing normalized mean 
contact prediction using EEG and/or imaging information.

4. Discussion

In this study, we used a linear mixed model analysis to investigate 
if P3 and P10 can be used to predict the best contact to guide DBS 
programming in PD patients. To investigate the robustness of these 
models, all electrophysiological data were included in the model, 
meaning that also data from patients with less apparent P3 and P10 
peaks were included in case an EEG experiment would yield mediocre 
results only. The leave-one-out analysis then provided evidence on 
how EPs could be used as features for DBS programming.

We found that each contact prediction based on the linear mixed 
models to find the contact with the widest TW, the lowest CRT and 
the highest SET including either EEG data or imaging data is superior 
to the chance the programmer has of selecting the contact with the 
truly widest TW, lowest CRT and highest SET if they perform a 
monopolar review with an increasing number of randomly selected 
contacts. When combining EEG and imaging data in the linear mixed 
models, we also found that the prediction models are superior to the 
random selection of contacts in a monopolar review assessment. For 
SET predictions, the EEG-based model outperformed the imaging-
based model and the combined model. We  believe that this can 
be partly explained by the fact that the P10 peak is a very strong peak 
in amplitude that is highly correlated to side effects as our group 
published previously (Peeters et al., 2023b), while the P3 peak is lower 
in amplitude. Hence, these models may be more driven by the larger 
differences in P10-peaks, resulting in the EEG-based model to 
outperform the other two models for SET predictions. Next, for CRT 
predictions, the image-based model outperformed the EEG-based 
model as well as the combined model. This is most likely due to the 
fact that the P3 peak, which is positively correlated to therapeutic 
effects (Peeters et al., 2023b), is rather low in amplitude and hence, the 

TABLE 1 Demographic data and stimulation parameters.

Hemisphere 
no.

Gender/
age (years)

PD 
dominant 
hemibody

LEDD (in mg) 
at time of 

EEG 
experiment

Disease 
duration (in 

years) at 
time of EEG 
experiment

Time (in 
months) 

since DBS 
surgery at 

time of EEG 
experiment

Stimulation 
intensity 

(mA) at EEG 
experiment

Time (in 
months) 
between 
EEG and 

monopolar 
review

1R F/50 R 500 10 8 6.0 10

1L F/50 R 500 11 17 4.0 2

2L M/55 R 430 9 7 5.0 18

3L F/58 L 180 8 4 3.0 18

4L F/56 R 430 3 8 4.0 2

5L M/71 R 0 9 9 4.0 6

6L M/47 L 0 8 5 6.0 10

7R F/68 L 0 15 14 6.0 4

7L F/68 L 0 15 14 6.0 4

8R M/41 L 0 8 11 6.0 2

9L F/58 L 320 11 9 4.8 2

10L M/59 L 550 15 6 5.0 2

L, left; R, right; F, female; M, male; LEDD, Levodopa Equivalent Daily Dose.
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FIGURE 1

Contact prediction of clinical outcome measures. (A) The contact predictions based on the linear mixed models only including EEG data for TW (left 
panel), for CRT (middle panel) and for SET (right panel). (B) The contact predictions based on the linear mixed models only including imaging data for 
TW (left panel), for CRT (middle panel) and for SET (right panel). (C) The contact predictions based on the linear mixed models combining EEG and 
imaging data for TW (left panel), for CRT (middle panel) and for SET (right panel). The dashed line indicates the chance the programmer has of 
selecting the best contact if they perform a monopolar review with an increasing amount of randomly selected contacts. The y-axis shows the 
cumulative chance of finding the best contact (in %) as an increasing number of randomly selected contacts are tested (x-axis). TW, therapeutic 
window; CRT, clinical response threshold; SET, side effect threshold.
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image data may be driving the predictive effect more. Lastly, for TW 
predictions, the EEG-based model once again outperformed the 
image-based model and the combined model. This is no surprise as 
TW is the resulting difference between SET and CRT and SET is more 
driven by the side effect-related P10 peak.

Programming has become more complicated and time-consuming 
due to a widened parameter space, the burden on the patient (Ten 
Brinke et  al., 2018; Vitek et  al., 2020) which often still leads to 

suboptimal clinical outcomes in some patients. In this study, 
we  demonstrate that EEG-based biomarkers recorded from the 
different DBS-contacts separately as well as the segmented contacts in 
ring mode can be  used to create a shortlist (e.g., three contact 
configurations) of optimal DBS-contacts. This would allow the 
programmer to focus on fewer but more promising DBS-contacts. As 
shown here, testing only five contacts of ten configurations of an eight-
contact directional lead already yields a 90–100% prediction accuracy 

FIGURE 2

Contact prediction per hemisphere based on EEG data, imaging data, and combined EEG and imaging data. (A) EEG-based contact prediction per 
hemisphere only including data for TW (left panel), for CRT (middle panel) and for SET (right panel). (B) Imaging-based contact prediction per 
hemisphere only including data for TW (left panel), for CRT (middle panel) and for SET (right panel). (C) Combined EEG- and imaging-based contact 
prediction per hemisphere only including data for TW (left panel), for CRT (middle panel) and for SET (right panel). The x-axis shows the ranking of the 
contacts from best (i.e., widest TW, lowest CRT, highest SET) to worst (i.e., narrowest TW, highest CRT, lowest SET). The y-axis shows the normalized 
stimulation intensity for TW (left panels), SET (middle panels) and CRT (right panels) in mA. The different colors represent the different hemispheres 
tested. The thick black line represents the average across tested hemispheres. TW, therapeutic window; CRT, clinical response threshold; SET, side 
effect threshold.
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(depending on the features added in the model) to find the true 
contact with the widest TW, thereby expediting the programming time.

Some limitations need to be  noted for this study. Firstly, the 
sample size is modest, though patient programming happens on a 
patient-specific level. The rather modest sample size could, however, 
still impact the generalizability of the results described here. Next, 
we only considered rigidity as the clinical outcome measure used for 
the monopolar review assessment. The sweet spot atlas (Dembek et al., 
2019) used for all imaging analyses in this study, however, considers 
overall motor improvement using the UPDRS part III. Lastly, the 
contacts predicted by our novel method provide a strict ranking to 
approximate the performance of the EEG- and/or imaging-based 
contact prediction. This means only one contact will be ranked as 
having the widest TW, the lowest CRT and/or the highest SET. In 
practice, however, stimulation from more than one contact can result 
in good clinical outcomes. Thus, a more individualized approach can 
be applied when using this model for contact prediction.

In previous studies, we reported that EEG-based biomarkers show 
significant differences in amplitude when stimulating on the different 
directions using the segmented contacts (Peeters et  al., 2023a). 
Furthermore, we  showed that changing the electric field in small 
incremental steps using MICC (Peeters et  al., 2022) results in 
significant differences in EP amplitudes. Lastly, we also showed that 
these EEG-based biomarkers may have clinical value (Peeters et al., 
2023b). In these previous studies, we showed that P3 was strongest in 
dorsal contacts closer to dorsal STN (Peeters et al., 2023a,b), but that 
stimulation from contacts outside of the motor STN border resulted 
in strong P3 peaks, suggesting the involvement of the zona incerta (ZI) 
and white matter tracts such as the hyperdirect pathway (HDP). These 
results thus show therapeutic relevance for the P3 peak. For P10, 
we  find stronger peaks in the more ventral contacts, indicating 
substantia nigra (SN) involvement and hence, therapeutic relevance 
as well as these may be relevant for SN-related side effect investigations.

The current study now introduces a practical approach of how 
EEG-based biomarkers can be used to guide the selection of contacts 
for testing during DBS programming of PD patients and indicates 
how well the approach might perform compared to contact testing 
in a monopolar review assessment. In addition, the current study 
shows that EEG-based biomarkers can be  an alternative or 
complementary to an existing image-based approach based on an 
aggregate clinical sweet spot volume and stimulation model (Dembek 
et al., 2019). A potential advantage of this EEG-based method is that 
this could potentially be built into the clinician programmer to guide 
the DBS programming without additional scans or analyses. The 
programmer could then stimulate each DBS-contact at a fixed 
stimulation intensity (e.g., similar to impedance measurements at the 
start of a programming visit) making this a potentially interesting 
and efficient guidance tool for programming. Furthermore, these 
EEG-based EPs may be  useful in adaptive DBS, a strategy that 
recently attracted scientific interest (Habets et  al., 2018; Guidetti 
et al., 2021). In theory, adaptive DBS works by responding to input 
brain signals by providing optimized stimulation parameters to 
improve the therapeutic efficacy and increase battery longevity. A 
recent review paper now provided a comprehensive summary of 
advances for adaptive DBS (Wang et al., 2023), where the researchers 
suggested that EPs may be a promising source of input signals for 
adaptive DBS. Obviously, their effectiveness and applicability still 
need to be confirmed in a large-scale study.

In conclusion, the results shown here indicate that EEG-based 
biomarkers can be used to guide DBS programming in DBS patients. 
This EEG-based method could be built into the clinician programmer 
directly to guide the DBS programming without additional analyses. 
Ultimately, EEG-based biomarkers can be complementary to existing 
imaging approaches and can be a valuable contribution to achieving 
the goal of objective DBS programming for individual patients.
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