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Brain malformations cause cognitive disability and seizures in both human and

animal models. Highly laminated structures such as the neocortex and cerebellum

are vulnerable to malformation, a�ecting lamination and neuronal connectivity as

well as causing heterotopia. The objective of the present study was to determine

if sporadic neocortical and/or cerebellar malformations in C57BL/6J mice are

correlatedwith reduced seizure threshold. The inhaled chemi-convulsant flurothyl

was used to induce generalized, tonic-clonic seizures in male and female

C57BL/6J mice, and the time to seizure onset was recorded as a functional

correlate of brain excitability changes. Following seizures, mice were euthanized,

and brains were extracted for histology. Cryosections of the neocortex and

cerebellar vermis were stained and examined for the presence of molecular layer

heterotopia as previously described in C57BL/6J mice. Over 60% of mice had

neocortical and/or cerebellar heterotopia. No sex di�erences were observed in

the prevalence of malformations. Significantly reduced seizure onset time was

observed dependent on sex and the type of malformation present. These results

raise important questions regarding the presence of malformations in C57BL/6J

mice used in the study of brain development, epilepsy, and many other diseases

of the nervous system.
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Introduction

Several parts of the central nervous system exhibit a highly laminated cytoarchitecture.

For example, in both the cerebellum and neocortex, neuronal lamina are created by

sequential rounds of cell division by neuronal progenitors followed by progressive migration

of newly generated neurons into distinct layers (Angevine and Sidman, 1961; Altman,

1972). Aberrant neuronal proliferation can alter the size of the neocortex and cerebellum

causing disorders such as microcephaly and cerebellar hypoplasia (Basson and Wingate,

2013; Accogli et al., 2021). Similarly, deficits in neuronal migration can disrupt lamination

and cause heterotopia in these regions (Bahi-Buisson andGuerrini, 2013; Parrini et al., 2016).

Malformations of neocortical development due to altered neuronal migration are very

often comorbid with seizures and epilepsy (Guerrini et al., 2003; Guerrini and Dobyns,

2014). Moreover, epilepsy associated with malformation of neocortical development is
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often refractory to anti-seizure medications (Harvey et al., 2008).

For this reason, surgical interventions in refractory epilepsy due to

altered neuronal migration often include resection of dysplastic or

heterotopic tissue (Meroni et al., 2009; Cossu et al., 2018). Recently,

a growing number of clinical studies as well as research using

experimental animal models have also linked disorders of cerebellar

development with seizures and epilepsy (reviewed in Streng and

Krook-Magnuson, 2021; Rondi-Reig, 2022). Taken together, these

data support the hypothesis that disorders of neuronal migration

are characterized by changes in neuronal architecture as well as

circuit rewiring that can lead to brain hyperexcitability.

Animal models with neocortical malformations consistently

demonstrate a phenotype of spontaneous seizures and/or reduced

seizure threshold (Lee et al., 1997; Gabel and LoTurco, 2002;

Croquelois et al., 2009; Gilbert et al., 2014; reviewed in Wong and

Roper, 2016). However, similar studies in models with cerebellar

malformation are lacking. C57BL/6J inbred mice are a well-

suited inbred strain to study the relationship between seizures

and neocortical and/or cerebellar malformations. This strain has

sporadic, but highly consistent malformations of the neocortex

(Ramos et al., 2008) and cerebellum (Ramos et al., 2013). In the

present report, we used the inhaled chemi-convulsant flurothyl to

provoke seizures in male and female C57BL/6J mice and performed

a detailed histological analysis of neocortical and cerebellar

cytoarchitecture. We found that the presence of malformations

significantly reduced the seizure threshold in female mice. Our

results are discussed in the context of the use of C57BL/6J mice

in studies of brain development, epilepsy, and other nervous

system disorders.

Methods

Male and female C57BL/6J mice aged between 12 and 16

weeks were used in the following study. Mice were purchased from

The Jackson Laboratory and bred at Baylor University to produce

male and female offspring. A total of 131 mice, 69 male and 62

female, were used in this study. Testing for both cohorts took place

between postnatal days (PD) 60–70. The mice were group-housed

in standard acrylic mouse cages with ad libitum access to both

standard mouse chow and water, with nomore than five mice being

housed in a single cage. Testing occurred during the light cycle. The

colony was maintained at 22◦C on a 12 h light/12 h dark diurnal

cycle. All procedures performed complied with the Guide for the

Care and Use of Laboratory Animals from the National Institutes

of Health and were approved by the Baylor University Institutional

Animal Care and Use Committee.

The chemi-convulsant flurothyl was used to induce an acute

seizure as previously described by our group (Holley and Lugo,

2016; Holley et al., 2018). Each seizure was induced under a

standard fume hood inside a clear acrylic (29 × 16 × 15 cm)

inhalation chamber. Specifically, the mice habituated to the room

for 30min prior to induction in their home cage and then were

placed in a clean transfer cage. Each mouse was placed individually

into an acrylic inhalation chamber wherein undiluted flurothyl

(bis-2,2,2-trifluroethylether), obtained from Sigma-Aldrich (St.

Louis, MO, USA, product number: 287571), was pumped into

the chamber using an extended glass syringe (14.57mm) and

the Harvard Apparatus model 11Plus syringe pump at a rate of

30 µL per minute. Flurothyl was administered until the mouse

exhibited a generalized seizure as described in the standard Racine

scale (Racine, 1972) including bilateral tonic extension of the

hindlimbs which was often followed by wild running. The time to

seizure onset was recorded by two investigators who were blind

to whether a mouse had malformation or not. High inter-rater

reliability in seizure latency scoring was ensured during training

sessions prior to data collection for this study. After a seizure was

induced, the mouse was removed from the chamber, placed into

an individual transfer cage, and monitored for 1 h to allow time

for recovery.

Following seizures, the mice were euthanized and decapitated,

and brains were placed in 4% paraformaldehyde for at least 24 h.

Histological methods developed and validated to identify both

cerebellar and neocortical malformations in C57BL/6J mice were

used as previously described (Lipoff et al., 2011; Mangaru et al.,

2013; Ramos et al., 2013, 2014, 2016; Van Dine et al., 2013a).

Brains were placed in 30% sucrose for 48 h before undergoing

sectioning on a cryostat. The forebrain and cerebellum were

separated from one another. The entire forebrain was cut coronally

and the entire cerebellar vermis was cut along the sagittal plane

at a thickness of 45µm, with free-floating sections placed in

saline. Every other coronal section (∼60 total sections) of the

forebrain and ∼15 sections of the cerebellar vermis were mounted

on gelatin-coated slides and allowed to dry for at least 24 h.

The slides were Nissl-stained and then cover-slipped. Brightfield

microscopy at varying magnifications (4, 20, and/or 40X) was used

to screen sections for cerebellar and neocortical malformations.

Digital photomicroscopy was used to document malformations

according to methods previously used to identify both cerebellar

(Van Dine et al., 2013a,b, 2015; Ramos et al., 2015) and neocortical

malformations (Ramos et al., 2008; Toia et al., 2017). Statistical

analysis and creation of graphs were performed via GraphPad

Prism version 9.4.0 with significance levels set at a p-value of<0.05.

Seizure onset data are reported in seconds (s) ± the standard error

of the mean (SEM).

Results

We have previously described the prevalence and

cytoarchitecture of neocortical and cerebellar heterotopia in

C57BL/6J mice (Ramos et al., 2008; Toia et al., 2017). Consistent

with our previous work, we found that a large proportion of

mice had cerebellar and/or neocortical heterotopia. A total of

40 of 62 (64.5%) female mice and 42 of 69 (67.74%) male mice

had either type of malformation. Chi-square analyses revealed

no sex difference in the prevalence of having a malformation. As

shown in Figure 1, among male mice, 31 (44.93%) had cerebellar

heterotopia only, 7 (10.14%) had neocortical heterotopia only, and

4 (5.80%) had both types of malformation. Chi-square analyses

indicated that the prevalence of cerebellar malformation alone is

significantly greater than that of neocortical heterotopia alone or

having both types of malformations (X2
= 29.91, p < 0.00001;

Yates correction 25.88; p < 0.0001). As shown in Figure 1, among

the female mice, 26 (41.94%) had cerebellar heterotopia only, 6

(9.68%) had neocortical heterotopia only, and 7 (11.29%) had both
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FIGURE 1

Distribution of male and female mice with normal brains or heterotopia in the neocortex and/or cerebellum.

FIGURE 2

Neocortical heterotopia in C57BL/6J mice. (A) Three examples (i–iii) of neocortical heterotopia (arrows) from mice in the current study. Heterotopia

could be in the dorsal neocortex (i and iii) or at the cortical midline (ii) and was characterized by an accumulation of neurons and glia in layer 1 which

would otherwise have few scattered neurons therein. High magnification of heterotopia shown in left-side panels with asterisks indicate areas of

intact layer I adjacent to heterotopia. (B) Three examples (i–iii) of neocortical heterotopia taken from the Allen Mouse Brain Atlas that are nearly

identical in spatial/areal location at the dorsal neocortex (i and iii) or the cortical midline (ii) scalebar for (A) (left/right) = 1,047/400µm; (B) (left/right)

= 1,500/600µm.

types of malformation. Chi-square analyses indicated that the

prevalence of cerebellar malformation alone is significantly greater

than that of neocortical heterotopia alone or having both types of

malformations (X2
= 14.91, p < 0.0002; Yates correction 13.3786;

p < 0.0003). Comparison between male and female mice based on

the prevalence of having one type of malformation (e.g., cerebellar

only) or having both types of malformations was non-significant.

Figure 2A shows three examples of neocortical heterotopia

(arrows) from mice in the current study. Heterotopia could be

found in the dorsal neocortex (i, iii) or at the cortical midline (ii)

and was characterized by an accumulation of neurons and glia in

layer I, which would otherwise have few scattered cells therein.

High magnification of heterotopia (Figure 2A, right-side panels)

indicated areas of intact layer I adjacent to heterotopia (asterisks).
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FIGURE 3

Cerebellar heterotopia in C57BL/6J mice. (A) Example of an intact cerebellum (i) and two examples of cerebellar heterotopia (ii and iii) in female mice

from the current study. Arrows point to normal cytoarchitecture of lobules VIII and IX (i) or heterotopic neurons and glia in between lobules VIII and

IX (ii and iii). (B) Example of intact cerebellum (i) and two examples of cerebellar heterotopia (ii and iii) from male mice from the current study. (C)

Example of intact cerebellum (i) and two examples of cerebellar heterotopia (ii and iii) from male mice from the Allen Mouse Brain Atlas which are

nearly identical to that from the current study. Higher magnification of examples in (iii) are shown in (iv). Scalebars for (A, B) = 1,000 and 333µm (i–iii

and iv, respectively). Scalebars for (C) = 1,047 and 350µm (i–iii and iv, respectively).

As we described previously, heterotopia are never found in lateral

(e.g., auditory cortex, perirhinal, or entorhinal) or posterior cortices

(visual cortex). Figure 2B shows three examples (i-iii) of neocortical

heterotopia taken from the Allen Mouse Brain Atlas that are

nearly identical in spatial/areal location at the dorsal neocortex

(i, iii) or the cortical midline (ii) to data found in our current

study.

Cerebellar heterotopia are found exclusively at the vermal

midline and only between lobules VIII and IX. As previously

described, cerebellar heterotopia are characterized by breaches

of the pia between lobules VIII and IX. This results in the

disorganization of Bergmann glia and ectopic granule cells and

Purkinje cells that accumulate in the molecular layer (Van Dine

et al., 2015). Figures 3A, B show two representative examples of

heterotopia in male and female mice in the current study. As shown

in Figure 3C, near-identical malformations of the cerebellum

could be found in the C57BL/6J dataset of the Allen Mouse

Brain Atlas.

Time to seizure onset analyses

Our experimental approach was designed so that all mice

experienced generalized seizures, and the time to seizure onset was

used as a measure of brain excitability. In addition, we were blind

to whether a mouse had a normal brain or exhibited cerebellar

and/or neocortical malformations until histological analyses were

performed. Given that we examined mice of both sexes and that

mice could exhibit several malformation phenotypes (neocortical

heterotopia only, cerebellar heterotopia only, heterotopia in both

the neocortex and cerebellum), a number of different comparisons

were performed among subgroups. Table 1 and Figures 4A, B

display mean seizure latency times and SEM values for all relevant

groups included in statistical comparisons.

A two-way ANOVA was first used to compare seizure onset

time between mice incorporating both sex and brain phenotype as

variables. This analysis revealed a significant main effect of brain

phenotype (p< 0.02, f = 3.94) but no significant difference between
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FIGURE 4

Seizure latency times for male and female mice with normal brains and heterotopia. (A) Latency to seizure (mean sec; error bars are SEM) for male

C57BL/6J mice exhibiting a normal brain with no malformation, a brain with both types of malformation (Both), neocortical heterotopia only

(Neocrtx only), or cerebellar heterotopia only. The numbers inside the bars reflect the number of mice in each group. (B) Latency to seizure (mean

sec; error bars are SEM) for female C57BL/6J mice. Black bar and asterisk point to significant di�erences between selected groups. The numbers

inside the bars reflect the number of mice in each group.

TABLE 1 Average seizure latency in sec ± SEM for all relevant groups in

the current study.

Male Female Total
combined

All 301.13± 6.39 305.44± 7.18 303.17± 4.77

Normal 302.90± 10.62 329.60± 14.12 315.18± 8.78

Neocortical

only

263.60± 8.14 310.30± 13.92 285.15± 10.50

Cerebellar

only

312.00± 9.24 296.80± 8.66 305.09± 6.42

Both 270.50± 24.67 253.90± 15.03 259.91± 12.61

sexes and no significant interaction. A one-way ANOVA was used

to explore differences within each sex. This analysis revealed a

significant main effect of brain phenotype among female mice (p

< 0.02, f = 4.1). Post-hoc Tukey tests revealed that seizure latency

times differed significantly (p < 0.02, Q = 4.60) between female

mice with normal brains (329.6 s ± 14.12 SEM) and female mice

with both types of heterotopia present (253.9 s ± 15.03 SEM). In

contrast, comparisons between all other groups did not reveal any

significant differences. A one-way ANOVA was used to explore

differences in seizure latency times of male mice. No significant

main effect of brain phenotype was observed.

The above comparisons using ANOVA emphasize potential

differences between all different subgroups of mice that have

malformation. However, more general comparisons are also

valuable such as between mice with a normal brain vs. the

combined group of mice with any kind of malformation. For

example, a two-tailed t-test of seizure latency in all mice with a

normal brain compared to all mice with any kind of heterotopia

revealed significant differences (p < 0.05, t = 2.00). A two-tailed

t-test of seizure latency between female mice with a normal brain

compared to female mice with any kind of heterotopia also revealed

significant differences (p< 0.009, t= 2.72). In contrast, a two-tailed

t-test of seizure latency between male mice with a normal brain

compared to male mice with any kind of heterotopia revealed no

significant differences. Bonferroni corrections applied to the above

t-tests change the significance level threshold to<0.0167. Applying

this new threshold, the seizure latency of all mice with normal

brains compared to all mice with any kind of heterotopia would

no longer be significant. However, the seizure latency of female

mice with normal brains compared to all female mice with any

heterotopia would remain significant.

Discussion

The present study provides important findings relevant to

many areas of neuroscience research using mouse models. First, we

replicated our previous work demonstrating that C57BL/6J mice do

indeed exhibit cerebellar and/or neocortical malformations using

a sample size of male and female mice larger than any previous

study (Ramos et al., 2008; Van Dine et al., 2015). Analyses of

malformation prevalence indicate that ∼60% of male or female

mice will have a malformation of the cerebellum, neocortex,

or both regions similar to previous findings. Thus, recognizing

that C57BL/6J mice will have malformations is important to the

biomedical research community using these mice. For example,

in the production of KO mice or other genetically engineered

(GE) mice using the C57BL/6J background, investigators with

an interest in developmental neuroscience should anticipate that

KOs will have heterotopia which might confound the phenotype

attributed to gene perturbation (Cuoco et al., 2018). We recently

demonstrated that two popular genetic mouse models of autism

on the C57BL/6J background exhibit neocortical and cerebellar

heterotopia (Otazu et al., 2021) due to the C57BL/6J background.

Moreover, there exists the possibility that gene KO might increase
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or decrease the prevalence of heterotopia or alter the size or

distribution of malformations when these models are produced on

the C57BL/6J background. Genetic mouse models of epilepsy are

becoming more widely used as it is easier to produce GE mice

for novel genes linked to epilepsy. It is expected that GE mice

on the C57BL/6J background will also exhibit heterotopia, which

may influence the seizure phenotype in these mice. Thus, our

findings point to the need for histological identification of mice

with/without malformations for subsequent analyses when using

wild-type C57BL/6J mice or GE mice on this background.

Second, we show that female mice with both cerebellar

and neocortical heterotopia have reduced seizure threshold in

the flurothyl model. Female mice with normal brains were

also different than mice with any kind of malformation when

compared as a combined group. Surprisingly, female mice with

only neocortical heterotopia did not exhibit changes in seizure

onset although this group has a small sample size because of the

relatively low prevalence of these malformations in C57BL/6J mice.

In contrast to findings in female mice, male mice with either one or

both types of malformations did not show any differences in seizure

onset times. These findings point to sex differences in the influence

of heterotopia on brain excitability. One limitation of our study

is that we did not monitor the estrous cycle of our female mice,

which could have introduced behavioral variability in our data.

However, a recent report also using flurothyl reported no difference

in seizure onset time between female mice in proestrus/estrus

compared to those in diestrus (Echevarria-Cooper and Kearney,

2023). Thus, future studies could examine the possible interaction

between gonadal sex hormones and brain malformations in female

C57BL/6J mice bymonitoring and testingmice at different stages of

the estrous cycle or alternatively by performing ovariectomies and

hormone replacement. A major limitation of the former approach

is that the brain phenotype of mice is not known a priori,making it

challenging to design a study with sufficient power.

Our results differ from a previous study with male

C57BL/10J inbred mice, which have a greater prevalence of

neocortical heterotopia and exhibit a lower seizure threshold

to pentylenetetrazole (PTZ)-induced seizures (Gabel et al.,

2013). While every experimental approach for seizure induction

has its strengths and limitations, we used flurothyl in this

study because of our extensive expertise with this approach

(Lugo et al., 2014; Holley and Lugo, 2016; Holley et al.,

2018; Binder et al., 2022). Moreover, flurothyl is much

easier to use compared to methods requiring intraperitoneal

injection, where mice often need multiple doses of chemi-

convulsant to provoke a seizure or never exhibit a generalized

seizure, complicating measures of latency. Nevertheless,

another important area for future research should focus

on the extent to which heterotopia affect seizure threshold

depending on the method used to induce seizures (i.e., PTZ or

kainic acid).

Finally, we show a role for cerebellar heterotopia in seizure

onset time albeit only in female mice which also had neocortical

heterotopia. Attention to the role of the cerebellum in seizures

and epilepsy is growing in the clinical setting as well as in

experimental studies with animal models. For example, there

is a greater appreciation that the cerebellum can influence the

physiology of neocortical (Popa et al., 2013; Watson et al., 2014;

Tremblay et al., 2019) as well as subcortical structures such

as the hippocampus via polysynaptic pathways (Yu and Krook-

Magnuson, 2015; Bohne et al., 2019; Watson et al., 2019; Zeidler

et al., 2020). Neocortical modulation of cerebellar physiology has

also been demonstrated (Ros et al., 2009). Moreover, stimulation

of the cerebellum has been shown to control seizures in mouse

models of temporal lobe epilepsy (Krook-Magnuson et al., 2014;

Streng and Krook-Magnuson, 2020, 2021; Streng et al., 2021; Stieve

et al., 2022) and thalamic absence epilepsy (Kros et al., 2015a,b;

Eelkman Rooda et al., 2021). Exactly how malformation of lobules

VIII/IX of the posterior cerebellar vermis disrupts the function of

the cerebellum and interconnected circuits in C57BL/6J mice to

promote seizures remains unknown and is an important topic for

future investigation.

There are also significant gaps in our knowledge regarding the

anatomy and physiology of neocortical heterotopia, particularly

with regard to afferent and efferent synaptic connections and the

presence of heterotopic networks that can promote seizures. In

other inbred strains with similar neocortical heterotopia (NXSM-

D/Ei and NZB/BlNJ), postsynaptic potentials recorded by in

vitro whole-cell patch-clamp revealed both glutamatergic and

GABAergic synapses onto neurons in heterotopia (Gabel and

LoTurco, 2001). Epileptiform activity was more readily evoked

in cortical slices from these inbred models compared to those

without heterotopia (Gabel and LoTurco, 2001, 2002). Using in

vivo calcium imaging in an induced heterotopia model, neurons

in heterotopia were shown to be functionally connected to other

brain areas; however, epileptiform activity was not observed (Li

et al., 2021). Thus, while physiological data are consistent with

immunohistochemical and tracer studies (Ramos et al., 2014)

showing diverse connectivity in neocortical heterotopia, the role

of altered neuronal circuitry in heterotopia in seizure generation

remains poorly understood. Note that physiological recordings in

vivo or in vitro have yet to be performed in spontaneous neocortical

heterotopia in C57BL/6J mice.

In conclusion, we demonstrate that sex and the presence

of heterotopia interact to modulate flurothyl-induced seizure

threshold in C57BL/6J mice. These data point to the need

to consider how heterotopia can affect studies of epilepsy

using C57BL/6J mice, which is the most widely used strain in

neuroscience research.
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