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Introduction: The electroencephalographic (EEG) based on the motor imagery 
task is derived from the physiological electrical signal caused by the autonomous 
activity of the brain. Its weak potential difference changes make it easy to be 
overwhelmed by noise, and the EEG acquisition method has a natural limitation of 
low spatial resolution. These have brought significant obstacles to high-precision 
recognition, especially the recognition of the motion intention of the same upper 
limb.

Methods: This research proposes a method that combines signal traceability 
and Riemannian geometric features to identify six motor intentions of the same 
upper limb, including grasping/holding of the palm, flexion/extension of the 
elbow, and abduction/adduction of the shoulder. First, the EEG data of electrodes 
irrelevant to the task were screened out by low-resolution brain electromagnetic 
tomography. Subsequently, tangential spatial features are extracted by the 
Riemannian geometry framework in the covariance matrix estimated from the 
reconstructed EEG signals. The learned Riemannian geometric features are used 
for pattern recognition by a support vector machine with a linear kernel function.

Results: The average accuracy of the six classifications on the data set of 15 
participants is 22.47%, the accuracy is 19.34% without signal traceability, the accuracy 
is 18.07% when the features are the filter bank common spatial pattern (FBCSP), and 
the accuracy is 16.7% without signal traceability and characterized by FBCSP.

Discussion: The results show that the proposed method can significantly improve the 
accuracy of intent recognition. In addressing the issue of temporal variability in EEG 
data for active Brain-Machine Interfaces, our method achieved an average standard 
deviation of 2.98 through model transfer on different days’ data.
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1. Introduction

Due to diseases, accidents, aging, and other factors, there is an increasing proportion of the 
population with sensory impairments, perceptual disorders, physical disabilities, and brain 
degeneration, which leads to a decrease in self-care ability (Kitamura et al., 2021). This puts 
significant economic pressure on families and society and poses challenges to healthcare and 
social security systems (Norrbom and Stahl, 2022). Brain-machine interface (BMI) technology 
based on motor imagery (MI) provides a new solution for individuals with motor and 
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communication disabilities (Remsik et al., 2016; Lazarou et al., 2018; 
Tortora et  al., 2020). Compared to interaction modalities such as 
sound and touch, non-invasive BMI offers a more direct and natural 
way of interaction (Pfurtscheller and Neuper, 2001; Schalk et  al., 
2004). It utilizes motor imagery-electroencephalographic (MI-EEG) 
signals, which are brain signals generated by subjective motor 
intentions (Pfurtscheller and Neuper, 1997). MI-based BMI devices, 
such as neural prostheses and arm exoskeletons, can help individuals 
restore normal functionality (King et al., 2013; Cheah et al., 2021). 
However, this BMI task is typically limited to four classes 
corresponding to different body parts, such as the left and right hands, 
both legs, and the tongue. There has been limited research on detecting 
different motor tasks of the same limb, especially movements of the 
same joint, which restricts the freedom of MI tasks.

Some potential limitations of EEG may be contributing factors to 
the lag in this type of research. Firstly, EEG has a lower spatial 
resolution, with sensor spacing typically around 10 millimeters 
(Hochberg and Donoghue, 2006). Each sensor records the activity of 
thousands of neurons or more, which are filtered and superimposed. 
This limited spatial resolution poses challenges in decoding single-
joint movements from a single limb using EEG since it triggers tightly 
packed cortical motor areas. Secondly, the number of motor cortex 
neurons involved in single-joint movements is fewer compared to 
those involved in large limb movements, and the muscle innervation 
of the ipsilateral upper limb originates from the brachial plexus, which 
largely overlaps in the cortical areas. The spatial resolution of EEG 
cannot reach the level of invasive surgery (Nunez and Srinivasan, 
2006). These facts indicate that the signal-to-noise ratio and 
bandwidth of EEG signals are limited, making it challenging to decode 
fine-grained MI tasks.

Currently, the mainstream algorithm for MI classification tasks is 
Common Spatial Patterns (CSP) (Ramoser et al., 2000). Wu et al. 
(2013) used CSP to extract features from EEG and applied Linear 
Discriminant Analysis (LDA) for MI classification, achieving an 
average classification accuracy of 80% on two datasets. Several 
algorithms derived from CSP have also been proposed, such as Filter 
Bank CSP (FBCSP) (Ang et al., 2012), Sub-Band CSP (Zhang et al., 
2015), and Common Spatio-Spectral Patterns (CSSSPs) (Reddy et al., 
2019). Additionally, research has been conducted to enhance the 
accuracy of MI classification tasks by improving the signal-to-noise 
ratio. For example, Qin et  al. proposed the use of Independent 
Component Analysis (ICA) to extract signal components related to 
left or right MI tasks. They reconstructed the equivalent neural sources 
of MI using source analysis methods and classified them based on 
inverse solutions, achieving an accuracy of 80% (Qin et al., 2004). 
Traditional EEG feature extraction algorithms have also been widely 
applied to MI tasks, including power spectral analysis (Lee et  al., 
2019), autoregressive coefficients (Talukdar et  al., 2014), wavelet 
decomposition (Cheng et  al., 2019), and Empirical Mode 
Decomposition (EMD) (Wang and He, 2004; Rafik and Larbi, 2019).

There has been relatively limited research on the challenging task 
of same upper limb MI. Xu et  al. proposed the use of phase 
synchronization information to classify MI EEG signals of different 
joint actions (grasping, elbow flexion/extension, and forearm 
protraction) within the same limb, achieving a classification accuracy 
of 42.7% for the three joint actions (Xu et al., 2019). Yong et al. utilized 
three feature extraction algorithms (CSP, FBCSP, logarithmic band 
power) to decode the resting state and two MI tasks (grasping and 

elbow movement) of the same limb in data from 12 participants, 
achieving an average accuracy of 60.7% (Yong and Menon, 2015). The 
same team further proposed the use of autoregressive model 
coefficients, waveform length, and root mean square as time-domain 
features, combined with a Support Vector Machine classification 
algorithm, which improved the accuracy by 16.2% (Tavakolan et al., 
2017). Ofner et al. (2017) conducted a study on low-frequency EEG 
time-domain features using data from 15 participants to decode six 
types of same-side upper limb actions for both execution and MI 
tasks, the classification accuracy for these six action classes was 27%. 
From these studies, it is evident that as the difficulty and number of 
MI tasks increase, the classification accuracy decreases significantly.

Recently, Riemannian geometry methods, as a novel feature 
representation learning tool, have been successfully applied in the field 
of BMI based on EEG (Yger et  al., 2016). These methods have 
demonstrated superiority in various applications, such as sleep/
respiration state classification (Navarro-Sune et al., 2016) and EEG 
pattern decoding (Kalunga et al., 2016). However, there has been little 
research on same-side upper limb MI, particularly tasks involving 
antagonistic movements. In the realm of motor imagery tasks, most 
studies have focused on left–right hand movements or coarse-grained 
motor imagery tasks (Shuqfa et al., 2023). These investigations have 
validated the applicability of active BMIs (Barachant et al., 2010a; 
Kumar et al., 2019), expanded research within the manifold space 
(Rodrigues et  al., 2018), and examined the connections between 
spatial patterns in BMIs (Barachant et al., 2010b). However, there has 
been relatively little research into fine-grained tasks. While Chu, 
Y. et al. achieved commendable results in this regard (Chu et al., 2020), 
applying these findings to real-world scenarios becomes challenging 
due to issues such as data augmentation through dataset partitioning. 
Most of the applications of Riemannian geometry methods in BCIs 
have not critically examined the construction of the space, the 
substantial sensor domain often contains a plethora of noise. 
Riemannian geometry, a method heavily reliant on spatial 
configuration, imposes strict limitations on the scope of the sensor 
domain. Additionally, no prior investigations have explored the issue 
of temporal variability (Brismar, 2007) in EEG during motor imagery.

The objective of this study is to increase the control degrees of 
freedom of non-invasive MI-BMI systems by decoding single-arm 
movements using EEG. The block diagram of the proposed decoding 
pipeline is shown in Figure 1. Independent component analysis and 
dipole source localization are employed to analyze EEG data during 
motor imagery, revealing the spatial structure of EEG correlates of 
movement. Feature extraction based on the Riemannian geometry of 
the EEG manifold successfully decodes single-arm movements and 
improves classification accuracy compared to other methods. This 
contributes to the development of non-invasive MI-BMIs with 
enhanced control and complex motor functionality. We  also 
conducted in-depth investigations into the temporal variability of EEG.

2. Materials and methods

2.1. Experimental protocol and data 
acquisition

Fifteen healthy male participants with ages ranging from 20 to 
35 years, all with a background in neuroscience, were included in the 
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study. All participants had normal or corrected-to-normal vision and 
were right-handed according to self-report. In the week leading up to 
the experiment, none of the participants took any neurological 
medications, and they had no history of neurological or significant 
medical conditions. Before the experiment commenced, all 
participants provided informed consent voluntarily and received 
compensation after the experiment. The study was approved by the 
local ethics committee of Nanjing Tech University, China.

Before the experiment, participants were asked to undergo a 
1-min state adjustment period. They sat on a chair, relaxed their 
minds, faced the display screen at approximately 75 cm distance, and 
placed their hands naturally on the table. During the experiment, all 
cognitive tasks were performed using the non-dominant hand. The 
experimenter sat in front of the participant, with their screen displayed 
separately, constantly monitoring for any program crashes or electrode 
impedance stability in the participant’s screen. Participants were not 
allowed to produce actual motor execution during the experiment and 
were instructed to avoid blinking or swallowing as much as possible.

The display screen remained blank, and at the beginning of each 
trial, participants fixated their gaze on the screen. A 3-s instructional 
video was presented, and participants were required to remember the 
MI task shown in the video. There were six different MI tasks, 
including opening the hand, making a fist, flexing the elbow, extending 
the elbow, abducting the arm, and adducting the arm. After a “+” 
symbol appeared in the center of the screen, participants began to 
perform the same MI task as shown in the instructional video. The 
screen remained blank during the 3-s MI period, during which 
participants imagined a complete action once. This process was 
repeated until all categories were played, with the order of instructional 
videos presented randomly. Participants were allowed to take breaks 
between sets of experiments. Each day, ten sets of experiments were 
conducted, over a total of six days. Conducting the data collection 
experiment over six days helps prevent participants from becoming 
excessively fatigued during the study, thus ensuring data quality to a 
certain extent. Due to the temporal variability present in EEG data, it 
is crucial to explore the robustness of our method across different days 
by collecting data on separate days. The experimental procedure is 
illustrated in Figure 2.

The entire experiment was conducted in an electromagnetically 
shielded room, with experimental control carried out in a separate 
control room. EEG data were acquired using the g.HIAMP amplifier 
and g.SCARABEO wet electrodes set from g.tec company. A total of 

64 electrodes were used, and their impedances were maintained below 
5kΩ. Among these, 62 EEG electrodes were placed on the scalp 
according to the standard 10–20 system, and two reference electrodes 
(A1, A2) were positioned on the earlobes. The recording settings were 
as follows: signal sampling rate was set at 1200 Hz, high-pass filtering 
above 0.1 Hz was applied to remove slight interferences such as body 
movements, and notch filtering from 48 Hz to 52 Hz was used to 
eliminate power-line interference. The data acquisition was performed 
using both the Psychtoolbox (version: 3.0.14) and g.RECORDER 
software, which enabled event labeling and timestamp recording 
during the entire data collection. The MI-EEG dataset for each 
participant had a size of 360 × 64 × 3,600, representing trials, channels, 
and sampling points, respectively.

2.2. Preprocessing

The EEG data were subjected to bandpass filtering in the range of 
8–30 Hz (McFarland et al., 2000) using the finite impulse response 
(FIR) filters from the scipy library (Neuvo et al., 1984). Both forward 
and backward filtering were employed to avoid phase distortion. 
Powerline noise at 50 Hz was removed using a notch filter with a 
transition band of 1 Hz (Urigüen and Garcia-Zapirain, 2015). 
Independent Component Analysis (ICA) based on the Infomax 
algorithm (Bell and Sejnowski, 1995), as implemented in the EEGLAB 
toolbox (Delorme and Makeig, 2004), was utilized to decompose the 
EEG data into independent components (ICs), ICs are set to 64. The 
ADJUST toolbox (Mognon et al., 2011) was employed to detect and 
reject ICs related to common artifacts, such as general discontinuities, 
electrooculogram (EOG), electromyogram (EMG) (Fatourechi et al., 
2007), and electrocardiogram (ECG) (Berkaya et al., 2018), the filter 
threshold is set to 0.8.

2.3. Region of interest selection

Since the location of the signals of interest highly indicates the 
brain’s state, emphasizing the spatial properties during the feature 
extraction process is essential (Penfield and Boldrey, 1937; Friston, 
2011). However, directly analyzing the spatial characteristics of EEG 
signals is problematic due to the volume conduction effect (Nunez and 
Srinivasan, 2006), which affects the collection of EEG signals. When 

FIGURE 1

The block diagram of the proposed approach for decoding multiclass MI EEG.
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neuronal electric fields propagate from the gray matter to the skin 
surface, they become distorted and diffused. Electrode coherence 
caused by volume conduction can be significantly mitigated through 
EEG source localization (source space reconstruction). Primary 
cortical current density can be estimated from the surface of the head 
to achieve source localization within a given EEG recording.

For the forward head model that couples surface voltages with 
internal head currents, solving the inverse problem allows obtaining 
the current distribution (Hallez et al., 2007). However, at each time 
point of EEG measurement, the distributed activity of billions of brain 
neurons induces scalp potential maps (Teplan, 2002; Xia and Hu, 
2019). To accurately represent complex cortical activity with 
anatomically realistic geometries, it is necessary to use a dense source 
grid, often consisting of thousands of dipoles spanning the brain 
volume. Nevertheless, an infinite number of combinations of active 
neural sources can produce the same scalp surface potential maps. 
Due to the complexity and real-time constraints of the signal 
processing sequence, the inverse operation is generally approximated 
as a linear problem (Eom, 2023): Y = AX.

In this study, Y represents the EEG matrix after the ICA 
reconstruction of all participants, A is the transfer matrix obtained 
through g.tec’s head model, and X is the source component to 
be  spatially localized. The method of using Low resolution 
electrical tomography (LORETA) (Pascual-Marqui et  al., 2002) 

based on least squares is adopted to solve this inverse problem 
more accurately.

 D M LD BWDD
�

� � � �LORETA = − +argmin 2 2λ

After obtaining the source components, we calculate their power 
distribution topology and compute the Euclidean distance between 
the coordinates of clustered dipole sources and the coordinates of 
electrodes in the head model. We retain the EEG channels within the 
sensor domain that are close to the active neurons. This process allows 
us to select brain regions that exhibit the highest time-frequency 
correlation with the behavior related to the MI task.

2.4. Feature extraction

The matrix X x xi t T t T T
n T

i i s

s= … ∈+ + + −
×

1   represents the 
processed format of the EEG signal data, corresponding to the i-th MI 
experiment starting at time t Ti= , with n denoting the retained 
number of electrodes. Ts represents the number of sampling time 
points in each trial.

The data is transformed to the space of Symmetric Positive 
Definite (SPD) matrices, denoted as n, using the Oracle Approximate 
Shrinkage Estimator to estimate the sample covariance matrix. For the 
i-th trial, the computation is as follows:

 
P

T
X Xi

s
i i
T=

−
1

1

Since the SPD matrix space is a smooth and curved space, it can 
be considered as a manifold, as shown in Figure 3. At each point on 
the manifold, the derivatives form a tangent space T, and each tangent 
space has an inner product. In this context, the local inner product is 
defined using the Riemannian metric instead of the Euclidean metric, 
and it is given as follows:

 
∀ ∈ = ( )− −A B T A B Tr A BX P, n , P P

1 1

Where Tr .( ) denotes the calculation of the matrix trace. The 
collection n of these SPD matrices forms a differentiable Riemannian 
manifold. On this manifold, the length of the shortest curve 
connecting two covariance matrices is known as a geodesic. The 

FIGURE 2

Description and sequence of events in the experimental process.

FIGURE 3

The 3D surface map of a covariance matrix. The number of the 
channel is the sensing domain after traceability processing.
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Riemannian metric allows us to derive the geodesic distance ́ R  from 
P1 to P2, known as the Riemannian distance:

 
( ) ( )

1/2n
1 2

R 1 2 2 F i1
i 1

P ,P log P P log|| ||−

=

 
δ = = λ 

  
∑

According to the definition of the Riemannian distance, we can 
use the inverse operation to map any symmetric matrix A belonging 
to the tangent space at P of the Riemannian manifold XT n  to the 
tangent space n:

 
SA A P P AP PG= ( ) =















− −
exp exp ,

1

2

1

2

1

2

1

2

 
A SA P P SAP PP= ( ) =















− −
log log ,

1

2

1

2

1

2

1

2

Here, log(.) and exp(.) denote the logarithm matrix and 
exponential matrix, respectively. This process is illustrated in Figure 4.

By solving the minimization problem of the sum of squared 
Riemann distances, we  obtain the geometric mean of I ≥ 1 SPD 
matrices in the Riemannian sense:

 
G P , ,P P,PI

P P n i

I

R i1

1

2…( ) = ( )
∈ ( ) =

∑argmin δ

For a manifold n  with non-positive sectional curvature, there 
exists a unique local minimum; however, there is no closed-form 
expression to compute the mean. Therefore, iterative optimization 
algorithms must be  applied to estimate the Riemannian mean 
(Algorithm 1).

Algorithm 1: Geometric mean of SPD matrix.

Input: Ω , A collection of I  SPD matrices Pi ∈n and  > 0

Output: PΩ ，Estimated mean of n

1:Initialization, 
( ) 11

1
=Ω

=
∑P P

m

m
i

i

2:repeat

3: S
m

P
i

m
P it= ( )

=
∑ ( )

1

1

log
Ω ，Arithmetic mean of tangent space

4: P St
t

Ω Ω

+( ) = ( )( )
1

ExpP

5:until  S F < 

For each new MI EEG trial, the Riemannian distance between the 
unknown SPD matrix and each within-class Riemannian mean is 

computed separately. Then, the minimum distance criterion is used to 
determine which class the new trial belongs to. However, SPD matrices 
cannot be directly fed into vector-based classifiers, which are efficient 
and popular classifiers. To address this, the concept of tangent space 
within the Riemannian framework allows for vectorization of the SPD 
matrices. By utilizing the tangent space P PiG =G ,i I= …( )1 , which 
is based on the geometric mean of the entire dataset, each Pi of SCM 
is mapped to this tangent space to generate a set of 
n(n + 1)/2-dimensional tangent vectors si :

 

s P P PPi iupper= ( )














− −

G GG

1

2

1

2log

Applying the upper .( )  operator to preserve the Riemannian 
distance equal to the Euclidean norm, these tangent vectors form a set 
of features in the Riemannian space. The specific steps for Riemannian 
space feature extraction are presented in Algorithm 2. In this study, 
the dimensionality of the Riemannian tangent space (TS) features 
extracted from each MI trial is 2080, n = 64.

Algorithm 2: Tangential space mapping.

Input: Ω , A collection of I SPD matrices Pi

Output: Θ , A collection of I vectors si

1:Compute the Riemannian geometric mean of the entire set, P PiG =G ,i I= …( )1

2:for i = 1 to Ido

3: s P P PPi iupper= ( )
















− −

G GG

1

2

1

2log

4:end for

5:concatenate si  to Θ

6:return Θ

2.5. Classification

Support Vector Machine (SVM) is a commonly used linear 
classifier in BMI applications (Subasi and Gursoy, 2010). Given a set 
of labeled feature vectors, this classification technique aims to separate 
the data by finding a hyperplane that maximizes the margin, which is 

FIGURE 4

The map of the tangential space of point P. Si is the tangent vector at 
point P and Γ(t) is the geodesic between P and Pi.
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the distance between the hyperplane and the nearest points from each 
class. We  consider the margin based on Riemannian geometric 
features as a hard margin, indicating linear separability. Therefore, an 
SVM classifier based on a linear kernel function is adopted, along with 
a penalty term of 0.1 to achieve a model that approximates the optimal 
classification plane and prevents overfitting. Assuming the linear 
equation that defines the partitioning hyperplane is w x b

T + = 0 , 
where w w ,w , ,wn= …( )1 2  represents the normal vector determining 
the orientation of the hyperplane, and b  is the displacement term 
determining the distance between the hyperplane and the origin.

Clearly, the partitioning hyperplane is determined by the normal 
vector w and the displacement b. The distance from a sample to the 
hyperplane can be defined as:

 
r

w x b

w

y w x b

w

T
i i

T
i

=
+

=
+( )

The distance from the sample set to the hyperplane is given by:

 ( )

( )
i i

T
i i

x ,y S

y w x b amin
w w∈

+
ρ = =

Maximizing the margin is our optimization objective, and its 
calculation formula is as follows:

 
max . . ,
,w b

i
T
i

a

w
s t y w x b a i+( ) ∀

Let w
w

a
b

b

a



= =, ，the optimization objective is transformed to:

 
( )T

i i
w,b

1max s.t.y w x b 1, iˆ
ŵ

ˆ + ∀

The transformed objective function does not affect the predictive 
performance of the model:

 
( ) ( ) ( )( )T Th x sgn w x b sgn aw x a b h x a 0ˆ

 
= + = + ≅ > 

 




For the convenience of subsequent differentiation, we improve the 
equation as follows:

 
( )T

i i
w,b

2max s.t.y w x b 1, iˆ
ŵ

ˆ + ∀

The one-vs-one classification strategy is utilized, where SVMs are 
designed between any two classes of samples. After distinguishing 
between all possible pairs, a voting mechanism is employed to tally the 
number of votes for each class. Hence, for the k classes of samples, 
K(K-1)/2 SVMs need to be designed. When classifying an unknown 
sample, the class with the highest number of votes is assigned to the 
unknown sample.

3. Results

3.1. Traceability results

We attempted to map ROIs by finding the dipoles that best 
represent the MI task. In the Figure 4, the dipole power for each MI 
task is superimposed separately on the rendered brain to highlight the 
distribution in terms of the anatomical model. For all fifteen 
participants, there was clearly one component most relevant to the 
motor task; subsequent ROIs localized to the left sensorimotor cortex. 
We also noticed that some dipoles are important for multiple tasks.

From Figure 5, the results of source tracing were based on the 
template for Desikan–Killiany functional parcellation for cortical 
mapping (Alexander et al., 2019). Clear lateralization was evident in 
the right hemisphere for the overall activation across brain regions. 
Specifically, in the Adduction task, the activation was mainly focused 
on the central anterior and posterior gyri, superior temporal gyrus, 
superior parietal gyrus, and upper portion of the middle frontal gyrus. 
The Outreach task mainly activates the central posterior gyrus, 
superior temporal gyrus, and upper portion of the middle frontal 
gyrus in the right hemisphere. In the Up task, activation was 
predominantly observed in the left hemisphere central posterior 
gyrus, right hemisphere’s superior temporal gyrus, superior parietal 
gyrus, and upper portion of the middle frontal gyrus. The Down task 
predominantly activates the central anterior gyrus, superior temporal 
gyrus, and upper portion of the middle frontal gyrus in the right 
hemisphere. The Close task mainly activates the central anterior and 
posterior gyri, superior temporal gyrus, and upper portion of the 
middle frontal gyrus in the right hemisphere. The Open task 
predominantly activates the central anterior and posterior gyri, 
superior temporal gyrus, and upper portion of the middle frontal 
gyrus in the right hemisphere. Overall, apart from differing activation 
patterns between the Up and Down tasks, there is a certain degree of 
similarity in the activation patterns of other tasks, with differences 
primarily observed in activation intensity.

FIGURE 5

Brain topographic maps in different states after traceability.
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After source localization, the mapping of the cerebral cortex to the 
scalp points was performed, and additional electrode positions in the 
motor areas were symmetrically added. The following electrodes were 
retained: F1, Fz, F2, F4, F6, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, 
C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P5, P1, 
Pz, P2, P6, POz, PO4, as shown in the spatial topology in Figure 6.

3.2. Classification results

Each subject’s EEG data from all trials were separately shuffled 
twice, and the shuffled data were then divided into training and 
testing sets using a 10-fold cross-validation method. This process 
was repeated 10 times with different random seeds for shuffling 
each time. The accuracy and standard deviation of all iterations 
were computed to obtain the experimental validation results. The 
experiments were conducted independently for each subject, and 
the training and testing sets were derived from the same 
subject’s dataset.

Since this is a small-sample classification study, we conducted a 
priori simulations of significance tests for different sample sizes. This 
was of exceptional significance to supplement the validation of our 
method’s superiority. As shown in the table, we obtained significance 
p-values and confidence levels for various sample sizes.

Based on the aforementioned experimental procedure and within 
the same source localization space, the Filter Bank Common Spatial 
Patterns (FBCSP) method, which is a widely used and efficient motor 
imagery feature extractor, was adopted for comparison with the 
proposed method in this study. In the FBCSP method, the EEG data 
in the frequency band of 8 Hz to 30 Hz were divided into 2 sub-bands 
with intervals of 11 Hz, and the number of CSP components was set 
to 4. The comparative results of these two methods are shown in 
Figure 7.

Our proposed method achieved an average recognition accuracy 
of 22.47% for the six different motor imagery tasks, while the average 

recognition accuracy of FBCSP was 18.07%. Comparing each subject’s 
results, our method exceeded the popular motor imaging algorithm 
by 2.7%–6.2%. In addition, corresponding to Table 1, we achieved an 
average classification accuracy with a significant statistical difference 
at the p < 0.01 level. Notably, there were highly significant statistical 
differences among participants 2, 4, 5, and 6. The optimal classification 
level was found to be 28.3%, and during the training process, certain 
data from this participant even reached an accuracy of 44.7%. 
However, it’s important to note that there were no statistically 
significant differences in classification among the other 
four participants.

This demonstrates that Riemannian geometry is better suited for 
handling such manifolds in the SPD space formed by the brainwave 
data. EEG data, to some extent, imposes limitations on Euclidean 
calculations. From a physiological perspective, the collected EEG 
signals have undergone multiple transmissions through mediums 
such as cerebrospinal fluid, skull, and scalp, which may cause signal 
distortions. Riemannian geometry defines distances differently from 
Euclidean space, making it more adept at handling chaotic signals. 
Compared to Euclidean space, the Riemannian framework can 
be applied on smooth and differentiable surfaces without fixing the 
data into a specific space. Although SPD is a prerequisite, any non-zero 
values can form a covariance matrix, and EEG signals happen to avoid 
zero values.

Moreover, in order to explore the prediction performance for each 
category, a confusion matrix (Figure  8) was used to visualize the 
classification results. In the confusion matrix, each row represents the 
actual category, and each column represents the predicted category by 
the classifier. The elements in the matrix indicate the number of 
instances classified into each predicted category by the classifier.

Combining the prediction results of all five participants, it is 
evident that the accuracy of predicting the “Close” motor imagery is 
the most significant, followed by “Open” and “Upper Arm Outreach.” 
However, the opening and closing of the palm are often confused. 
Distinguishing between the forearm’s antagonistic movements proves 
to be  challenging, and they are often misclassified as upper arm 
movements to a considerable extent. This observation aligns with the 
differentiation of the brachial plexus nerves, as the nerves at the 
terminal end are more susceptible to interference from the initial end. 
Nonetheless, the classification algorithm is still capable of identifying 
these six types of motor imagery tasks to a certain extent.

3.3. Ablation experiment

In order to further investigate whether source localization would 
affect the capabilities of the feature extractor and determine in which 
feature extraction method the classifier can provide the optimal 
classification accuracy, we compared the SVM classifier with both 
Riemannian geometry and FBCSP. Under the same experimental 
conditions as the experiments with source localization, we explored 
the classification performance of Riemannian features and FBCSP 
without undergoing source localization processing.

Figure 9 illustrates the classifier’s accuracy in both feature types 
significantly decreased without undergoing source localization. 
Specifically, the classifier’s performance based on Riemannian features 
showed an average decrease of 3.13%, and there was no statistically 
significant difference. In the data from participants 2, 8, and 10, there 

FIGURE 6

A spatial topology map after traceability. The blue indicates the 
electrodes that are preserved, representing the presence of source 
components that are highly relevant to the task in this area. The 
space model is the international 10–20 system.
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were significant declines in performance, with decreases of 7.3%, 5%, 
and 5%, respectively. The classifier struggled to recognize the FBCSP 
features, resulting in all subjects regressing to random chance levels, 
even pulling up the data of participants 7 and 11, leading to an overall 
average decrease of 1.37% in classification accuracy. Due to the two 
properties of affine invariance and inverse invariance of the 
Riemannian metric, the Riemannian method is more robust to 
outliers in BMIs decoders. Comparing the improvement in feature 
extractor performance due to source localization, the Riemannian 
framework slightly outperformed FBCSP, and the combination of the 
Riemannian framework with brain EEG source localization proved 
superior to the popular method. Moreover, during the model training 
process, both Riemannian and FBCSP features required more time for 
classifier training, which is evident since larger data structures lead to 
increased computational demands.

3.4. Feature robustness verification

Given the evident temporal variability in EEG, where the EEG 
signals can change due to daily physiological conditions, this presents 

a challenge for active BMIs. Therefore, it is crucial to conduct 
validation experiments to assess the robustness of the models.

In this experiment, the data was partitioned on a daily basis, and all 
participants’ data for each day were combined, resulting in six datasets. 
The model was trained and validated on the data from the first day, and 
its weights were saved. The remaining days’ data were used as the testing 
set, and the saved weights from the first day were loaded for validation. 
This process was repeated for each subsequent day, where the data from 
the current day was used for training, and the data from the remaining 
days were used for testing. The results are shown in Figure 10.

From Figure  10, we  observed that the overall fluctuations 
remained within approximately 21.39%. The standard deviations for 
the same model applied to different days’ data were 4.76, 1.79, 4.36, 
2.29, 3.18, and 1.47, respectively. In the context of using weights 
trained on one day’s data to test on data from other days, an interesting 
pattern emerged: the accuracy of the classifier sometimes improved 
when tested on data from days different from the training day. Notably, 
when the testing interval was shorter between the training and testing 
days, there was greater fluctuation in classification accuracy. However, 
as the time interval between the training and testing days lengthened, 
the classification accuracy exhibited a declining trend. The weights 
trained on the first day showed the highest degree of fluctuation in 
accuracy, while those from the sixth day exhibited the least variability 
when applied to the classifier. This indicates that the model’s 
performance was more stable and consistent when using weights from 
the sixth day for classification.

4. Discussion

Our work extends the research in the field of motor imagery by 
investigating higher degrees of freedom in brain-machine interaction, 
including fist clenching, hand opening, elbow flexion, elbow extension, 
abduction, and adduction. However, due to the proximity of neural 
activation in the motor cortex during single-limb movements and the 

FIGURE 7

The results of the comparison experiment between Riemannian and FBCSP.

TABLE 1 In the conditions with sample sizes ranging from 60 to 360, 
statistically significant classification accuracy was observed.

Sample 
size

p <  0.05 p <  0.01 p <  0.001 p <  0.0001

Accuracy (%)

60 25.00 28.33 33.33 36.67

120 22.50 25.00 27.50 30.00

180 21.11 23.33 25.56 27.78

240 20.83 22.50 24.58 26.25

300 20.33 21.67 23.67 25.00

360 20.00 21.39 23.06 24.44
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low signal-to-noise ratio in EEG signals, there are challenges in 
distinguishing these movements. To address these issues, the main 
contributions of this research involve proposing a source localization 
method to remove spatial noise in EEG and introducing a novel feature 
extraction approach based on Riemannian geometry. To evaluate the 
proposed method, we compared it with the widely-used FBCSP (Ang 
et al., 2008) method in motor imagery by applying both approaches to 
classify data collected from 15 subjects. The results demonstrated a 
significant improvement in decoding accuracy with the combination 
of EEG source localization and the Riemannian framework, achieving 
an average classification accuracy of 22.47%, and even reaching a peak 
accuracy of 44.7% in well-performing subjects, surpassing popular 
motor imagery algorithms by 4.4%. Moreover, the Riemannian 
framework demonstrated greater robustness in handling the outlier 
observed in subject 4 during decoding. This highlights the superiority 
of Riemannian geometry in handling the complex SPD space formed 
by brainwave data (Navarro-Sune et al., 2016). The distinctive capacity 
of Riemannian geometry lies in its ability to define distances in a 
manner distinct from Euclidean space, enabling it to efficiently handle 
chaotic signals and achieve more effective extraction of target task 
intention signals. Consequently, this spatial feature enhancement 
ultimately elevates the overall decoding accuracy of motor imagery 
brain-computer interface systems.

Additionally, we  validated the brain EEG source localization 
performance of the Riemannian features and FBCSP on the same 
dataset. Without the spatial feature enhancement provided by brain 
EEG source localization, both features showed a considerable decrease 
in decoding performance, with Riemannian features experiencing a 
more significant decline. This indicates that Riemannian features 
themselves possess remarkably strong feature extraction capabilities 
and are closely related to spatial information. Regarding the source 
localization results, it can be inferred that these are the regions involved 

in upper limb movements, effectively screening out electrodes from 
irrelevant areas such as the frontal and occipital lobes. This work not 
only offers valuable insights for the study of motor imagery but also 
extends its potential applications to emotion analysis, psychiatric 
disorder diagnosis, and further advancements in brain function analysis.

In response to the issue of temporal variability in active BMIs, 
ensuring feature robustness becomes crucial. Therefore, in this study, 
the weights trained on different-day datasets were transferred and 
tested on datasets other than their own, the overall fluctuations in 
accuracy remained about 21.39%, with an overall average variance of 
2.98. Interestingly, the fluctuations observed on the first and sixth days 
exhibited precisely opposite patterns. Riemannian features maintained 
a high degree of consistency with the training dataset in adjacent time 
periods, resulting in peaks of accuracy that even surpassed the training 
data. This observation underscores the importance of considering the 
temporal aspects of EEG data in brain-computer interface research. It 
suggests that there is a temporal dependency in the performance of the 
model, with certain weights performing better or worse depending on 
the time interval between training and testing. This finding could have 
implications for the development of BMIs and may inform strategies 
for improving their robustness and reliability in practical applications.

The confusion matrix visualization revealed that our method 
excelled in recognizing the “Close” motor imagery, followed by 
“Open” and “Upper Arm Outreach.” However, distinguishing between 
antagonistic movements of a single limb has proven to be challenging, 
often leading to confusion between the two types of antagonistic 
movements, especially forearm movement imagination. This 
observation aligns with the differentiation of the brachial plexus 
nerves, with nerves at the terminal end being more susceptible to 
interference from the initial end. In our future work, we  aim to 
enhance the discrimination of this aspect. We believe that even signals 
generated by the same neuron may exhibit different temporal patterns. 

FIGURE 8

The Confusion Matrix for 6 MI Recognition. The number here corresponds to the superposition of the results predicted to be of this type in 10 times of 
cross-validation.
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FIGURE 10

Performance of different models on cross-day data. The horizontal axis represents the experimental time, and the vertical axis represents the 
classification accuracy of the models with different weights on that day.

FIGURE 9

The SVM was used to compare the two types of features with and without EEG source localization. (A) the ablation experiment of the Riemann feature 
for the traceability method and (B) the ablation experiment of the FBCSP feature for the traceability method.
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Therefore, the feature extractors in future research will place greater 
emphasis on capturing temporal information. Additionally, for source 
localization, we  will employ more refined and higher-resolution 
spatial partitioning methods.

Overall, our research contributes valuable insights into the field of 
motor imagery tasks and provides a novel and efficient method for 
high-precision recognition. The proposed approach holds great 
promise for patients with motor impairment and communication 
impairments, enabling the development of advanced and reliable 
medical-assistive devices and applications.

5. Conclusion

This research addresses the challenges in high-precision 
recognition of motor intentions using EEG signals derived from 
motor imagery tasks. EEG signals have weak potential difference 
changes and are susceptible to noise and physiological influences, 
which limit temporal–spatial resolution. The research proposes a 
novel method that combines signal traceability and Riemannian 
geometric features to identify six motor intentions of the upper limb. 
The process involves separating relevant components from the 
original signal and tracing them to the source using standardized 
low-resolution brain electromagnetic tomography. The EEG data 
from irrelevant electrodes are screened out. Riemannian geometric 
features are then extracted from the covariance matrix of the 
reconstructed EEG signals. These features are used for pattern 
recognition using a support vector machine with a linear kernel 
function. The proposed method achieves an average accuracy of 
22.47% for the six classifications on a dataset of 15 participants, the 
average variance of classification accuracy due to feature variation 
over time is 2.98%. The results demonstrate that the proposed 
method significantly improves intent recognition accuracy. The 
research shows promise for assisting patients with motor 
impairments and communication disabilities.
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