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Brain tumors are one of the most threatening diseases to human health. Accurate 
identification of the type of brain tumor is essential for patients and doctors. 
An automated brain tumor diagnosis system based on Magnetic Resonance 
Imaging (MRI) can help doctors to identify the type of tumor and reduce their 
workload, so it is vital to improve the performance of such systems. Due to the 
challenge of collecting sufficient data on brain tumors, utilizing pre-trained 
Convolutional Neural Network (CNN) models for brain tumors classification is a 
feasible approach. The study proposes a novel brain tumor classification system, 
called EFF_D_SVM, which is developed on the basic of pre-trained EfficientNetB0 
model. Firstly, a new feature extraction module EFF_D was proposed, in which the 
classification layer of EfficientNetB0 was replaced with two dropout layers and 
two dense layers. Secondly, the EFF_D model was fine-tuned using Softmax, and 
then features of brain tumor images were extracted using the fine-tuned EFF_D. 
Finally, the features were classified using Support Vector Machine (SVM). In order 
to verify the effectiveness of the proposed brain tumor classification system, a 
series of comparative experiments were carried out. Moreover, to understand the 
extracted features of the brain tumor images, Grad-CAM technology was used 
to visualize the proposed model. Furthermore, cross-validation was conducted 
to verify the robustness of the proposed model. The evaluation metrics including 
accuracy, F1-score, recall, and precision were used to evaluate proposed system 
performance. The experimental results indicate that the proposed model is 
superior to other state-of-the-art models.
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1. Introduction

Brain tumors pose a serious threat to people’s health and have a high fatality rate (Alyami 
et al., 2023). Early detection of brain tumors is crucial for patients, as they can get a greater 
chance of survival (Özbay and Altunbey Özbay, 2023). Medical imaging techniques have been 
widely used by radiologists. Among these techniques, Magnetic Resonance Imaging (MRI) is 
one of the most common techniques for diagnosing and evaluating brain tumors, which could 
provide rich brain tissue data (Gu and Li, 2021; Ayadi et al., 2022). However, the traditional MRI 
detection of brain tumors heavily relies on experienced doctors. Fatigue caused by prolonged 
working hours could affect doctor diagnosis, resulting in potential risks to patients. Therefore, 
it is necessary to develop an automated brain tumor classification computer-aided system to 
assist doctors in diagnosis (Nanda et al., 2023).
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Brain tumors are commonly classified as either benign or 
malignant, with malignant tumors being further classified into three 
subtypes: glioma tumor, pituitary tumor, and meningioma tumor. 
Classifying brain tumors into multiple categories is more challenging 
than classifying them into two categories (Gu et al., 2021; Shahin 
et al., 2023).

Machine learning and deep learning are widely used in cancers 
study (Maurya et  al., 2023). Typical ML classification methods 
encompass a series of steps: data preprocessing, feature extraction, 
feature selection, dimensionality reduction, and classification (Swati 
et al., 2019). Bi et al. (2021) and Saravanan et al. (2020) have both 
utilized machine learning to achieve the task of classifying skin 
cancers. Bi et al. (2021) utilized a combination of Support Vector 
Machine (SVM) and Chaotic World Cup Optimization (CWCO) 
optimization algorithms, whereas Saravanan et al. (2020) used SVM 
as a classifier and Gray-Level Co-Occurrence Matrix (GLCM) for 
feature extraction. Amin et al. (2020) employed SVM for brain tumors 
Classification. Feature extraction is a key step in achieving high 
performance in traditional machine learning. The accuracy of 
classification often depends on the features extracted with the help of 
experts. However, for most researchers, feature extraction is a 
challenging task when using traditional machine learning methods in 
research. The applications of machine learning and deep learning in 
disease classification are introduced in this paper.

In machine learning, it is necessary to perform feature extraction. 
Cheng et  al. (2015) utilized three feature extraction techniques, 
namely intensity histogram, grey-scale co-occurrence matrix, and 
bag-of-words, achieving a model accuracy of 91.28%. Gumaei et al. 
(2019) employed a hybrid feature extraction approach to extract brain 
tumor images feature, which was combined with a regularized extreme 
learning machine for the classification of brain tumors, and an 
accuracy of 94.233% on the Chen dataset was achieved. Khan et al. 
(2019) used the watershed algorithm for image segmentation in a 
brain tumor classification system. The brain tumor classification 
system categorized tumors as either benign or malignant with an 
accuracy of 98.88%.

Since dataset features can be  automatically extracted by deep 
learning techniques, they have got more and more attention (Bar et al., 
2015). As a deep learning technique, Convolutional Neural Network 
(CNN) models have been widely used in the field of deep learning for 
tasks such as image classification, object detection, and face 
recognition. CNN models are mainly composed of convolutional 
layers, pooling layers, and fully connected layers. Convolutional layers 
use filters to perform convolution operations on input data and extract 
features of images. Pooling layers are used to downsample the features 
outputted by convolutional layers, reducing the number of features 
and parameters. The fully connected layer connects the output of the 
pooling layer to the final output layer for tasks such as classification or 
regression. Unlike traditional machine learning techniques, the CNN 
model can automatically learn useful features from images, eliminating 
the need for manual feature engineering, so it is an ideal choice for 
medical image processing (Yu et  al., 2022; Maurya et  al., 2023). 
Medical image datasets are generally small due to the difficulty and 
cost of acquisition. Therefore, as an effective small dataset processing 
technology, transfer learning has been widely applied in the field of 
medical image classification such as breast cancer, pneumonia, brain 
tumors, and glomerular disease (Yu et al., 2022). Talo et al. (2019) 
categorized brain tumors as benign or malignant using the pre-trained 

RestNet34. Kaur and Gandhi (2020) used pre-trained models such as 
Resnet50 and GoogLeNet ResnNet101 to classify brain tumors. 
Deepak and Ameer (2019) introduced a method using pre-trained 
GoogLeNet. Fine-tuned GoogLeNet was used to extract features of 
brain tumor images, and then SVM and KNN were employed as 
classifiers to complete the brain tumor classification task. EfficientNets, 
as lightweight models, are also extensively utilized in applications such 
as brain tumor classification (Tan and Le, 2019). Shah et al. (2022) 
used the EfficientNetB0 model to classify brain tumors as healthy and 
unhealthy. Nayak et al. (2022) utilized EfficientNetB0 to perform a 
triple classification of brain tumors, while Zulfiqar et al. (2023) utilized 
EfficientNetB2 for the same task. Yet, the model proposed in (Nayak 
et  al., 2022) suffered from mild overfitting, resulting in low 
classification accuracy. And Zulfiqar et  al. (2023) achieved a 
classification accuracy of only 91.35% when performing cross-
validation experiments on different datasets. Additionally, Nayak et al. 
(2022) and Zulfiqar et al. (2023) only performed triple classification 
task of brain tumors.

Abiwinanda et  al. (2019) created a model consisting of two 
convolution layers, an activation-Relu layer, and a Dense-64 layer. The 
model achieved an accuracy rate of 84.19%. Alanazi et  al. (2022) 
constructed a 22-layer CNN architecture. The model was trained 
using a large-scale binary classification dataset, and then it was fine-
tuned using a transfer learning approach. The accuracy of the model 
got 96.89 and 95.75% for Chen and Kaggle datasets, respectively. 
Kibriya et al. (2022) proposed a 13-layer CNN model and achieved 
97.2 and 96.9% accuracy on Chen and Kaggle data sets. Jaspin and 
Selvan (2023) presented a 10-layer model using different optimizers 
(Adam and RMSprop) to train the model. On the Chen dataset, the 
accuracy of 96% was obtained using Adam and 95% was achieved 
using RMSprop. The studies by Swati et al. (2019) and Rehman et al. 
(2020) utilized the VGG19 and VGG16 models, respectively, and 
achieved accuracy rates of 94.82 and 98.69%. Sajjad et  al. (2019) 
segmented the brain tumor region and used VGG19 for image 
classification, achieving an accuracy of 94.58%. Ghassemi et al. (2020) 
performed a brain tumor classification task based on a pre-trained 
Generative Adversarial Network (GAN) with an accuracy of 95.6%. 
Satyanarayana (2023) combined convolutional neural networks with 
a deep learning approach based on mass correlation and reported a 
classification accuracy of 94%. The proposed framework involved the 
construction of a multi-task CNN model and a 3D densely connected 
convolutional network. The authors combined the features extracted 
from a multi-task CNN and a 3D densely connected convolutional 
network to classify Alzheimer’s disease.

Moreover, it has been proven that combining pre-trained models 
with machine learning is also a feasible method. Kang et al. (2021) 
used MobileNetV2 to extract features from brain MRI images, and 
adopted the SVM algorithm for classification, obtaining an accuracy 
of 91.58%. In reference (Sekhar et al., 2022), MobileNetV2 was used 
to extract features from brain tumor images. The extracted features 
were then classified using SVM and K-Nearest Neighbors (KNN). The 
best classification accuracy of 98.3% is achieved using KNN. Öksüz 
et  al. (2022) utilized ResNet18 to extract both shallow and deep 
features from an enlarged Region of Interest (ROI) in brain tumors.

By integrating the shallow and deep features, a classification of 
the tumors was carried out using SVM and KNN classifiers. The 
results indicated an overall classification accuracy of 97.25% with the 
SVM classifier and 97.0% with the KNN classifier. Demir and 
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Akbulut (2022) proposed a new model, in which an R-CNN 
(Residual-CNN) structure was designed to extract features, using 
SVM as the classifier, with an accuracy of 96.6% being obtained. 
Deepak and Ameer (2023) used an additive loss function to train the 
CNN model, updating the model using different optimizers, then 
combined it with SVM and finally voted the classification results to 
derive the final classification result. The model obtained an accuracy 
of 95.6%. Muezzinoglu et  al. (2023) built a new framework 
PatchResNet. Firstly, using a pre-trained ResNet50 to extract features 
from same-sized image blocks, feature selection was performed over 
Neighborhood Component Analysis (NCA), Chi2, and 
ReliefF. Secondly, the features were fed into the classifier KNN. Finally, 
majority voting was used to obtain the final prediction result with an 
accuracy rate of 98.1%.

Optimization algorithms have also been utilized to improve the 
performance of brain tumor classification systems. In reference (Kabir 
Anaraki et al., 2019), a Genetic Algorithm (GA) was used to optimize 
the CNN structure and achieved 94.2% accuracy. Kumar and 
Mankame (2020) combined the dolphin echolocation algorithm with 
the Sine Cosine Algorithm (SCA) to segment brain tumors from MRI 
and used the segmented images for brain tumor classification. 
Mehnatkesh et al. (2023) applied Improved Ant Colony Optimization 
(IACO) to optimize the super parameters of the ResNet architecture 
for brain tumor classification, achieving a classification accuracy rate 
of 98.694%.

The preceding discussion highlights the extensive adoption of 
deep learning as a prevalent technique for brain tumor 
classification. Nevertheless, the optimization of network 
structures using algorithmic approaches is time-intensive. 
Training the network from the ground up demands a substantial 
dataset and entails lengthier training compared to migration-
based learning approaches. Furthermore, most of the prior studies 
have only employed a single dataset without conducting cross-
dataset validation. However, our work utilized a pre-trained CNN 
model and incorporated regularization techniques to combat 
overfitting. The classification of brain tumors was successfully 
accomplished by the incorporation of machine learning 
techniques. Moreover, to verify the generalization performance of 
the proposed model, some experiments were carried out using two 
publicly available datasets while performing cross-data validation. 
And by adding Gaussian noise and salt-and-pepper (S&P) noise 
to the pictures of the brain tumor, the robustness of the model was 
further demonstrated.

We presented a novel feature extraction module based on 
EfficientNetB0 and employed SVM to categorize the resultant 
features. Specifically, we evaluated the model performance using 
both triple classification (glioma tumor, meningioma tumor, and 
pituitary tumor) and quadruple classification (glioma tumor, 
meningioma tumor, pituitary tumor, and healthy), providing 
comprehensive validation for our proposed model. In this paper, 
we presented an automated classification model of brain tumors, 
and the model was evaluated on two publicly available datasets 
(Chen and Kaggle). The model used a pre-trained EfficientNetB0 
CNN model and combined dropout regularization and dense 
layers to construct a new feature extraction module EFF_D. The 
highest classification performance was achieved using the SVM 
classifier. The main research contributions of this study are 
as follows:

 1. A new model is proposed for brain tumor classification.
 2. Based on two public datasets, the proposed model has been 

proven to be a reliable method for brain tumor classification.
 3. By using the last convolution layer of the Grad-CAM 

visualization model, a localized heat map was obtained, 
highlighting the brain tumor region.

 4. The proposed model can classify brain tumors better than the 
available models. And the cross-data validation of the model 
achieves better result.

2. Materials and methods

This section focuses on our proposed approach. The base model 
used in this method is the pre-trained EfficientNetB0. Firstly, Relevant 
dropout and dense layers were introduced to construct a new model. 
Secondly, optimal hyperparameters were utilized to train the new 
model. Finally, the trained model was subsequently used to extract 
intricate image features, which were then classified utilizing the SVM 
algorithm. This approach is helpful in achieving better results in brain 
tumor classification tasks.

2.1. Introduction to the EfficientNetB0

EfficientNets is a series of convolutional neural network 
architectures developed by the Google team, making creative use of 
compound scaling. Of these, EfficientNetB0, as the base model, 
primarily consists of 16 mobile inverted bottleneck convolution 
(MBConv) modules (Tan and Le, 2019). In addition, the 
EfficientNetB0 architecture was utilized to perform 1,000 image 
classifications on the ImageNet dataset. According to the TensorFlow 
website1, input images for the model should be represented as floating-
point tensors with three color channels and pixel values ranging from 
0 to 255.

2.2. Datasets and preprocessing

The experiments were performed on two publicly available brain 
tumor datasets. The Chen dataset is the CE-MRI dataset shared by 
Cheng et al. (2015), which consists of 3,064 brain MRI images from 
233 patients, including three types of brain tumors, namely glioma, 
meningioma, and pituitary tumors. The number of images of the three 
types of brain tumors in the dataset is 1,426, 708, and 930. The Kaggle 
dataset was obtained from Kaggle (Bhuvaji et  al., 2020), which is 
comprised of 3,264 images including four categories: glioma, 
meningioma, pituitary, and healthy. The number of images of the four 
categories in the Kaggle dataset is 926, 937, 901, and 500.

The image of the Chen dataset has a size of 512 × 512 and is a 
grayscale image. Therefore, the image of Chen needs to be resized to 
224 × 224 × 3. The image sizes in the Kaggle dataset are inconsistent, 

1 tf.keras.applications.efficientnet.EfficientNetB0  |  TensorFlow v2.12.0 

(google.cn)
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with some grayscale images and some RGB images. Similarly, the 
images should be adjusted to a uniform size of 224 × 224 × 3. In this 
paper, the data is randomly divided into non-overlapping training and 
test sets. The training set comprises 80% of the total dataset, while the 
remaining 20% is allocated to the test set.

2.3. Classification system

Both the datasets employed in this study, the Chen dataset, which 
has a total of 3,064 photos, and the Kaggle dataset, which has a total 
of 3,261 images—are tiny, making migration learning an effective 
method. The method of transfer learning is frequently used to train 
neural networks on a small dataset. In general, the process of training 
neural networks requires large dataset, but the number of brain tumor 
samples available is limited (Shin et al., 2016; Swati et al., 2019; Yu 
et al., 2022). Transfer learning offers an effective remedy for small 
sample size issues by enabling a transfer of knowledge from relevant 
tasks to new ones. Moreover, application of trained weights enhances 
both the efficiency and accuracy of models.

The overall architecture and method proposed in this paper are 
shown in Figure  1. The framework of the proposed brain tumor 
classification system is shown in Figure 1A. The dataset is divided 
into a training set and a test set, and they do not cross each other. The 
proposed model was trained on the training set, and the resulting 
trained model was saved to disk. The saved model was applied to 
classify the test set, and its performance was evaluated. As shown in 
Figure 1B, EfficientNetB0 is utilized as the foundation of our model. 
Table 1 describes the detailed parameters of the proposed model. The 
EfficientNetB0 model achieved high accuracy in classification tasks 
and was pre-trained on the large-scale ImageNet dataset (Tan and Le, 
2019). As the dataset used in this experiment differs from the 
ImageNet dataset, the classification layer of the pre-trained model 
was removed. Then, we  added two layers of Dropout to prevent 
overfitting, as well as two layers of Dense and one layer of 
Dense+Softmax to enable the model to classify our target images. The 
dropout ratios are 0.345 and 0.183, respectively, and the number of 
neurons in the Dense layer are both 69. The number of neurons in 
the Classification layer are either 3 or 4. When using an SVM as a 
classifier, the features extracted from the last Dropout layer can 
be  used for SVM classification. The feature extraction module is 
called EFF_D, where the method using the Softmax classifier is called 
EFF_D_Softmax and the method using the SVM is called 
EFF_D_SVM.

2.4. Training CNNs

The training of a convolutional neural network combines 
forward and backward propagation. It starts at the input layer and 
is propagated forward. Then, the loss is back propagated to the 
first layer. In layer l, the i-th neuron receives the input from 
neuron j in layer l-1 through a computation process. Training 
samples xj are weighted by Eq. 1.

 
In W x b
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�
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ij
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j i

 
(1)

where, ij
lW  represents weights, bi denotes bias. After computing the 

weighted sum of the variables (In), the resulting values are processed 
through the activation functions: Swish and Relu, as represented by Eqs 2, 
3, respectively.
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here, l
iS  is the output using Swish, and β is a constant. l

iR  is the 
output using Relu. The neurons in both the convolutional and fully 
connected layers are calculated using Eqs 1, 2 (or 3). The classification 
layer is calculated using the Softmax function which is shown as Eq. 4.
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where, K is the number of categories, xi is the i-th element of the 
input vector x, and yi is the i-th element of the output vector y.

The cross-entropy loss function evaluates the prediction error of 
the model by comparing the predicted probability distribution 
generated by the model with the distribution of the true labels, as 
represented by Eq.  5. This loss function is utilized in the 
backpropagation process to optimize the model’s parameters and 
enhance the accuracy of the prediction results.
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here, m represents the total number of samples, xi indicates the 
training sample indexed i, yi represents the corresponding label of xi, 
and P denotes the probability that xi belongs to class yi.

The model weights are updated according to Eq. 6.
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where, αl, γt and μ represent different factors affecting the current 
iteration of the learning algorithm. αl corresponds to the learning rate 
at layer l. γt represents the scheduling rate which reduces the initial 
learning rate and μ is used to describe the influence of previously 
updated weights on the current iteration.

3. Results and discussion

The experiments were performed in Win11 operating system with 
16 G RAM and RTX3060 graphics card of 6 G video memory.
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3.1. Performance evaluation

The dataset exhibits an imbalance, thus, it is insufficient to only 
accuracy is used to quantify model performance. Except for accuracy, 
precision, recall, and F1-score metrics are also utilized to evaluate the 
model performance (Alsaggaf et al., 2020). The calculation formulas 
for these metrics are expressed as follows:

 
Accuracy

TP TN

TP TN FP FN
�

�
� � �  

(7)
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�  
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FIGURE 1

General structure of the paper (A) Framework of the proposed brain tumor classification system (B) The proposed model.

TABLE 1 Parameters of the proposed model.

Model Parameters Setting

EFF_D_Softmax

Dropout_1 0.345

Dense_1 69

Dense_2 69

Dropout_2 0.183

optimizer Adam

Learning rate 0.001

Batch size 16

Loss function Cross entropy

epoch 25

EFF_D_SVM

C 1

kernel linear

probability True
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where, TP (True Positive) is the number of correct positive 
predictions, TN (True Negative) is the number of correct negative 
predictions, FP (False Positive) is the number of wrong positive 
predictions, and FN (False Negative) is the number of wrong 
negative predictions.

3.2. The selection of the benchmark model

The paper conducts a comparative analysis of VGG19, ResNet50, 
DenseNet121, and EfficientNetB0 models in relation to training time, 
inference time, total parameters, and test set accuracy. Each model is 
compared using the Chen dataset, which has seen extensive used. 
Inference time represents the time required to predict 612 images 
from the test set. The outcomes of the experiments are presented in 
Table 2. Although fine-tuning EfficientNetB0 takes relatively more 
time, its inference time is also faster. Furthermore, EfficientNetB0 has 
the highest classification accuracy. Therefore, EfficientNetB0 is chosen 
as the benchmark model.

3.3. Experimental results

In order to further verify the effectiveness of the proposed model, 
a series of comparison models were also designed in this article. 
Initially, the neuron count in EfficientNetB0’s classification layer is 
aligned with the number of categories in the dataset used for 
classification. The model is then subjected to fine-tuning. The model 
employing the Softmax classifier is referred to as EFF_Softmax, while 
the one employing the SVM classifier is labeled as EFF_SVM.

The training steps of the proposed EFF_D_SVM model are 
as follows:

Step 1: Importing the data and resizing the images to split the data 
into a training set and a test set.

Step 2: Loading the model and pre-trained weights, removing the 
Top layer, and adding the Dropout and Dense layers.

Step 3: Training EFF_D_Softmax to classify brain tumor images.
Step 4: Using EFF_D to extract features and using SVM to classify 

brain tumors.
Similarly, the same steps are adopted to train EFF_Softmax and 

EFF_SVM.
The experiments were performed using two datasets. The dataset 

Chen was used for testing 612 images consisting of 285 glioma tumor 
images, 141 meningioma tumor images and 186 pituitary tumor 
images. The Kaggle was used for testing 652 images including 185 

glioma tumor images, 187 meningioma tumor images, 180 pituitary 
tumor image, and 100 no-tumor images.

Figure 2 shows the training results of the EFF_D_Softmax model 
and the EFF_Softmax model on the training sets of both datasets. 
Images in Figures 2A,B depict the training results obtained from the 
Chen dataset, while images in Figures 2C,D represent the training 
outcomes achieved using the Kaggle dataset. In relation to the Chen 
dataset, the EFF_D_Softmax model demonstrates an accuracy of 100 
and 99.59% on the training and validation sets, respectively. Similarly, 
the EFF_Softmax model achieves accuracies of 100 and 99.18% on the 
training and validation sets, respectively. For the Kaggle dataset, the 
EFF_D_Softmax model achieves 99.93 and 98.21% accuracy on the 
training and validation sets, respectively. Similarly, the EFF_Softmax 
model achieves 100 and 98.51% accuracy on the training and 
validation sets, respectively.

The confusion matrixes for the classification results of the 
proposed method are shown in Figures 3, 4. Eqs 6–9 are utilized to 
calculate the detailed values of the model classification results from 
the confusion matrixes. The labels G, M, P, and NO represent different 
types of brain tumors: G for glioma, M for meningioma, P for pituitary 
tumor, and NO for the absence of a tumor. The obtained model 
metrics on the Chen and Kaggle are listed in Tables 3, 4, respectively. 
Moreover, to visually show the superiority of the adopted EFF_D_
SVM model, the average metrics for classification results on the Chen 
dataset and Kaggle dataset are shown in Figures 5A,B, respectively. On 
the Chen, EFF_D_SVM showed the best classification results. On the 
Kaggle, as can be seen from Figure 5B, EFF_D_SVM outperformed 
the other models in terms of accuracy, f1-score and precision, but its 
recall rate was lower than that of EFF_SVM. Through the comparison 
in Table 4, we can see that the recall rate of EFF_D_SVM was higher 
than that of EFF_SVM for glioma, meningioma, and pituitary, and 
slightly lower than that of the EFF_SVM for no tumor. In a 
comprehensive analysis, the classification ability of EFF_D_SVM is 
still better than that of EFF_SVM. The Softmax classifier constantly 
strives for higher probabilities for correct classifications and lower 
probabilities for incorrect classifications, aiming to minimize the loss 
value. In contrast, the SVM classifier only needs to satisfy the 
boundary value and does not need to perform subtle manipulations 
on the concrete scores. Consequently, the Softmax classifier exhibits 
overfitting in brain tumor classification. Typically, Softmax is 
employed for large datasets, while SVM is suited for smaller datasets. 
In this paper, a small dataset is used, which could also contribute to 
the favorable performance of SVM classification.

On one hand, the model’s fitting ability pertains to its capacity to 
accurately capture patterns and relationships within the training data. 
On the other hand, generalizability encompasses the model’s capability 
to perform with data which has not encountered previously. When too 
much emphasis is placed on the model’s ability to fit, the model may 

TABLE 2 Comparison of benchmark models.

Model Training time 
(seconds)

Inference time 
(seconds)

Parameters (million) Test accuracy(%)

VGG19 542 7 20.03 87.09

ResNet50 397 4 23.59 91.18

DenseNet121 524 3 7.04 96.57

EfficientNetB0 500 4 4.05 98.37
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FIGURE 2

Training results for EFF_D_Softmax and EFF_SoftMax, (A) accuracy curve (Chen dataset) (B) loss curve (Chen dataset) (C) accuracy curve (Kaggle 
dataset) (D) loss curve (Kaggle dataset).

TABLE 3 Detailed metrics values of the proposed model on the Chen dataset.

Proposed model Tumor type Precision (%) Recall (%) F1-score (%) Accuracy (%)

EFF_D_Softmax

Glioma 98.61 99.30 98.95

98.37
Meningioma 96.45 96.45 96.45

Pituitary 99.46 98.39 98.92

Average 98.17 98.07 98.11

EFF_D_SVM

Glioma 98.95 99.30 99.12

98.86
Meningioma 97.20 98.58 97.89

Pituitary 1.00 98.39 99.19

Average 98.72 98.76 98.73

EFF_Softmax

Glioma 98.60 98.60 98.60

98.04
Meningioma 94.48 97.16 95.80

Pituitary 1.00 97.85 98.91

Average 97.69 97.87 97.77

EFF_SVM

Glioma 99.29 98.60 98.94

98.69
Meningioma 95.86 98.58 97.20

Pituitary 1.00 98.92 99.46

Average 98.38 98.70 98.53
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FIGURE 3

Confusion matrix of the proposed model in the Chen (A) EFF_D_Softmax (B) EFF_D_SVM (C) EFF_Softmax (D) EFF_SVM.

TABLE 4 Detailed metrics values of the proposed model on the Kaggle dataset.

Proposed model Tumor type Precision (%) Recall (%) F1-score (%) Accuracy (%)

EFF_D_Softmax Glioma 96.83 98.92 97.86 97.85

Meningioma 98.88 94.65 96.72

No Tumor 98.02 99 98.51

Pituitary 97.81 99.44 98.62

Average 97.89 98 97.93

Meningioma 98.88 94.65 96.72

No Tumor 98.02 99 98.51

Pituitary 97.81 99.44 98.62

Average 97.89 98 97.93

EFF_D_SVM Glioma 97.86 98.92 98.39 98.31

Meningioma 97.33 97.33 97.33

No Tumor 1 97 98.48

Pituitary 98.9 99.44 99.17

Meningioma 97.33 97.33 97.33

No Tumor 1 97 98.48

Pituitary 98.9 99.44 99.17

Average 98.52 98.17 98.34

EFF_Softmax Glioma 95.31 98.92 97.08 97.55

Meningioma 98.31 93.05 95.6

No Tumor 96.15 1 98.04

(Continued)
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overfit on the training data set and underperform on new data not 
seen before. Moreover, as can be observed from Figures 2, the EFF_D_
Softmax and EFF_Softmax fit well on the training sets of both datasets. 
However, model validation on test sets for both datasets found that the 
EFF_D_Softmax outperformed the EFF_Softmax. Therefore, EFF_D_
Softmax has better anti-fitting and generalization ability.

The Receiver Operating Characteristic (ROC) curve offers an 
effective tool to assess the model classification ability by the 
relationship curve between the false positive rate and the true positive 
rate. The Area Under the Curve (AUC) provides essential information 
about the ability of the proposed model to differentiate between tumor 
types. The classifier performance is better if the AUC value is higher. 
The ROC curves of EFF_D_SVM for Chen and Kaggle are depicted 
in Figures 7A,B, respectively. These curves, which are very close to the 
upper-left corner, indicate that the EFF_D_SVM model has excellent 

classification ability. In the Chen dataset, the AUC values of EFF_D_
SVM for glioma, meningioma, and pituitary are 0.9994, 0.9998, and 
0.9996, respectively. And in the Kaggle dataset, the AUC values of 
EFF_D_SVM for glioma, meningioma, pituitary adenoma and tumor-
free are 0.9937, 0.9964, 0.9999 and 0.9999, respectively.

The classification results obtained by our proposed model are 
compared with those obtained by previous state-of-the-art models 
that used the same dataset, as shown in Table 5. It can be observed that 
the proposed model outperforms the available state-of-the-art 
methods, both on Chen and Kaggle datasets. In particular, the 
accuracy of our proposed EFF_D_SVM model achieve 98.86 and 
98.31% on Chen and Kaggle, respectively.

To understand the model’s area of interest for a category, 
we  visualized it using the Grad-CAM (Selvaraju et  al., 2020) 
technique. This technique can help us to understand how the model 

FIGURE 4

Confusion matrix of the proposed model in the Kaggle (A) EFF_D_Softmax (B) EFF_D_SVM (C) EFF_Softmax (D) EFF_SVM.

Proposed model Tumor type Precision (%) Recall (%) F1-score (%) Accuracy (%)

Pituitary 1 99.44 99.72

Average 97.88 98 97.93

EFF_SVM Glioma 98.37 97.84 98.1 98

Meningioma 97.3 96.26 96.77

No Tumor 95.24 1 97.56

Pituitary 1 98.89 99.44

Average 97.73 98.25 97.97

TABLE 4 (Continued)

https://doi.org/10.3389/fnins.2023.1269100
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2023.1269100

Frontiers in Neuroscience 10 frontiersin.org

distinguishes different types of brain tumors. In this paper, 
Grad-CAM is used to create a class activation heat map. The 
contribution of a specific part in differentiating between different 
brain tumors is directly proportional to the darkness of its 
corresponding color. Figure 6 shows a visual depiction of EFF_D_
SVM for brain tumor image categorization using Grad-CAM. The 
heat map produced by Grad-CAM is displayed in Figure 6B, while 
Figure 6C exhibits the outcome of superimposing the heat map onto 
the original image. Figure 6C visually demonstrates the application 
of the grad-cam technique, where the area of the brain tumor is 

highlighted in red. This indicates that the tumor region serves as a 
prominent feature in differentiating brain tumors, although the 
surrounding area is also included.

3.4. Cross-dataset validation and 
robustness validation

To further demonstrate the robustness of our proposed model, 
cross-validating experiment on multiple datasets was also carried 

Precision Recall F1-score Accuracy
0.96

0.97

0.98

0.99

1.00
A B

EFF_D_Softmax
EFF_D_SVM
EFF_Softmax
EFF_SVM

Precision Recall F1-score Accuracy
0.96

0.97

0.98

0.99

1.00
EFF_D_Softmax
EFF_D_SVM
EFF_Softmax
EFF_SVM

FIGURE 5

Average metrics for classification results (A) Chen (B) Kaggle.

TABLE 5 Comparison of our proposed model with previous models.

Reference Dataset Method Accuracy(%) F1-score(%) Precision(%) Recall (%)

Swati et al. (2019) Chen Fine-tuned VGG19 94.82 91.73 89.52 94.25

Sekhar et al. (2022) Chen GoogleNet+KNN 98.3 97.24 97.24 97.23

Öksüz et al. (2022) Chen ResNet18 + ShallowNet+SVM 97.25 95.26 95.25 95.27

Satyanarayana 

(2023)
Chen DCNN-MCN 94 – – –

Deepak and Ameer 

(2023)
Chen Majority voting 95.6 – – –

Jaspin and Selvan 

(2023)
Chen MCCNN 95.17 95 96 95

Mehnatkesh et al. 

(2023)
Chen Optimizing ResNet 98.694 98.458 98.53 98.40

Kang et al. (2021) Kaggle MobileNetV2 + SVM 98.16 – – –

Muezzinoglu et al. 

(2023)
Kaggle PatchResNet 98.1 98.1 97.91 98.15

Alanazi et al. (2022)
Chen

22-layer-CNN
96.89 – – –

Kaggle 95.75 – – –

Kibriya et al. (2022)
Chen

13-layer CNN
97.2 - 97 96

Kaggle 96.9 – – –

Proposed model
Chen

EFF_D_SVM
98.86 98.73 98.76 98.72

Kaggle 98.31 98.34 98.52 98.17
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out. Considering that the Chen dataset is three-class dataset while 
the Kaggle dataset comprises four classes, EFF_D_SVM and EFF_
SVM will be  evaluated on Kaggle while excluding the normal 
category classes. This decision was made to ensure the model 
reliability and validity while avoiding any potential confounding 
factors. Table 6 es the results of cross-dataset validation. EFF_D_
SVM achieves an F1-score of 97.61% and accuracy of 97.62%, 
which performs better than other models. These results suggest 
that the proposed EFF_D_SVM model has strong robustness.

To further evaluate the robustness of the model, gaussian noise and 
S&P noise were added to the test sets of brain tumor images, respectively. 
Gaussian noise constitutes a form of noise characterized by a probability 
density function that adheres to a Gaussian distribution. This type of 
noise frequently manifests in digital images. The emergence of Gaussian 
noise stems from intricate interplays among circuit components, 
prolonged functioning of the image sensor, and various other 
contributing factors. S & P is often referred to as impulse noise, which 
randomly modifies certain pixel values to appear as sporadic 

Glioma
A

B

C

Meningioma Pituitary

FIGURE 6

Grad-CAM visualization of different tumors. (A) brain tumor (B) heatmap (C) superimposed image.

FIGURE 7

ROC curve for EFF_D_SVM (A) Chen (B) Kaggle.
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FIGURE 8

Images after adding noise (A) original image (B) Gaussian noise (C) S&P.

TABLE 7 Classification results of models after adding noise.

Dataset Type of noise Model Precision (%) Recall (%) F1-score (%) Accuracy (%)

Chen

Gaussian noise

EFF_D_Softmax 94.96 94.23 94.36 94.44

EFF_D_SVM 95.76 95.17 95.34 95.42

EFF_Softmax 93.46 89.49 90.42 92.32

EFF_SVM 93.69 89.31 90.57 92.16

Salt and pepper 

noise

EFF_D_Softmax 95.73 94.81 95.10 95.42

EFF_D_SVM 96.67 95.22 95.83 96.24

EFF_Softmax 95.73 94.81 95.10 95.42

EFF_SVM 94.58 93.16 93.45 94.28

Kaggle

Gaussian noise

EFF_D_Softmax 94.14 92.89 93.25 93.10

EFF_D_SVM 93.76 93.25 93.54 93.40

EFF_Softmax 84.62 85.47 83.40 83.44

EFF_SVM 86.86 88.41 86.12 86.81

Salt and pepper 

noise

EFF_D_Softmax 94.38 95.04 94.45 94.33

EFF_D_SVM 95.99 96.25 96.06 95.71

EFF_Softmax 92.89 93.05 92.31 92.02

EFF_SVM 91.09 91.93 91.14 90.95

black-and-white dots in the image. This form of noise arises from the 
image sensor, transmission channel, decoding, and processing stages, 
resulting in both bright and dark dots scattered throughout the image. 
The robustness of models was verified by adding noise to datasets. Here, 
the variance of the Gaussian noise has been configured at 0.001, while 
the S&P noise affects 0.005 of the total pixels. Subsequently, the resulting 

image, which encompasses both Gaussian and S&P noise, is visually 
depicted in Figure 8. The Table 7 reveals that EFF_D_SVM demonstrates 
superior robustness compared to the other three models. Following the 
introduction of Gaussian and S&P noise to the images, EFF_D_SVM 
achieves classification accuracies of 95.42 and 96.24% for the Chen 
dataset, and 93.40 and 95.71% for the Kaggle dataset. Notably, for the 

TABLE 6 Results of cross-data validation.

Model Precision (%) Recall (%) F1-score (%) Accuracy (%)

EFF_D_Softmax 97.20 97.08 97.08 97.09

EFF_D_SVM 97.67 97.61 97.61 97.62

EFF_Softmax 92.67 94.37 93.42 94.04

EFF_SVM 97.44 97.37 97.36 97.37
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test set of the Kaggle dataset, both EFF_Softmax and EFF_SVM exhibit 
classification accuracies below 90% upon the introduction of Gaussian 
noise, which shows that they have weak robustness.

4. Conclusion

Early diagnosis of brain tumors is critical for selecting appropriate 
treatment options and saving the lives of patients. The manual 
examination of brain tumors is a laborious and time-consuming 
process, therefore, it is necessary to develop an automated detection 
method to aid physicians. This paper proposes a novel approach to 
detect multiple types of brain tumors. In this paper, a new feature 
extraction module EEF_D is proposed. Features are extracted from 
brain tumor images using EFF_D and the features are classified using 
SVM. To verify the effectiveness of our approach, a series of 
comparative experiments were also performed. The EFF_D_SVM 
model exhibits excellent classification ability for brain tumors with 
minimal Data pre-processing, as validated on both the Chen and 
Kaggle datasets. On the Chen dataset, EFF_D_SVM achieves a 
classification accuracy of 98.86% and an F1-score of 98.73%, and on 
the Kaggle dataset, it yields the corresponding values of 98.31 and 
98.34%, respectively. Through comparison with other state-of-the-art 
models, the proposed model outperforms the available state-of-the-art 
methods. Moreover, by means of cross-validation experiments, the 
proposed model is proved to be very robust. In future work, samples 
from other types of brain disorders could be added to expand the 
dataset to improve the performance of the model, in turn to enhance 
the ability to identify other disorders.
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