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Multiple Sclerosis (MS) is an autoimmune disease that combines chronic

inflammatory and neurodegenerative processes underlying di�erent clinical forms

of evolution, such as relapsing-remitting, secondary progressive, or primary

progressive MS. This identification is usually performed by clinical evaluation at

the diagnosis or during the course of the disease for the secondary progressive

phase. In parallel, magnetic resonance imaging (MRI) analysis is a mandatory

diagnostic complement. Identifying the clinical form from MR images is therefore

a helpful and challenging task. Here, we propose a new approach for the automatic

classification of MS forms based on conventional MRI (i.e., T1-weighted images)

that are commonly used in clinical context. For this purpose, we investigated

the morphological connectome features using graph based convolutional neural

network. Our results obtained from the longitudinal study of 91 MS patients

highlight the performance (F1-score) of this approach that is better than state-

of-the-art as 3D convolutional neural networks. These results open the way for

clinical applications such as disability correlation only using T1-weighted images.

KEYWORDS

multiple sclerosis, graph convolutional network, CNN, classification, brainmorphological

connectivity, gray matter thickness

1 Introduction

Multiple sclerosis (MS) is a chronic autoimmune inflammatory and demyelinating

disease of the central nervous system. While its etiology is still unknown (Polman et al.,

2011), MS is the first cause of non-traumatic neurological disability in young adults, affecting

about 2.8 million people worldwide (Goodin, 2014). Often starting with a preliminary

clinical isolated syndrome (CIS) involving a large heterogeneity of clinical symptoms such as

weak limbs, blurred vision, dizziness, fatigue, or tingling sensations, the disease may evolve

along twomain clinical courses. In 85% of patients, the disease starts as a relapsing-remitting

course (RRMS, noted RR), with the occurrence of relapses. These RRMS patients can evolve

over time into a non-systematic secondary-progressive course (SPMS, noted SP). In the 15%

remaining patients, the disease evolves as primary-progressive MS (PPMS, noted PP) which

corresponds to a steadily worsening of symptoms over time without any relapses (Lublin

et al., 2014). The current McDonald diagnostic criteria for MS combine clinical assessment,

imaging, and laboratory findings (Thompson et al., 2018). Despite such clinical classification,

the status and the evolution of each patient could be very different from one to another,

leading more and more to individual therapeutic approaches. Thus, to propose personalized
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medical care and therapy, the neurologist needs to better predict the

disease evolution based on early clinical, biological, and imaging

markers available from disease onset.

Magnetic Resonance Imaging (MRI) is the most effective tool

for the diagnosis of MS and for monitoring the disease modifying

treatment. Conventional MRI provides T1-weighted (T1w), T2-

weighted (T2w) and FLAIR images allowing the detection and

follow-up of white matter (WM) lesions for clinical care (Mure

et al., 2016). These conventional sequences allow the quantification

of whole brain, WM or gray matter (GM) atrophy using dedicated

software. More advanced MRI sequences such as diffusion-

weighted imaging (DWI) and diffusion tensor imaging (DTI)

have been developed to provide more sensitive markers of the

inflammation processes occurring in WM and leading to T1- and

T2-lesions. Several metrics of DTI such as the fractional anisotropy

and the mean diffusion enable the detection of micro-architectural

alterations in WM lesions as well as in normal-appearing WM

(Jutten et al., 2019).

More recently, graph theory methods have been used to

model brain network organization (Rubinov and Sporns, 2010;

Guo et al., 2017). These graph models consist of nodes, based

on the parcellation of brain GM regions, and edges, determined

by the underlying links between the network nodes. In brain

structural connectivity, these links are defined by the extraction

of WM fibers using DTI tractography (Hagmann et al., 2007).

Previously, Kocevar et al. (2016) have demonstrated an interest

of such approaches for the classification of MS clinical profiles

usingMachine Learning (ML)methods, whileMarzullo et al. (2019)

improved the classification performance by a first approach using a

Deep Learning (DL) model.

However, DTI data used for structural connectivity modeling

require long acquisition time and complex processing techniques,

which limits its applicability in clinical practice. Nevertheless,

brain connectivity can also be obtained from conventional

MRI by measuring morphological metrics of the GM on T1w

images (Raamana and Strother, 2018). Indeed, several imaging

investigations have shown that GM atrophy is present early in

MS (Durand-Dubief et al., 2012; Eshaghi et al., 2018). Narayana

et al. (2013) has found significant cortical thinning in RRMS

patients compared to healthy subjects. Hence, the GMdegeneration

used in brain morphological connectivity models could provide a

sensitive marker of the disease evolution. In such graphs, nodes

represent GM areas obtained from the GM tissue parcellation,

while edges represent a degree of (dis-)similarity between nodes

features like GM thickness or curvature (MacDonald et al.,

2000). Such approach has been recently used in Alzheimer’s

Disease (AD), showing that GM network measures predicted

hippocampal atrophy rates in preclinical AD, in contrast to other

AD biomarkers (Dicks et al., 2020). Also, Mahjoub et al. (2018)

proposed to use morphological connectivity to discriminate late

mild cognitive impairment from AD patients. Several studies

of GM morphological network were used in Autism Spectrum

Disorder (ASD) patients. Kong et al. (2019) proposed an auto-

encoder-based deep neural network to identify ASD patients from

typical controls, while Corps and Rekik (2019) used morphological

networks to estimate the ASD patients’ age and deduce the

age-related cortical regions. In MS, Muthuraman et al. (2016)

analyzed morphological GM thickness networks to classify CIS

and RRMS patients using the Support Vector Machine model,

obtaining a good level of accuracy. Meanwhile, several studies

used graph metrics of GM networks to characterize MS patients.

Hawkins et al. (2020) found reduced global efficiency and a more

random network in RRMS subjects with cognitive impairment.

Likewise, lower node degree and connectivity density were found

by Rimkus et al. (2019) in MS patients with cognitive impairment.

Rocca et al. (2021) combined functional connectivity and GM

network to predict clinical worsening in MS, confirming that

GM atrophy is an important predictor for the conversion from

RRMS to SPMS. By using the source-based morphometry approach

to decompose the cortical thickness map into different patterns,

Steenwijk et al. (2016) have further shown that several anatomical

patterns are strongly associated with clinical dysfunction in MS

patients. Meanwhile, several studies also addressed the problem of

age/gender and cortical thickness correlation, and removed their

effects before further analysis. Eshaghi et al. (2016) fitted the linear

regression between age and GM measurements and took only

the residual part to classify MS cohort from neuromyelitis optical

patients. Given the graph nature of brain connectivity, the use of

graph neural network (GNN) to process such data is an evitable

path. GNN allows us to deal with the heterogeneity of input data

by capturing the message passing across nodes (Bronstein et al.,

2021). More specifically, graph convolutional network (GCN),

a reimplementation of convolution concept on GNN, is now

ubiquitous in solving problems on non-euclidean data.

In the meantime, the application of convolutional neural

network (CNN) has proven its strong ability in computer vision,

especially in the biomedical image processing field. Leclerc et al.

(2019) has successfully delineated cardiac structure on ultrasound

images through an encoder-decoder-based model. 3D-CNN, a

particular type of CNN, has been widely used in medical context

since a huge amount of medical images were acquired and

reconstructed in 3 dimensions. Various studies have focused

on disease detection from anatomical neuroimaging (Wargnier-

Dauchelle et al., 2023). Huang et al. (2019) have built a VGG-like

CNN to adapt 3D image challenge for the purpose of Alzheimer’s

Disease (AD) classification using both T1w-MRI and FDG-PET

modalities for a better outcome. Folego et al. (2020) have adapted

LeNet, VGGNet, GoogLeNet, and ResNet in 3D domain to the aim

of AD detection. Flaus et al. (2022) has proposed a 3D sequential

ResNet to enhance PET images for better visualization of brain

lesions. A transparent CNN framework proposed by Eitel et al.

(2019) has revealed the decision process of CNN in the diagnosis of

MS and pointed out more disease-relevant features in MR images.

Optic nerve lesions, one of the first manifestations of MS, can

be detected by the 3D-CNN model designed by Marti-Juan et al.

(2022).

In this study, we proposed to use GCN for the classification

of MS clinical forms based only on the measurement of GM

morphological feature (thickness) obtained from T1w-MRI. The

impacts of different methodological parameters such as the spatial

resolution of the GM parcellation atlases and the level of different

graph thresholds were compared. Finally, in order to demonstrate

the interest of GCN for MS clinical forms classification, we

compared the GCN with a classic 3D-CNN approach.
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TABLE 1 MS cohort description of 660 scans including

relapsing-remitting (RRMS), primary-progressive (PPMS), and

secondary-progressive (SPMS) patients.

RRMS PPMS SPMS

Number of patients

(F/M)

42 (30/12) 21 (12/9) 28 (11/17)

Number of scans 299 143 218

Mean age at disease

onset

28.5 35.0 27.6

Mean age at each

scan (range)

35.4 (20.5–53.1) 43.0 (27.8–51.6) 42.9 (28.9–52.2)

Mean disease

duration at first

scan

4.9 5.6 13.4

Mean disease

duration at each

scan

7.3 7.5 15.1

EDSS median

(range)

2 (0–5.5) 4 (2–7.5) 5.5 (3–8.5)

2 Materials and methods

Our method was divided into three steps: (i) cortical feature

extraction using FreeSurfer (Fischl, 2012); (ii) generation of brain

morphological graphs using distance computation and threshold;

and (iii) clinical forms classification using GCN.

2.1 MRI acquisition and data

TheMS patient group (AMSEP) consists of 42 RR, 28 SP, and 21

PP participants included in a longitudinal MRI study. CIS patients

(n = 12) were included in the RR patient group, in accordance

with our clinical expert. Patients (n = 3) with change in clinical

forms have been removed from the MS group. The patients

underwent MR scans on a 1.5T Siemens Sonata system using

an 8-channel head-coil at the Lyon CERMEP imaging platform,

including a sagittal millimetric 3D-T1 MPRAGE (magnetization

prepared rapid gradient echo-MPRAGE) sequence [(TR/TE/TI) =

1970/3.93/1100 ms, flip angle = 15◦, field of view (FOV) = 256 ×

256mm, slice thickness = 1mm, voxel size = 1× 1× 1mm]. Table 1

provides information on the clinical data in further detail. During

the first 3 years, MRI exams were performed every 6 months, and

every year during the following years. These make up a MS patient

dataset of 660 scans in total as detailed in Table 1. A healthy control

(HC) group of 21 subjects following the AMSEP protocol was

included in this study.

Another HC group of 314 scans from the IXI dataset

(http://brain-development.org/ixi-dataset/) was introduced for the

training process (noted IXI). These healthy subjects underwent

MR scans on a 1.5T Philips Gyroscan Intera system using a T1w

sequence (TR/TE = 9813/4603 ms, flip angle = 8◦, 192 phase

encoding steps, reconstruction diameter = 240 mm). These make

up a HC dataset of 335 scans in total as detailed in Table 2.

TABLE 2 Healthy controls cohort description of 335 T1-weighted MRI

including 21 healthy controls (HC-AMSEP) acquired with the same

protocol as MS cohort and 314 healthy controls (HC-IXI) obtained from

the open-access IXI dataset.

HC HC-AMSEP HC-IXI

Number of subject (F/M) 21 (14/7) 314 (175/139)

Number of scans 21 314

Mean age at scan 42.9 (21.6–56.5) 50.8 (20.1–86.2)

2.2 Classification using graph-based
convolutional network

As we explore the ability of cortical anatomical changes to

identify MS forms, we extract features related to the shape of

cortical regions.With such features, we then build a graph reflecting

shape similarities between cortical regions and use the graphmatrix

to train the GCN. The full pipeline of the proposed network is

shown in Figure 1.

2.2.1 Feature extraction
In order to obtain features of cortical regions, the brain GM

was first segmented (Figure 1), the cortical surface was parcellated

intoN regions using a dedicated brain atlas. Morphological features

of each region can thus be calculated and represented as a vector

of values.

Automatic segmentation of GM and cortical surface

reconstruction were performed on all T1w-MRI using FreeSurfer

v6.0.0 image analysis suite (Fischl, 2012), a neuroimaging toolkit

for human brain analysis. This includes 31 preprocessing steps

such as motion correction, intensity normalization, skull stripping

and non-linear registration. All FreeSurfer processing steps were

done on the Virtual Imaging Platform (Glatard et al., 2013), the

1,001 images were processed simultaneously and it took 6 h per

image on average. The input T1w-MRI brain was resampled onto

an average brain (fsaverage) generated from 40 subjects using

the Buckner dataset. The Buckner dataset is a subset of a large

structural dataset created by the Buckner Lab, it was specifically

selected for the intermediate processing step of FreeSurfer. The

obtained cortical surface consists of a mesh with 163842 vertices.

All outputs were smoothed at full-width/half-max (FWHM) value

of 10 mm.

These smoothed outputs are then parcellated. In order to study

the impact of the number of cortical regions N, three different

atlases were used for brain parcellation and graph generation,

namely the Desikan-Killiany (Desikan et al., 2006) with N = 68

regions, Destrieux (Destrieux et al., 2010) with N = 148 regions

and Glasser (Glasser et al., 2016) with N = 360 regions. The

cortex parcellation of the average template brain is demonstrated

in Figure 2.

More specifically, a region number i (with i = 1 . . .N) was

assigned to each vertex according to the atlas chosen by registering

the patient’s brain mesh to the template brain. As mainly used in

brain connectivity studies (reference), the cortical thickness was

chosen as the morphological feature and calculated for each region.
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FIGURE 1

Proposed pipeline for GCN classification. The upper steps illustrate the cortical gray matter regions segmentation from T1w-MRI and parcellation

using three atlases, the region feature extraction (thickness) and its vector values. The bottom steps describe the graph construction followed by the

GCN classification network. Four threshold levels are applied on graphs (0, 60, 70, 80%), leading to four graphs per atlas. In summary, 12 networks are

trained separately (3 atlases, 4 threshold levels) on 660 scans.

FIGURE 2

Representation of the cortical parcellation of the three atlases: (A) Desikan-Killiany; (B) Destrieux; (C) Glasser.

Since each region feature is a vector of thousands of

elements on average, we summarize the distribution of the

thickness values within one region i by a vector xi ∈

R
4 containing the mean value, the standard deviation, the

skewness, and the kurtosis: xi = (µi, σi, γi, ki). We called

the feature matrix X ∈ R
N×4 the combination of the

N vectors xi.

2.2.2 Age and gender normalization
Since women and men have different cortical atrophy

manifestations with age (Narayana et al., 2013), we proposed two

methods to normalize xi: a proportional normalization and a

residual normalization. For the proportional normalization, we first

calculated the average cortical thickness of the whole brain of all

MS patients and healthy subjects from the IXI dataset. Then, we

Frontiers inNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnins.2023.1268860
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2023.1268860

performed a linear regression between age and cortical thickness

as:

Cth = a ∗ age+ b

where Cth is the average cortical thickness of one person. Two

different sets of coefficients (af , bf ) and (am, bm) were calculated

for healthy women and men respectively. If the slope represents the

normal aging effect, we applied this slope to the MS patients group

to correct the effect of age and sex. All MS patients’ measurements

were brought to the age of 20. Thus, the corrected thickness Cth20
of a patient can be expressed as:

Cth20 = a ∗ 20+ b′ = a ∗ 20+ Cth− a ∗ age

Therefore, the adjusted feature vector x′i of each region with

proportional correction with coefficient α = Cth20
Cth

can be

represented as: x′i = (αµi,ασi, γi, ki). The modified vectors were

then used to calculate the new proportional normalized graphs

following the same procedure as described above.

Inspired by the work of Eshaghi et al. (2016), we also proposed

to adjust each cortical region for the effect of age and gender.

For every brain region i of the healthy cohort, we fitted a linear

regression where age was the regressor and the four attributes of

the region were dependent variables. Therefore, for the four values

of the feature vector, we have:

µi = a
(µ)
i ∗ age+ b

(µ)
i

σi = a
(σ )
i ∗ age+ b

(σ )
i

γ (i) = a
(γ )
i ∗ age+ b

(γ )
i

ki = a
(k)
i ∗ age+ b

(k)
i

We then estimated the residual of each variable that was

inexplicable by the healthy linear regression model: r
(µ)
i = µ̂i −

µi = a
(µ)
i ∗ age + b

(µ)
i − µi for example in the case of average

cortical thickness measure. The residual feature vector of one

region became: ri = (r
(µ)
i , r

(σ )
i , r

(γ )
i , r

(k)
i ). The residual vectors were

also used to calculate the residual graphs that were further used in

the GCN classification. Notice that these regressions are performed

for both males and females separately.

2.2.3 Graph generation
A graph G is a mathematical representation of a complex

system and is defined by a collection of nodes V and edges E

between pairs of nodes with the possibility to assign a weighted

value w for each edge:

G = (V ,E,w)

Therefore, a brain can be described as a graph, with each brain

region being represented by a node xi, or x
′
i and ri in case of

normalization. Here, we associate four attributes (mean value µ,

standard deviation σ , skewness γ , and kurtosis k) to each node.

The graph representation of brain morphological connectivity was

defined as the dissimilarity across brain regions. We propose to

compare two distances to calculate the region-wise connections.

The first one is the Mahalanobis distance dM :

dM(xi, xj) =
(

(xi − xj)
TS−1(xi − xj)

)1/2

with S the covariance matrix of samples xi and xj.

The second studied distance is the Taxicab (or Manhattan)

distance dT :

dT(xi, xj) =

4
∑

k=1

|xki − xkj |

where xki is the kth dimension of the vector xi.

The adjacent matrix A ∈ R
N×N is computed for all distances

between xi and xj: A(i, j)X = d(xi, xj).

Using both X and A, we generate weighted and undirected

graphs. The edge weights are given by the adjacent matrix.

Thresholds were used to counteract the impact of the

redundant information given by the brain adjacent matrix. A fixed

rejection quantile τ is used as a threshold value to remove the

lowest distances and thus maintains the same graph density for

each subject.

For graph availability, the reader can refer to Section 5.

2.2.4 GCN classification
Graph convolutional networks were used as they exploit input

data through graph structure. As a dimension reduction tool,

graph representation can largely reduce input data size from 12

MB to 130 KB on average in our case. Intuitively speaking, brain

network topology is an alternative method of image analysis.

Sporns (2018) have confirmed the importance of graph theory for

the understanding of brain structure. Based on our previous results

using brain structural graph analysis (Marzullo et al., 2019), we

explore a new approach using brain morphological graph.

For the graph G = (V ,E,w), the algorithm takes the adjacent

matrix A and the associated node features matrix X as input. The

layer-wise propagation rule is defined as follows (Kipf andWelling,

2017):

H(l+1) = σ (D̃− 1
2 ÃD̃− 1

2H(l)W(l))

Where Ã is the sum of A with the identity matrix I, D̃ is the

corresponding diagonal degree matrix and the adjacent matrix is

normalized by the step D̃− 1
2 ÃD̃− 1

2 . W l represents the trainable

weight over each layer. The RELU activation function σ (x) =

max(0, x) is chosen for σ .

2.2.5 GCN architecture
The proposed GCN classification model was composed of 3

GCN layers followed by a global mean pool layer with a dropout

rate of 0.3 to prevent overfitting. The proposed structure is shown

in Figure 3. This led to 8835 trainable parameters.
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FIGURE 3

The overall structure of the proposed graph-based convolutional network. N is the number of regions according to the atlas chosen. Four represents

the four elements of the feature vector per region. Input of the network consists of one adjacency matrix (N*N) and one feature matrix (N*4) per

patient. The network starts with three graph convolutional layers of 64 filters each, then gathered into a vector using a global mean pooling. Two fully

connected layers are used to obtain the classification into three classes (RR, PP, SP).

2.3 Classification using 3D convolutional
neural network

To validate our GCN against classically used CNN

architectures, we implemented a 3D-CNN architecture using

a similar architecture by replacing graph convolutional layers

with classical convolutional layers. The output of a filter of a 3D

convolutional layer with kernel W of size (fhxfwxfdxfc) can be

expressed as follows:

zi,j,k = b+

fh−1
∑

p=0

fw−1
∑

q=0

fd−1
∑

r=0

fc−1
∑

c=0

xi′ ,j′ ,k′ ,c.Wp,q,r,c

with

i′ = i+ p−
⌊

fh/2
⌋

and j′ = j+ q−
⌊

fw/2
⌋

and

k′ = k+ r −
⌊

fd/2
⌋

Therefore, a 3D-CNN model was constituted of three 3D

convolutional layer sets, including a 3D convolutional layer (kernel

of 3× 3× 3), followed by a max pooling layer (subsampling spatial

support by 2 × 2 × 2) and then a batch normalization layer. The

tensor is then flattened and used as input of two consecutive fully

connected layers of 128 and 2 neurons, respectively. These made up

of 22,548,122 trainable parameters of the CNN network.

Before using a deep neural network to classify the 3D MRI, all

scans were pre-processed using the brain extraction tool (BET) of

FMRIB Software Library in order to eliminate non-brain structures.

Then, the 3D-CNN image classification network predicts the class

(RR, SP, or PP) of the T1w image of a patient’s brain used as input.

The architecture used is summarized in Figure 4. To prevent over-

fitting, a dropout (Srivastava et al., 2014) rate of 0.3 is applied after

the flattening layer.

As it is known that CNN classification needs numerous data to

perform well, we compared its performance with the classification

results using a graph-based neural network.

2.4 Experimental settings

According to our previous study using brain morphological

connectivity (Barile et al., 2022), 4 threshold levels τ ∈

{0, 0.6, 0.7, 0.8}were applied to the adjacent matrix computed using

the 3 atlases and the 2 distances. Thus, each GCN classification is

carried out in 72 different ways, and one for CNN.

For both network architectures, the MS images were divided

into two datasets: approximately 80% of scans used for training

and 20% of the scans used only for testing, i.e., to evaluate the

performance of networks. To avoid the impacts of repetition of the

same patient, we carefully grouped all time points of one patient in

the same train or test set using the stratified group k-fold technique.

The exams of the same patient won’t be in the train set and test

set simultaneously.

The precision, recall, and the F1-score were used to assess both

algorithms’ effectiveness. To provide a more thorough assessment

of the two models, cross-validation using five-folds was performed.

From hyperparameters manual optimization, we use the Adam

optimizer with a learning rate of 0.001 for GCN and the

Stochastic Gradient Descent optimizer with a learning rate of 0.001

for 3D-CNN.

GCN was trained on one GPU (NVIDIA GeForce RTX 3060),

and CNNwas trained on oneNVIDIARTXA5000. All experiments

were done using PyTorch.

For code availability, the reader can refer to Section 5.

3 Results

In this section, we first present the GCN classification tasks and

then the results without age and gender normalization to allow the

comparison with 3D-CNN classification results. Second, the GCN

classification results with age and sex normalization are presented.

3.1 Clinical forms classification tasks

Six classification tasks related to clinical needs were

implemented: (1) RR vs. PP; (2) RR vs. SP; (3) PP vs. SP; (4)

RR vs. PP+SP; (5) RR vs. PP vs. SP; (6) MS vs. HC. For this last task,

the train set consists of 619 MS scans and 290 randomly selected

scans from the IXI dataset. For the test set, 42 scans were selected

from the MS group (24 RRMS, 10 PPMS, 8 SPMS) along with the

21 HC-AMSEP scans from the same study and 24 HC-IXI scans

from the IXI dataset. For the other tasks, only the MS patients
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FIGURE 4

The overall structure of the proposed 3D-CNN network. It starts with three convolutional layers of 16, 32, and 64 filters respectively, each

convolution layer followed by a max pooling layer. The tensor is then flattened and two fully connected layers are used to obtain the classification

into three classes (RR, PP, SP).

dataset was used. A five-fold stratified cross-validation scheme was

applied for all tasks.

3.2 GCN classification

3.2.1 Without normalization
F1-score of the three atlases (Desikan-Killiany, Destrieux,

Glasser), four rejection rates and two distance calculation

approaches were compared as shown in Tables 3, 4. Precision and

Recall measures of corresponding experiments were included in

Supplementary material.

Comparing classification results task by task, the best result

was always found using Mahalanobis instead of Taxicab distance

for the dissimilarity measurement. The classification of RR vs. PP

gave the best result when an 80% rejection rate was applied to the

Destrieux atlas with an F1-score of 72.5%. The separation between

RR and SP patients provides an F1-score of 72.2% using an 80%

rejection rate on the Glasser atlas. By grouping the PP and SP in a

neurodegenerative group, the binary classification of RR vs. PP+SP

reached an F1-score of 68.9%. The best three classes classification

was obtained using an 80% rejection rate on the Glasser atlas with

an F1-score of 64.2%. The optimal PP/SP splitting leading to an F1-

score of 53.1% was obtained using the Glasser atlas and a rejection

rate of 70%. Finally, all GCN classification networks can achieve a

great result on MS vs. HC task (100% F1-score on the predefined

unseen test dataset). Atlas-wise speaking, for Mahalanobis distance

measurement, a 60% rejection rate gave the best result on the

Desikan-Killiany atlas, while an 80% rejection rate yielded the

best outcome on both Destrieux and Glasser atlases. For Taxicab

distance measurement, a 70% rejection rate gave the best result on

the Desikan-Killiany atlas, the graph without rejection generated

the best on the Destrieux atlas, and a 60% rejection rate achieved

the best performance on the Glasser atlas.

3.2.2 With normalization
In order to correct for age and gender, two normalization

methods have been carried out. The results obtained using three

atlases and two distance methods are shown in Tables 5–8. The best

RR/PP separation can be found when the residual normalization

was carried out to the Desikan-Killiany atlas with a threshold

of 80%. The proportional normalization method applied to the

Glasser atlas with an 80% rejection rate generated the best results of

RR vs. SP, RR vs. PP+SP, and RR vs. PP vs. SP with F1-scores 71.1,

67.8, and 62.1% respectively. The best result of PP/SP classification

can be found in residual normalization on the Desikan-Killiany

atlas (rejection rate = 0) with an F1-score of 64.2%. For the

proportional normalization method, the best overall result can be

found using the Glasser atlas with 80% threshold. The best overall

result for the residual normalization method was carried out by the

same atlas with 60% threshold.

3.3 Comparing CNN and GCN

The results of the comparison between 3D-CNN classification

and GCN without normalization are shown in Table 9. Comparing

RR individually with PP and SP, 3D-CNN returned an F1-score of

72.1% and 69.7% respectively, which are slightly lower than GCN

results. The separation between the RR and PP+SP groups on the

F1-score was greater than that of the GCN technique at 70.7%.

The 3D-CNN method generated a similar result on the multi-

class classification task with an F1-score of 63.9%. Finally, 3D-CNN

achieved a lower result than GCN for the PP vs. SP partition with a

49.5% F1-score. Overall, the best results were obtained using GCN

over 3D-CNN while implementing an 80% rejection rate on the

Glasser atlas and the Mahalanobis distance.

4 Discussion

Graph Convolutional Network is an innovative approach for

the classification of clinical forms in multiple sclerosis. While

functional and structural connectivities were previously used

and provided good results (Ktena et al., 2018; Marzullo et al.,

2019), they were constrained by the small size of the database

available in clinical routine. To overcome this limitation, one

approach is to develop a morphological connectivity method

requiring only anatomical T1w MRI for brain studies. In order

to test such a hypothesis, we developed a complete pipeline using

morphological connectivity and graph convolutional networks. To
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TABLE 3 F1-scores (mean value ± standard deviation) of clinical forms classification using GCN based on Mahalanobis graph for three parcellation

atlases and four threshold levels τ .

Atlas Tasks τ = 0 τ = 0.6 τ = 0.7 τ = 0.8

Desikan-Killiany RR vs. PP 0.701± 0.076 0.698± 0.068 0.706 ± 0.056 0.703± 0.052

RR vs. SP 0.684± 0.064 0.7 ± 0.077 0.684± 0.061 0.674± 0.08

RR vs. PP + SP 0.654 ± 0.088 0.648± 0.081 0.647± 0.081 0.638± 0.071

RR vs. PP vs. SP 0.594± 0.047 0.593± 0.059 0.603 ± 0.037 0.567± 0.043

PP vs. SP 0.438± 0.092 0.475 ± 0.073 0.466± 0.064 0.465± 0.101

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Destrieux RR vs. PP 0.72± 0.103 0.721± 0.089 0.721± 0.088 0.725 ± 0.085

RR vs. SP 0.684± 0.065 0.679± 0.066 0.666± 0.055 0.686 ± 0.07

RR vs. PP + SP 0.649± 0.074 0.657 ± 0.061 0.656± 0.058 0.642± 0.071

RR vs. PP vs. SP 0.569± 0.037 0.588± 0.059 0.587± 0.057 0.596 ± 0.066

PP vs. SP 0.485 ± 0.05 0.45± 0.054 0.479± 0.058 0.466± 0.073

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Glasser RR vs. PP 0.702± 0.096 0.722 ± 0.102 0.711± 0.099 0.714± 0.079

RR vs. SP 0.711± 0.062 0.71± 0.059 0.694± 0.071 0.722 ± 0.067

RR vs. PP + SP 0.627± 0.085 0.681± 0.085 0.687± 0.084 0.689 ± 0.095

RR vs. PP vs. SP 0.609± 0.038 0.634± 0.055 0.62± 0.066 0.642 ± 0.063

PP vs. SP 0.495± 0.076 0.479± 0.076 0.531 ± 0.115 0.471± 0.077

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

The best rejection rates within each atlas are in bold, the best overall results are in gray background.

TABLE 4 F1-scores (mean value ± standard deviation) of clinical forms classification using GCN based on Taxicab graph for three parcellation atlases

and four threshold levels τ .

Atlas Tasks τ = 0 τ = 0.6 τ = 0.7 τ = 0.8

Desikan-Killiany RR vs. PP 0.701± 0.075 0.709 ± 0.065 0.706± 0.056 0.693± 0.097

RR vs. SP 0.682± 0.061 0.671± 0.063 0.684 ± 0.061 0.671± 0.052

RR vs. PP + SP 0.654± 0.087 0.662± 0.08 0.667 ± 0.073 0.646± 0.078

RR vs. PP vs. SP 0.596± 0.047 0.601± 0.04 0.603 ± 0.037 0.571± 0.033

PP vs. SP 0.437± 0.092 0.458± 0.07 0.466± 0.064 0.471 ± 0.07

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Destrieux RR vs. PP 0.721± 0.103 0.719± 0.097 0.721 ± 0.088 0.709± 0.075

RR vs. SP 0.683 ± 0.064 0.674± 0.054 0.666± 0.055 0.649± 0.064

RR vs. PP + SP 0.65 ± 0.075 0.647± 0.074 0.649± 0.066 0.648± 0.064

RR vs. PP vs. SP 0.569± 0.037 0.587 ± 0.055 0.587± 0.057 0.58± 0.057

PP vs. SP 0.481± 0.05 0.476± 0.057 0.479± 0.058 0.493 ± 0.043

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Glasser RR vs. PP 0.701± 0.095 0.722 ± 0.096 0.711± 0.099 0.696± 0.099

RR vs. SP 0.711 ± 0.063 0.708± 0.069 0.694± 0.071 0.672± 0.035

RR vs. PP + SP 0.628± 0.086 0.656 ± 0.09 0.653± 0.096 0.63± 0.09

RR vs. PP vs. SP 0.609± 0.039 0.629 ± 0.068 0.62± 0.066 0.593± 0.065

PP vs. SP 0.494± 0.073 0.513± 0.089 0.531 ± 0.115 0.526± 0.09

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

The best rejection rates within each atlas are in bold, the best overall results are in gray background.
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TABLE 5 F1-scores (mean value ± standard deviation) of clinical forms classification using GCN based on Mahalanobis age-gender proportional

adjusted graph for three parcellation atlases and four threshold levels τ .

Atlas Tasks τ = 0 τ = 0.6 τ = 0.7 τ = 0.8

Desikan-Killiany RR vs. PP 0.582± 0.091 0.581± 0.111 0.616 ± 0.091 0.611± 0.096

RR vs. SP 0.613 ± 0.08 0.609± 0.07 0.6± 0.066 0.591± 0.065

RR vs. PP + SP 0.615± 0.058 0.622± 0.044 0.625 ± 0.047 0.592± 0.048

RR vs. PP vs. SP 0.545 ± 0.049 0.551± 0.069 0.535± 0.068 0.529± 0.049

PP vs. SP 0.428± 0.044 0.491 ± 0.056 0.45± 0.043 0.463± 0.083

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Destrieux RR vs. PP 0.629± 0.118 0.635 ± 0.115 0.625± 0.115 0.605± 0.127

RR vs. SP 0.63± 0.076 0.634± 0.076 0.632± 0.102 0.647 ± 0.105

RR vs. PP + SP 0.608 ± 0.068 0.601± 0.05 0.602± 0.069 0.589± 0.054

RR vs. PP vs. SP 0.546± 0.043 0.548± 0.056 0.558± 0.061 0.58 ± 0.073

PP vs. SP 0.476± 0.044 0.471± 0.055 0.494 ± 0.058 0.49± 0.066

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Glasser RR vs. PP 0.635± 0.146 0.668± 0.124 0.669± 0.122 0.671 ± 0.117

RR vs. SP 0.638± 0.092 0.679± 0.117 0.692± 0.114 0.711 ± 0.107

RR vs. PP + SP 0.619± 0.063 0.643± 0.071 0.657± 0.075 0.678 ± 0.063

RR vs. PP vs. SP 0.578± 0.077 0.582± 0.065 0.6± 0.044 0.621 ± 0.032

PP vs. SP 0.592 ± 0.086 0.569± 0.097 0.525± 0.09 0.533± 0.116

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

The best rejection rates within each atlas are in bold, the best overall results are in gray background.

TABLE 6 F1-scores (mean value ± standard deviation) of clinical forms classification using GCN based on Taxicab age-gender proportional adjusted

graph for three parcellation atlases and four threshold levels τ .

Atlas Tasks τ = 0 τ = 0.6 τ = 0.7 τ = 0.8

Desikan-Killiany RR vs. PP 0.588± 0.089 0.581± 0.111 0.615 ± 0.092 0.611± 0.096

RR vs. SP 0.607± 0.08 0.609 ± 0.071 0.6± 0.066 0.591± 0.063

RR vs. PP + SP 0.615± 0.06 0.622± 0.045 0.626 ± 0.047 0.592± 0.047

RR vs. PP vs. SP 0.542 ± 0.049 0.55± 0.069 0.535± 0.068 0.529± 0.046

PP vs. SP 0.427± 0.044 0.49 ± 0.053 0.451± 0.042 0.462± 0.083

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Destrieux RR vs. PP 0.632± 0.119 0.636 ± 0.116 0.631± 0.111 0.605± 0.128

RR vs. SP 0.637± 0.075 0.633± 0.09 0.631± 0.101 0.647 ± 0.105

RR vs. PP + SP 0.609 ± 0.067 0.601± 0.051 0.601± 0.07 0.588± 0.054

RR vs. PP vs. SP 0.546± 0.042 0.549± 0.056 0.558± 0.061 0.58 ± 0.074

PP vs. SP 0.48± 0.045 0.473± 0.057 0.493 ± 0.057 0.489± 0.067

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Glasser RR vs. PP 0.618± 0.12 0.645± 0.098 0.63± 0.117 0.655 ± 0.085

RR vs. SP 0.627± 0.092 0.669± 0.11 0.686± 0.106 0.7 ± 0.096

RR vs. PP + SP 0.606± 0.055 0.0.632± 0.069 0.649± 0.069 0.67 ± 0.059

RR vs. PP vs. SP 0.567± 0.068 0.572± 0.057 0.594± 0.039 0.611 ± 0.029

PP vs. SP 0.6 ± 0.094 0.576± 0.097 0.538± 0.096 0.51± 0.101

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

The best rejection rates within each atlas are in bold, the best overall results are in gray background.
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TABLE 7 F1-scores (mean value ± standard deviation) of clinical forms classification using GCN based on Mahalanobis age-gender residual adjusted

graph for three parcellation atlases and four threshold levels τ .

Atlas Tasks τ = 0 τ = 0.6 τ = 0.7 τ = 0.8

Desikan-Killiany RR vs. PP 0.7± 0.097 0.681± 0.097 0.679± 0.085 0.715 ± 0.069

RR vs. SP 0.578± 0.105 0.577± 0.109 0.579± 0.114 0.581 ± 0.126

RR vs. PP + SP 0.612± 0.055 0.618 ± 0.064 0.603± 0.069 0.61± 0.068

RR vs. PP vs. SP 0.525 ± 0.065 0.484± 0.042 0.488± 0.066 0.503± 0.055

PP vs. SP 0.635 ± 0.079 0.601± 0.09 0.595± 0.098 0.563± 0.118

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Destrieux RR vs. PP 0.709 ± 0.102 0.693± 0.105 0.697± 0.107 0.696± 0.11

RR vs. SP 0.58± 0.103 0.579± 0.11 0.599± 0.115 0.603 ± 0.124

RR vs. PP + SP 0.558 ± 0.035 0.557± 0.015 0.547± 0.008 0.538± 0.025

RR vs. PP vs. SP 0.483± 0.074 0.476± 0.092 0.481± 0.099 0.49 ± 0.101

PP vs. SP 0.481± 0.105 0.498± 0.094 0.505± 0.083 0.528 ± 0.077

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Glasser RR vs. PP 0.711 ± 0.087 0.707± 0.098 0.705± 0.096 0.644± 0.153

RR vs. SP 0.595± 0.132 0.612± 0.131 0.619± 0.138 0.637 ± 0.127

RR vs. PP + SP 0.588± 0.08 0.617 ± 0.083 0.607± 0.088 0.608± 0.094

RR vs. PP vs. SP 0.51± 0.068 0.54 ± 0.082 0.537± 0.083 0.527± 0.066

PP vs. SP 0.566 ± 0.149 0.509± 0.096 0.523± 0.093 0.561± 0.097

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

The best rejection rates within each atlas are in bold, the best overall results are in gray background.

TABLE 8 F1-scores (mean value ± standard deviation) of clinical forms classification using GCN based on Taxicab age-gender residual adjusted graph

for three parcellation atlases and four threshold levels τ .

Atlas Tasks τ = 0 τ = 0.6 τ = 0.7 τ = 0.8

Desikan-Killiany RR vs. PP 0.7± 0.097 0.681± 0.097 0.678± 0.085 0.715 ± 0.072

RR vs. SP 0.579± 0.111 0.58± 0.106 0.583 ± 0.113 0.575± 0.12

RR vs. PP + SP 0.611± 0.055 0.617 ± 0.062 0.607± 0.067 0.609± 0.067

RR vs. PP vs. SP 0.525 ± 0.065 0.485± 0.042 0.482± 0.062 0.503± 0.056

PP vs. SP 0.642 ± 0.079 0.604± 0.088 0.593± 0.101 0.567± 0.124

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Destrieux RR vs. PP 0.711 ± 0.101 0.693± 0.105 0.694± 0.112 0.696± 0.112

RR vs. SP 0.582± 0.105 0.579± 0.112 0.597± 0.122 0.598 ± 0.123

RR vs. PP + SP 0.553± 0.036 0.56 ± 0.015 0.533± 0.025 0.531± 0.032

RR vs. PP vs. SP 0.491 ± 0.073 0.476± 0.092 0.479± 0.098 0.48± 0.1

PP vs. SP 0.48± 0.106 0.497± 0.091 0.526± 0.076 0.527 ± 0.074

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

Glasser RR vs. PP 0.713 ± 0.088 0.707± 0.098 0.705± 0.096 0.645± 0.155

RR vs. SP 0.589± 0.126 0.611± 0.131 0.618± 0.135 0.637 ± 0.128

RR vs. PP + SP 0.592± 0.086 0.618 ± 0.084 0.607± 0.088 0.608± 0.09

RR vs. PP vs. SP 0.508± 0.067 0.542 ± 0.083 0.537± 0.081 0.523± 0.062

PP vs. SP 0.567 ± 0.126 0.509± 0.095 0.529± 0.095 0.55± 0.088

MS vs. HC 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000

The best rejection rates within each atlas are in bold, the best overall results are in gray background.
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TABLE 9 Best F1-scores (mean value ± standard deviation) of clinical

forms classification using 3D-CNN and GCN [three datasets:

non-normalized (NN) graph, proportional normalized (PN) graph, and

residual normalized (RN) graph].

Tasks 3D-CNN NN GCN PN GCN RN GCN

RR vs.

PP

0.697± 0.124 0.725 ± 0.085 0.671± 0.117 0.715± 0.069

RR vs.

SP

0.721± 0.081 0.722 ± 0.067 0.711± 0.107 0.637± 0.128

RR vs.

PP + SP

0.707 ± 0.066 0.689± 0.095 0.678± 0.063 0.618± 0.084

RR vs.

PP vs. SP

0.639± 0.036 0.642 ± 0.063 0.621± 0.032 0.542± 0.083

PP vs. SP 0.495± 0.06 0.531± 0.115 0.6± 0.094 0.642 ± 0.079

The best F1-scores for each classification task are in bold.

our knowledge, this is the first attempt to use this approach for the

classification of MS clinical forms. Brain graphs were established

based on Desikan-Killiany, Destrieux, and Glasser atlases, for GM

parcellation. Rejection rates of 60, 70, and 80% were applied to

connectivity graphs to preserve solely main differences across brain

regions. Morphological connectivity data were fed into GCN while

3D brain images were loaded in 3D-CNN to compare the two

classification approaches.

First, non-normalized GCN was compared to 3D-CNN, which

was unable to normalize age or gender based on image data.

Generally speaking, GCN has outperformed 3D-CNN on 4 out of 5

predefined tasks when the threshold/atlas pair was carefully chosen.

For the task RR vs. PP+SP, the F1-score generated by GCN was

slightly weaker than the result of 3D-CNN with a 1.8 percentage

point. However, it requires more computation resources to train a

simple 3 convolutional layers network. In our case, GCN only took

5 h for network training while achieving a better result than 3D-

CNN which took more than a week on the same computer. The

proposed pipeline has gained in computation time thanks to its

dimension-reduction ability. Instead of working on 256 × 256 ×

256 volumetric images, the graph approach allowed us to use the

adjacent matrix of size 360× 360 in the most complex case.

The comparison of the two classification networks has also

given us insights into the medical image processing field. In

general, clinical image classification tasks can be easily affected

by acquisition changes (manufacturers, centers, MR field, etc.). In

particular, CNNs are sensitive to intensity changes with the use of

convolution layers. To address this problem, CNN classification

networks must be trained on a large number of images that

represent both the variability of the acquisition process and the

diversity of the patients. Since most medical datasets are composed

of a small number of patients, CNN doesn’t usually generate

well due to its data-thirsty characteristic. In contrast, GCN

can be trained on brain graph features that are less sensitive to

image intensity changes. Indeed, cortical thinning is an important

biomarker of the MS neurodegenerative process that is visible

in T1w images (Narayana et al., 2013). With a brain graph

generated from cortical thickness, these small changes in the brain

were well-captured by the proposed GCN pipeline. Our pipeline

returns a clearer relation between brain atrophy and clinical forms,

compared to the 3D-CNN approach, which could be improved by

using Grad-CAM (Selvaraju et al., 2020) or similar methods.

Second, normalized GCN was used to classify MS clinical

forms. This is essential for clinical forms classification. Binary

and multi-class classifications were performed between the three

clinical forms (RR, PP, SP). The result of normalized GCN showed

that GCN can return satisfactory results on binary classification

between MS clinical courses. More specifically, the automatic

separation of inflammatory forms from neurodegenerative forms,

RR vs. SP and PP groups, has been carried out. The best F1-score

was found when separating RR from PP patients, and a good result

was also obtained in the RR/SP classification task. On one hand,

RR patients present relapses corresponding to focal inflammatory

processes. On the other hand, SP and PP patients share the

experience of progressive clinical evolution, associated or not with

inflammatory activity, resulting from degenerative phenomena

of the gray matter. Thus, by grouping SP and PP patients,

an adequate result was found when the finest atlas (Glasser)

was applied.

The three-class classification is a difficult multi-class

categorization task which is further worsened by the imbalanced

data distribution. Nevertheless, a promising result was obtained

using the Glasser parcellation atlas with a high rejection rate,

indicating the advantage of dimension reduction when facing

complex brain data such as our case.

Classification of SP and PP was the hardest binary classification

task to be accomplished. this is partially due to the small amount

of PP cases. Indeed, SP and PP are two neurodegenerative forms

sharing similar pathological processes. Moreover, PP is a starting

clinical form that can be divided into subclasses depending on the

level of disability. With an EDSS score ranging from 2 to 7.5, our PP

population is composed of both early and late stages of the disease.

The latter ones are more relevant and probably more similar to

SP patients as shown in the disease duration at scan. This large

variability of disability scores reflects different progressions of the

disease and thus different stages of brain alterations. Thus, the SP

and some PP patients may share MRI phenotypes which makes the

classification difficult, and perhaps even unnecessary.

Achieving good results, the binary classification of HC vs. MS

patients was not our primary goal. In general, MS patients can

be easily distinguished from healthy subjects in both clinical and

imaging ways. In our experience, an F1-score of 100%was observed

in all GCN outputs, meaning that all combinations of atlases and

thresholds provided enough information for the classification task.

Similar results were obtained in the previous work ofMarzullo et al.

(2019) on brain structural connectivity. Marzullo et al. (2019) has

performed the test of HC vs. CIS+RR (24/253) and the test of HC

vs. SP+PP (24/325) and achieved the best result (F-measure = 1),

demonstrating an evident difference between HC and MS brain

morphological and structural networks, respectively.

To further compare our work with other studies, we analyzed

the results obtained from Marzullo et al. (2019) and Barile et al.

(2022). Apart from the binary classification of HC vs. MS patients,

Marzullo et al. (2019) have also tested the separation between

early and progressive forms of MS (CIS+RR vs. SP+PP: 253/325)

obtaining the highest F-measure at 0.99. Since CIS subjects are

included in the RR group in our study, we can compare the

previous result with our classification task of RR vs. SP+PP

(299/361), leading to an F1-score of 0.678. This strong difference

in performance demonstrates that white matter inflammation

introduced significant information that facilitates the classification
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of clinical forms in MS. In contrast, the work of Barile et al.

(2022) was performed on GM morphological connectivity. Three

similar tasks were reported: (1) CIS+RR vs. PP; (2) CIS+RR vs. SP;

(3) CIS+RR vs. SP+PP. By employing the same pipeline of graph

generation and atlas (Glasser) and an ensemble of machine learning

methods, they have obtained an F1-score of 0.661 (0.12), 0.654

(0.12), 0.648 (0.11) for the three tasks, respectively. In our study,

we obtained better F1 scores of 0.671 (0.117), 0.711 (0.107), 0.678

(0.063) for the same tasks. This gain in performance (higher F1-

score and reduced standard deviation) demonstrated the interest of

brain graph convolutional networks.

Taxicab distance is an L1-norm metric that is generally

preferred over Euclidean distance for high-dimension data analysis

(Aggarwal et al., 2001). However, since every dimension (mean,

standard deviation, skewness, kurtosis) has the same attribution

in the calculation of Taxicab distance, our feature vector of four

dimensions could not have the same impact on the final value

due to the difference in magnitude. In such cases, Mahalanobis

distance can overcome the problem while removing redundant

information from correlated variables. Since distance measurement

was included as edge weight in the input data of GCN, the choice

can surely affect the final result. Thus, it is not surprising to

observe a better result with Mahalanobis distance supporting the

graph generation.

Finally, this work presents several methodological limitations.

First the classification results were biased by the class imbalance

of the database and the insufficient number of patients. Since

the current database consists of a series of multiple MR scans

per patient, it does not cover enough variability of the disease,

meaning a lack of global vision of the disease. Hence, even if we

carefully stop the network training before overfitting, it is hard to

extract sufficient features of each MS clinical course to classify an

unseen patient by the proposed network, resulting in bad output

in some cases. Nevertheless, our cohort study had no bias related

to the protocol acquisition, which is unique, guaranteeing the

homogeneity of the data. In contrast, a multi-center study is more

variable and therefore requires a precise study and corrections

of bias.

5 Conclusion

Although studies on MS mainly focus on white matter and

lesion analysis, morphological change in gray matter is a non-

negligible aspect of the disease. A full pipeline was proposed in

this study for the classification of MS clinical forms. It starts from

automatic GM segmentation and surface parcellation, followed

by GM thickness analysis using three different granularity of

atlases, two different distance measurements, and two different

age-gender normalization methods. Thus, a brain resulted in

a morphological connectivity graph accompanied by a feature

matrix per graph. Four rejection rates corresponding to noise

elimination were applied to the graph. A graph convolutional

network was performed on these graphs to exploit the hidden

information behind GM morphological features. In parallel, a

classic 3D convolutional neural network was applied to the brain

MRI directly for comparison. The best results were generated

by proportional GCN that trained on Glasser parcellation-based

graphs with Mahalanobis distance measurement and 80% rejection

rate. In future studies, to fully exploit its capacity for clinical image

analysis, our method can be implemented on a larger database

to predict patients’ disease evolution and obtain the correlation

between images’ information and patients’ disability. However, to

work with such a heterogeneous study will require developingmore

advanced graph networks (i.e., with attention) to limit biases such

as gender, age and acquisition systems.
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